Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.998
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(17): 3619-3631.e13, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595565

RESUMO

During viral infection, cells can deploy immune strategies that deprive viruses of molecules essential for their replication. Here, we report a family of immune effectors in bacteria that, upon phage infection, degrade cellular adenosine triphosphate (ATP) and deoxyadenosine triphosphate (dATP) by cleaving the N-glycosidic bond between the adenine and sugar moieties. These ATP nucleosidase effectors are widely distributed within multiple bacterial defense systems, including cyclic oligonucleotide-based antiviral signaling systems (CBASS), prokaryotic argonautes, and nucleotide-binding leucine-rich repeat (NLR)-like proteins, and we show that ATP and dATP degradation during infection halts phage propagation. By analyzing homologs of the immune ATP nucleosidase domain, we discover and characterize Detocs, a family of bacterial defense systems with a two-component phosphotransfer-signaling architecture. The immune ATP nucleosidase domain is also encoded within diverse eukaryotic proteins with immune-like architectures, and we show biochemically that eukaryotic homologs preserve the ATP nucleosidase activity. Our findings suggest that ATP and dATP degradation is a cell-autonomous innate immune strategy conserved across the tree of life.


Assuntos
Viroses , Humanos , Células Eucarióticas , Células Procarióticas , Trifosfato de Adenosina , N-Glicosil Hidrolases
2.
Cell ; 175(5): 1380-1392.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30343895

RESUMO

ADP-ribosylation of proteins can profoundly impact their function and serves as an effective mechanism by which bacterial toxins impair eukaryotic cell processes. Here, we report the discovery that bacteria also employ ADP-ribosylating toxins against each other during interspecies competition. We demonstrate that one such toxin from Serratia proteamaculans interrupts the division of competing cells by modifying the essential bacterial tubulin-like protein, FtsZ, adjacent to its protomer interface, blocking its capacity to polymerize. The structure of the toxin in complex with its immunity determinant revealed two distinct modes of inhibition: active site occlusion and enzymatic removal of ADP-ribose modifications. We show that each is sufficient to support toxin immunity; however, the latter additionally provides unprecedented broad protection against non-cognate ADP-ribosylating effectors. Our findings reveal how an interbacterial arms race has produced a unique solution for safeguarding the integrity of bacterial cell division machinery against inactivating post-translational modifications.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas do Citoesqueleto/metabolismo , N-Glicosil Hidrolases/metabolismo , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP-Ribosilação , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Domínio Catalítico , Proteínas do Citoesqueleto/antagonistas & inibidores , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/imunologia , Escherichia coli/metabolismo , Humanos , Mutagênese Sítio-Dirigida , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Serratia/metabolismo , Imagem com Lapso de Tempo
3.
Cell ; 167(2): 498-511.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27693351

RESUMO

During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-coupled ICL repair pathway that does not require incisions or FANCI-FANCD2. Instead, the ICL is unhooked when one of the two N-glycosyl bonds forming the cross-link is cleaved by the DNA glycosylase NEIL3. Cleavage by NEIL3 is the primary unhooking mechanism for psoralen and abasic site ICLs. When N-glycosyl bond cleavage is prevented, unhooking occurs via FANCI-FANCD2-dependent incisions. In summary, we identify an incision-independent unhooking mechanism that avoids DSB formation and represents the preferred pathway of ICL repair in a vertebrate cell-free system.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Replicação do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , N-Glicosil Hidrolases/metabolismo , Animais , Sistema Livre de Células/química , Reagentes de Ligações Cruzadas/química , DNA/biossíntese , DNA/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Ficusina/química , N-Glicosil Hidrolases/química , Xenopus laevis
4.
Annu Rev Biochem ; 84: 227-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25747399

RESUMO

Protein ADP-ribosylation is an ancient posttranslational modification with high biochemical complexity. It alters the function of modified proteins or provides a scaffold for the recruitment of other proteins and thus regulates several cellular processes. ADP-ribosylation is governed by ADP-ribosyltransferases and a subclass of sirtuins (writers), is sensed by proteins that contain binding modules (readers) that recognize specific parts of the ADP-ribosyl posttranslational modification, and is removed by ADP-ribosylhydrolases (erasers). The large amount of experimental data generated and technical progress made in the last decade have significantly advanced our knowledge of the function of ADP-ribosylation at the molecular level. This review summarizes the current knowledge of nuclear ADP-ribosylation reactions and their role in chromatin plasticity, cell differentiation, and epigenetics and discusses current progress and future perspectives.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Cromatina/metabolismo , Epigênese Genética , Processamento de Proteína Pós-Traducional , ADP Ribose Transferases/metabolismo , Animais , Diferenciação Celular , Humanos , N-Glicosil Hidrolases/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo
5.
Mol Cell ; 74(6): 1239-1249.e4, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31023582

