Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.802
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 170(3): 534-547.e23, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753428

RESUMO

Many processes can cause the same nucleotide change in a genome, making the identification of the mechanisms causing mutations a difficult challenge. Here, we show that clustered mutations provide a more precise fingerprint of mutagenic processes. Of nine clustered mutation signatures identified from >1,000 tumor genomes, three relate to variable APOBEC activity and three are associated with tobacco smoking. An additional signature matches the spectrum of translesion DNA polymerase eta (POLH). In lymphoid cells, these mutations target promoters, consistent with AID-initiated somatic hypermutation. In solid tumors, however, they are associated with UV exposure and alcohol consumption and target the H3K36me3 chromatin of active genes in a mismatch repair (MMR)-dependent manner. These regions normally have a low mutation rate because error-free MMR also targets H3K36me3 chromatin. Carcinogens and error-prone repair therefore redistribute mutations to the more important regions of the genome, contributing a substantial mutation load in many tumors, including driver mutations.


Assuntos
Reparo de Erro de Pareamento de DNA , Mutação , Neoplasias/genética , Desaminases APOBEC , Citidina Desaminase , Citosina Desaminase/genética , DNA Polimerase Dirigida por DNA/genética , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Melanoma/genética , Mutagênese , Fumar/efeitos adversos , Raios Ultravioleta/efeitos adversos
2.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38354025

RESUMO

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Assuntos
Carcinoma Hepatocelular , Inibidores da Dipeptidil Peptidase IV , Neoplasias Hepáticas , Animais , Ratos , Linagliptina/farmacologia , Proteínas Quinases Ativadas por AMP , Dietilnitrosamina/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Hipoglicemiantes , Inibidores de Proteases , Antivirais , Anti-Inflamatórios
3.
Immunity ; 45(2): 389-401, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27521269

RESUMO

CD8(+) T cells recognizing tumor-specific antigens are detected in cancer patients but are dysfunctional. Here we developed a tamoxifen-inducible liver cancer mouse model with a defined oncogenic driver antigen (SV40 large T-antigen) to follow the activation and differentiation of naive tumor-specific CD8(+) T (TST) cells after tumor initiation. Early during the pre-malignant phase of tumorigenesis, TST cells became dysfunctional, exhibiting phenotypic, functional, and transcriptional features similar to dysfunctional T cells isolated from late-stage human tumors. Thus, T cell dysfunction seen in advanced human cancers may already be established early during tumorigenesis. Although the TST cell dysfunctional state was initially therapeutically reversible, it ultimately evolved into a fixed state. Persistent antigen exposure rather than factors associated with the tumor microenvironment drove dysfunction. Moreover, the TST cell differentiation and dysfunction program exhibited features distinct from T cell exhaustion in chronic infections. Strategies to overcome this antigen-driven, cell-intrinsic dysfunction may be required to improve cancer immunotherapy.


Assuntos
Antígenos Transformantes de Poliomavirus/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/imunologia , Animais , Carcinogênese , Diferenciação Celular , Células Cultivadas , Senescência Celular , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/terapia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamoxifeno , Microambiente Tumoral
4.
Cell ; 140(2): 197-208, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20141834

RESUMO

Epidemiological studies indicate that overweight and obesity are associated with increased cancer risk. To study how obesity augments cancer risk and development, we focused on hepatocellular carcinoma (HCC), the common form of liver cancer whose occurrence and progression are the most strongly affected by obesity among all cancers. We now demonstrate that either dietary or genetic obesity is a potent bona fide liver tumor promoter in mice. Obesity-promoted HCC development was dependent on enhanced production of the tumor-promoting cytokines IL-6 and TNF, which cause hepatic inflammation and activation of the oncogenic transcription factor STAT3. The chronic inflammatory response caused by obesity and enhanced production of IL-6 and TNF may also increase the risk of other cancers.


Assuntos
Carcinoma Hepatocelular/imunologia , Interleucina-6/imunologia , Neoplasias Hepáticas/imunologia , Obesidade/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/etiologia , Proliferação de Células , Dietilnitrosamina , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Hepatite/etiologia , Hepatite/imunologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/etiologia , Masculino , Camundongos , Obesidade/complicações , Fator de Transcrição STAT3/metabolismo
5.
Nature ; 568(7753): 557-560, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971822

RESUMO

The cell cycle is a tightly regulated process that is controlled by the conserved cyclin-dependent kinase (CDK)-cyclin protein complex1. However, control of the G0-to-G1 transition is not completely understood. Here we demonstrate that p38 MAPK gamma (p38γ) acts as a CDK-like kinase