RESUMO

The stringent response alarmones pppGpp and ppGpp are essential for rapid adaption of bacterial physiology to changes in the environment. In Escherichia coli, the nucleosidase PpnN (YgdH) regulates purine homeostasis by cleaving nucleoside monophosphates and specifically binds (p)ppGpp. Here, we show that (p)ppGpp stimulates the catalytic activity of PpnN both in vitro and in vivo causing accumulation of several types of nucleobases during stress. The structure of PpnN reveals a tetramer with allosteric (p)ppGpp binding sites located between subunits. pppGpp binding triggers a large conformational change that shifts the two terminal domains to expose the active site, providing a structural rationale for the stimulatory effect. We find that PpnN increases fitness and adjusts cellular tolerance to antibiotics and propose a model in which nucleotide levels can rapidly be adjusted during stress by simultaneous inhibition of biosynthesis and stimulation of degradation, thus achieving a balanced physiological response to constantly changing environments.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Guanosina Pentafosfato/química , Guanosina Tetrafosfato/química , N-Glicosil Hidrolases/química , Regulação Alostérica , Sequência de Aminoácidos , Antibacterianos/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Cinética , Modelos Moleculares , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Especificidade por Substrato
6.
Proc Natl Acad Sci U S A ; 120(36): e2217708120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639600

RESUMO

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive. In this study, we profiled the phytohormone content of chromosome segment substitution lines of Oryza sativa and searched for genes affecting the endogenous levels of cytokinin ribosides by quantitative trait loci analysis. Our approach identified a gene encoding an enzyme that catalyzes the deribosylation of cytokinin nucleoside precursors and other purine nucleosides. The cytokinin/purine riboside nucleosidase 1 (CPN1) we identified is a cell wall-localized protein. Loss-of-function mutations (cpn1) were created by inserting a Tos17-retrotransposon that altered the cytokinin composition in seedling shoots and leaf apoplastic fluid. The cpn1 mutation also abolished cytokinin riboside nucleosidase activity in leaf extracts and attenuated the trans-zeatin riboside-responsive expression of cytokinin marker genes. Grain yield of the mutants declined due to altered panicle morphology under field-grown conditions. These results suggest that the cell wall-localized LOG-independent cytokinin activating pathway catalyzed by CPN1 plays a role in cytokinin control of rice growth. Our finding broadens our spatial perspective of the cytokinin metabolic system.


Assuntos
Oryza , Oryza/genética , Citocininas/genética , Nucleosídeos de Purina , N-Glicosil Hidrolases/genética , Nucleosídeos , Parede Celular/genética
7.
EMBO J ; 40(21): e107839, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34528284

RESUMO

Adaptive evolution to cellular stress is a process implicated in a wide range of biological and clinical phenomena. Two major routes of adaptation have been identified: non-genetic changes, which allow expression of different phenotypes in novel environments, and genetic variation achieved by selection of fitter phenotypes. While these processes are broadly accepted, their temporal and epistatic features in the context of cellular evolution and emerging drug resistance are contentious. In this manuscript, we generated hypomorphic alleles of the essential nuclear pore complex (NPC) gene NUP58. By dissecting early and long-term mechanisms of adaptation in independent clones, we observed that early physiological adaptation correlated with transcriptome rewiring and upregulation of genes known to interact with the NPC; long-term adaptation and fitness recovery instead occurred via focal amplification of NUP58 and restoration of mutant protein expression. These data support the concept that early phenotypic plasticity allows later acquisition of genetic adaptations to a specific impairment. We propose this approach as a genetic model to mimic targeted drug therapy in human cells and to dissect mechanisms of adaptation.


Assuntos
Adaptação Fisiológica/genética , Alelos , Receptor Quinase 1 Acoplada a Proteína G/genética , Aptidão Genética , N-Glicosil Hidrolases/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Edição de Genes , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Células HEK293 , Haploidia , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Células Mieloides/metabolismo , Células Mieloides/patologia , N-Glicosil Hidrolases/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transdução de Sinais , Transcriptoma , Proteína Vermelha Fluorescente
8.
Nature ; 567(7747): 267-272, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842657

RESUMO

Cells often use multiple pathways to repair the same DNA lesion, and the choice of pathway has substantial implications for the fidelity of genome maintenance. DNA interstrand crosslinks covalently link the two strands of DNA, and thereby block replication and transcription; the cytotoxicity of these crosslinks is exploited for chemotherapy. In Xenopus egg extracts, the collision of replication forks with interstrand crosslinks initiates two distinct repair pathways. NEIL3 glycosylase can cleave the crosslink1; however, if this fails, Fanconi anaemia proteins incise the phosphodiester backbone that surrounds the interstrand crosslink, generating a double-strand-break intermediate that is repaired by homologous recombination2. It is not known how the simpler NEIL3 pathway is prioritized over the Fanconi anaemia pathway, which can cause genomic rearrangements. Here we show that the E3 ubiquitin ligase TRAIP is required for both pathways. When two replisomes converge at an interstrand crosslink, TRAIP ubiquitylates the replicative DNA helicase CMG (the complex of CDC45, MCM2-7 and GINS). Short ubiquitin chains recruit NEIL3 through direct binding, whereas longer chains are required for the unloading of CMG by the p97 ATPase, which enables the Fanconi anaemia pathway. Thus, TRAIP controls the choice between the two known pathways of replication-coupled interstrand-crosslink repair. These results, together with our other recent findings3,4 establish TRAIP as a master regulator of CMG unloading and the response of the replisome to obstacles.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Reparo do DNA , DNA/química , DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , DNA/biossíntese , Replicação do DNA , Feminino , Humanos , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , N-Glicosil Hidrolases/metabolismo , Ligação Proteica , Ubiquitina/metabolismo , Ubiquitinação , Xenopus
9.
Cell Commun Signal ; 22(1): 141, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383396

RESUMO

BACKGROUND: Lipids are regulators of insulitis and ß-cell death in type 1 diabetes development, but the underlying mechanisms are poorly understood. Here, we investigated how the islet lipid composition and downstream signaling regulate ß-cell death. METHODS: We performed lipidomics using three models of insulitis: human islets and EndoC-ßH1 ß cells treated with the pro-inflammatory cytokines interlukine-1ß and interferon-γ, and islets from pre-diabetic non-obese mice. We also performed mass spectrometry and fluorescence imaging to determine the localization of lipids and enzyme in islets. RNAi, apoptotic assay, and qPCR were performed to determine the role of a specific factor in lipid-mediated cytokine signaling. RESULTS: Across all three models, lipidomic analyses showed a consistent increase of lysophosphatidylcholine species and phosphatidylcholines with polyunsaturated fatty acids and a reduction of triacylglycerol species. Imaging assays showed that phosphatidylcholines with polyunsaturated fatty acids and their hydrolyzing enzyme phospholipase PLA2G6 are enriched in islets. In downstream signaling, omega-3 fatty acids reduce cytokine-induced ß-cell death by improving the expression of ADP-ribosylhydrolase ARH3. The mechanism involves omega-3 fatty acid-mediated reduction of the histone methylation polycomb complex PRC2 component Suz12, upregulating the expression of Arh3, which in turn decreases cell apoptosis. CONCLUSIONS: Our data provide insights into the change of lipidomics landscape in ß cells during insulitis and identify a protective mechanism by omega-3 fatty acids. Video Abstract.


Assuntos
Ácidos Graxos Ômega-3 , Ilhotas Pancreáticas , N-Glicosil Hidrolases , Camundongos , Animais , Humanos , Ilhotas Pancreáticas/metabolismo , Morte Celular , Citocinas/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados , Fosfatidilcolinas/metabolismo
10.
Bioorg Chem ; 146: 107302, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521010

RESUMO

Leishmaniasis, a group of neglected infectious diseases, encompasses a serious health concern, particularly with visceral leishmaniasis exhibiting potentially fatal outcomes. Nucleoside hydrolase (NH) has a fundamental role in the purine salvage pathway, crucial for Leishmania donovani survival, and presents a promising target for developing new drugs for visceral leishmaniasis treatment. In this study, LdNH was immobilized into fused silica capillaries, resulting in immobilized enzyme reactors (IMERs). The LdNH-IMER activity was monitored on-flow in a multidimensional liquid chromatography system, with the IMER in the first dimension. A C18 analytical column in the second dimension furnished the rapid separation of the substrate (inosine) and product (hypoxanthine), enabling direct enzyme activity monitoring through product quantification. LdNH-IMER exhibited high stability and was characterized by determining the Michaelis-Menten constant. A known inhibitor (1-(ß-d-Ribofuranosyl)-4-quinolone derivative) was used as a model to validate the established method in inhibitor recognition. Screening of three additional derivatives of 1-(ß-d-Ribofuranosyl)-4-quinolone led to the discovery of novel inhibitors, with compound 2a exhibiting superior inhibitory activity (Ki = 23.37 ± 3.64 µmol/L) compared to the employed model inhibitor. Docking and Molecular Dynamics studies provided crucial insights into inhibitor interactions at the enzyme active site, offering valuable information for developing new LdNH inhibitors. Therefore, this study presents a novel screening assay and contributes to the development of potent LdNH inhibitors.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , N-Glicosil Hidrolases/metabolismo , Cromatografia de Afinidade , 4-Quinolonas
11.
Plant Cell Rep ; 43(3): 68, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341844

RESUMO

KEY MESSAGE: The gametophytic epigenetic regulators, MEA and DME, extend their synergistic role to the sporophytic development by regulating the meristematic activity via restricting the gene expression in the shoot apex. The gametophyte-to-sporophyte transition facilitates the alternation of generations in a plant life cycle. The epigenetic regulators DEMETER (DME) and MEDEA (MEA) synergistically control central cell proliferation and differentiation, ensuring proper gametophyte-to-sporophyte transition in Arabidopsis. Mutant alleles of DME and MEA are female gametophyte lethal, eluding the recovery of recessive homozygotes to examine their role in the sporophyte. Here, we exploited the paternal transmission of these mutant alleles coupled with CENH3-haploid inducer to generate mea-1;dme-2 sporophytes. Strikingly, the simultaneous loss of function of MEA and DME leads to the emergence of ectopic shoot meristems at the apical pole of the plant body axis. DME and MEA are expressed in the developing shoot apex and regulate the expression of various shoot-promoting factors. Chromatin immunoprecipitation (ChIP), DNA methylation, and gene expression analysis revealed several shoot regulators as potential targets of MEA and DME. RNA interference-mediated transcriptional downregulation of shoot-promoting factors STM, CUC2, and PLT5 rescued the twin-plant phenotype to WT in 9-23% of mea-1-/-;dme-2-/- plants. Our findings reveal a previously unrecognized synergistic role of MEA and DME in restricting the meristematic activity at the shoot apex during sporophytic development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Células Germinativas Vegetais/metabolismo , Impressão Genômica , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Transativadores/genética
12.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266952

RESUMO

The flowering plant life cycle consists of alternating haploid (gametophyte) and diploid (sporophyte) generations, where the sporophytic generation begins with fertilization of haploid gametes. In Arabidopsis, genome-wide DNA demethylation is required for normal development, catalyzed by the DEMETER (DME) DNA demethylase in the gamete companion cells of male and female gametophytes. In the sporophyte, postembryonic growth and development are largely dependent on the activity of numerous stem cell niches, or meristems. Analyzing Arabidopsis plants homozygous for a loss-of-function dme-2 allele, we show that DME influences many aspects of sporophytic growth and development. dme-2 mutants exhibited delayed seed germination, variable root hair growth, aberrant cellular proliferation and differentiation followed by enhanced de novo shoot formation, dysregulation of root quiescence and stomatal precursor cells, and inflorescence meristem (IM) resurrection. We also show that sporophytic DME activity exerts a profound effect on the transcriptome of developing Arabidopsis plants, including discrete groups of regulatory genes that are misregulated in dme-2 mutant tissues, allowing us to potentially link phenotypes to changes in specific gene expression pathways. These results show that DME plays a key role in sporophytic development and suggest that DME-mediated active DNA demethylation may be involved in the maintenance of stem cell activities during the sporophytic life cycle in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/enzimologia , Meristema/enzimologia , N-Glicosil Hidrolases/metabolismo , Transativadores/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Diferenciação Celular , Proliferação de Células , Células Germinativas Vegetais/citologia , Meristema/genética , Meristema/crescimento & desenvolvimento , N-Glicosil Hidrolases/genética , Transativadores/genética
13.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547245

RESUMO

While biomolecular condensates have emerged as an important biological phenomenon, mechanisms regulating their composition and the ways that viruses hijack these mechanisms remain unclear. The mosquito-borne alphaviruses cause a range of diseases from rashes and arthritis to encephalitis, and no licensed drugs are available for treatment or vaccines for prevention. The alphavirus virulence factor nonstructural protein 3 (nsP3) suppresses the formation of stress granules (SGs)-a class of cytoplasmic condensates enriched with translation initiation factors and formed during the early stage of infection. nsP3 has a conserved N-terminal macrodomain that hydrolyzes ADP-ribose from ADP-ribosylated proteins and a C-terminal hypervariable domain that binds the essential SG component G3BP1. Here, we show that macrodomain hydrolase activity reduces the ADP-ribosylation of G3BP1, disassembles virus-induced SGs, and suppresses SG formation. Expression of nsP3 results in the formation of a distinct class of condensates that lack translation initiation factors but contain G3BP1 and other SG-associated RNA-binding proteins. Expression of ADP-ribosylhydrolase-deficient nsP3 results in condensates that retain translation initiation factors as well as RNA-binding proteins, similar to SGs. Therefore, our data reveal that ADP-ribosylation controls the composition of biomolecular condensates, specifically the localization of translation initiation factors, during alphavirus infection.


Assuntos
Alphavirus/genética , DNA Helicases/genética , N-Glicosil Hidrolases/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas não Estruturais Virais/genética , Alphavirus/patogenicidade , Animais , Artrite/virologia , Culicidae/virologia , Encefalite/virologia , Exantema/virologia , Regulação Viral da Expressão Gênica/genética , Células HeLa , Humanos , Proteínas de Ligação a RNA/genética
14.
Anal Biochem ; 672: 115171, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142196

RESUMO

2'-Deoxynucleoside 5'-monophosphate N-glycosidase 1 (DNPH1) hydrolyzes the epigenetically modified nucleotide 5-hydroxymethyl 2'-deoxyuridine 5'-monophosphate (hmdUMP) derived from DNA metabolism. Published assays of DNPH1 activity are low throughput, use high concentrations of DNPH1, and have not incorporated or characterized reactivity with the natural substrate. We describe the enzymatic synthesis of hmdUMP from commercially available materials and define its steady-state kinetics with DNPH1 using a sensitive, two-pathway enzyme coupled assay. This continuous absorbance-based assay works in 96-well plate format using nearly 500-fold less DNPH1 than previous methods. With a Z prime value of 0.92, the assay is suitable for high-throughput assays, screening of DNPH1 inhibitors, or characterization of other deoxynucleotide monophosphate hydrolases.


Assuntos
Hidrolases , N-Glicosil Hidrolases , Hidrólise , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Hidrolases/metabolismo , Cinética
15.
Anal Biochem ; 666: 115047, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682579

RESUMO

Due to the emergence of multidrug resistant pathogens, it is imperative to identify new targets for antibiotic drug discovery. The S-adenosylhomocysteine (SAH) nucleosidase enzyme is a promising target for antimicrobial drug development due to its critical functions in multiple bacterial processes including recycling of toxic byproducts of S-adenosylmethionine (SAM)-mediated reactions and producing the precursor of the universal quorum sensing signal, autoinducer-2 (AI-2). Riboswitches are structured RNA elements typically used by bacteria to precisely monitor and respond to changes in essential bacterial processes, including metabolism. Natural riboswitches fused to a reporter gene can be exploited to detect changes in metabolism or in physiological signaling. We performed a high-throughput screen (HTS) using an SAH-riboswitch controlled ß-galactosidase reporter gene in Escherichia coli to discover small molecules that inhibit SAH recycling. We demonstrate that the assay strategy using SAH riboswitches to detect the effects of SAH nucleosidase inhibitors can quickly identify compounds that penetrate the barriers of Gram-negative bacterial cells and perturb pathways involving SAH.


Assuntos
Riboswitch , S-Adenosilmetionina/metabolismo , RNA/genética , Bactérias/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo
16.
Biochem J ; 479(4): 463-477, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175282

RESUMO

ADP-ribosylation has primarily been known as post-translational modification of proteins. As signalling strategy conserved in all domains of life, it modulates substrate activity, localisation, stability or interactions, thereby regulating a variety of cellular processes and microbial pathogenicity. Yet over the last years, there is increasing evidence of non-canonical forms of ADP-ribosylation that are catalysed by certain members of the ADP-ribosyltransferase family and go beyond traditional protein ADP-ribosylation signalling. New macromolecular targets such as nucleic acids and new ADP-ribose derivatives have been established, notably extending the repertoire of ADP-ribosylation signalling. Based on the physiological relevance known so far, non-canonical ADP-ribosylation deserves its recognition next to the traditional protein ADP-ribosylation modification and which we therefore review in the following.


Assuntos
ADP-Ribosilação/fisiologia , ADP Ribose Transferases/química , ADP Ribose Transferases/classificação , ADP Ribose Transferases/fisiologia , Difosfato de Adenosina/metabolismo , Guanosina/metabolismo , N-Glicosil Hidrolases/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Transdução de Sinais , Relação Estrutura-Atividade , Timidina/metabolismo , Ubiquitina/metabolismo
17.
Nucleic Acids Res ; 49(13): e73, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33856484

RESUMO

Antibiotic-resistant pathogens often escape antimicrobial treatment by forming protective biofilms in response to quorum-sensing communication via diffusible autoinducers. Biofilm formation by the nosocomial pathogen methicillin-resistant Staphylococcus aureus (MRSA) is triggered by the quorum-sensor autoinducer-2 (AI-2), whose biosynthesis is mediated by methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) and S-ribosylhomocysteine lyase (LuxS). Here, we present a high-throughput screening platform for small-molecular inhibitors of either enzyme. This platform employs a cell-based assay to report non-toxic, bioavailable and cell-penetrating inhibitors of AI-2 production, utilizing engineered human cells programmed to constitutively secrete AI-2 by tapping into the endogenous methylation cycle via ectopic expression of codon-optimized MTAN and LuxS. Screening of a library of over 5000 commercial compounds yielded 66 hits, including the FDA-licensed cytostatic anti-cancer drug 5-fluorouracil (5-FU). Secondary screening and validation studies showed that 5-FU is a potent quorum-quencher, inhibiting AI-2 production and release by MRSA, Staphylococcus epidermidis, Escherichia coli and Vibrio harveyi. 5-FU efficiently reduced adherence and blocked biofilm formation of MRSA in vitro at an order-of-magnitude-lower concentration than that clinically relevant for anti-cancer therapy. Furthermore, 5-FU reestablished antibiotic susceptibility and enabled daptomycin-mediated prevention and clearance of MRSA infection in a mouse model of human implant-associated infection.


Assuntos
Biofilmes/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fluoruracila/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Animais , Proteínas de Bactérias/antagonistas & inibidores , Liases de Carbono-Enxofre/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Feminino , Fluoruracila/uso terapêutico , Células HEK293 , Homosserina/análogos & derivados , Homosserina/biossíntese , Humanos , Lactonas , Staphylococcus aureus Resistente à Meticilina/metabolismo , Camundongos Endogâmicos C57BL , N-Glicosil Hidrolases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Infecções Estafilocócicas/prevenção & controle
18.
Biochemistry ; 61(17): 1883-1893, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35969806

RESUMO

Enzyme-catalyzed hydrolysis is a fundamental chemical transformation involved in many essential metabolic processes. The enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the hydrolysis of adenosine-containing metabolites in cysteine and methionine metabolism. Although MTAN enzymes contain highly similar active site architecture and generally follow a dissociative (DN*AN) reaction mechanism, substantial differences in reaction rates and chemical transition state structures have been reported. To understand how subtle changes in sequence and structure give rise to differences in chemistry between homologous enzymes, we have probed the reaction coordinates of two MTAN enzymes using quantum mechanical/molecular mechanical and molecular dynamics simulations combined with experimental methods. We show that the transition state structure and energy are significantly affected by the recruitment and positioning of the catalytic water molecule and that subtle differences in the noncatalytic active site residues alter the environment of the catalytic water, leading to changes in the reaction coordinate and observed reaction rate.


Assuntos
N-Glicosil Hidrolases , Água , Catálise , Desoxiadenosinas , Hidrólise , N-Glicosil Hidrolases/química , Purina-Núcleosídeo Fosforilase , Tionucleosídeos
19.
Biochemistry ; 61(17): 1853-1861, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35994320

RESUMO

Trichomonas vaginalis is the causative parasitic protozoan of the disease trichomoniasis, the most prevalent, nonviral sexually transmitted disease in the world. T. vaginalis is a parasite that scavenges nucleosides from the host organism via catalysis by nucleoside hydrolase (NH) enzymes to yield purine and pyrimidine bases. One of the four NH enzymes identified within the genome of T. vaginalis displays unique specificity toward purine nucleosides, adenosine and guanosine, but not inosine, and atypically shares greater sequence similarity to the pyrimidine hydrolases. Bioinformatic analysis of this enzyme, adenosine/guanosine-preferring nucleoside ribohydrolase (AGNH), was incapable of identifying the residues responsible for this uncommon specificity, highlighting the need for structural information. Here, we report the X-ray crystal structures of holo, unliganded AGNH and three additional structures of the enzyme bound to fragment and small-molecule inhibitors. Taken together, these structures facilitated the identification of residue Asp231, which engages in substrate interactions in the absence of those residues that typically support the canonical purine-specific tryptophan-stacking specificity motif. An altered substrate-binding pose is mirrored by repositioning within the protein scaffold of the His80 general acid/base catalyst. The newly defined structure-determined sequence markers allowed the assignment of additional NH orthologs, which are proposed to exhibit the same specificity for adenosine and guanosine alone and further delineate specificity classes for these enzymes.


Assuntos
N-Glicosil Hidrolases , Parasitos , Adenosina/química , Animais , Guanosina , Inosina/metabolismo , N-Glicosil Hidrolases/química , Parasitos/metabolismo , Pirimidinas , Especificidade por Substrato
20.
Mol Cancer ; 21(1): 16, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031058

RESUMO

BACKGROUND: Gliomas are the most common malignant primary brain tumours with a highly immunosuppressive tumour microenvironment (TME) and poor prognosis. Circular RNAs (circRNA), a newly found type of endogenous noncoding RNA, characterized by high stability, abundance, conservation, have been shown to play an important role in the pathophysiological processes and TME remodelling of various tumours. METHODS: CircRNA sequencing analysis was performed to explore circRNA expression profiles in normal and glioma tissues. The biological function of a novel circRNA, namely, circNEIL3, in glioma development was confirmed both in vitro and in vivo. Mechanistically, RNA pull-down, mass spectrum, RNA immunoprecipitation (RIP), luciferase reporter, and co-immunoprecipitation assays were conducted. RESULTS: We identified circNEIL3, which could be cyclized by EWS RNA-binding protein 1(EWSR1), to be upregulated in glioma tissues and to correlate positively with glioma malignant progression. Functionally, we confirmed that circNEIL3 promotes tumorigenesis and carcinogenic progression of glioma in vitro and in vivo. Mechanistically, circNEIL3 stabilizes IGF2BP3 (insulin-like growth factor 2 mRNA binding protein 3) protein, a known oncogenic protein, by preventing HECTD4-mediated ubiquitination. Moreover, circNEIL3 overexpression glioma cells drives macrophage infiltration into the tumour microenvironment (TME). Finally, circNEIL3 is packaged into exosomes by hnRNPA2B1 and transmitted to infiltrated tumour associated macrophages (TAMs), enabling them to acquire immunosuppressive properties by stabilizing IGF2BP3 and in turn promoting glioma progression. CONCLUSIONS: This work reveals that circNEIL3 plays a nonnegligible multifaceted role in promoting gliomagenesis, malignant progression and macrophage tumour-promoting phenotypes polarization, highlighting that circNEIL3 is a potential prognostic biomarker and therapeutic target in glioma.


Assuntos
Exossomos/metabolismo , Glioma/etiologia , Glioma/metabolismo , Macrófagos/metabolismo , N-Glicosil Hidrolases/genética , RNA Circular/genética , Proteína EWS de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Xenoenxertos , Humanos , Imuno-Histoquímica , Imunomodulação , Macrófagos/imunologia , Masculino , Camundongos , Modelos Biológicos , N-Glicosil Hidrolases/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteína EWS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Relação Estrutura-Atividade , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA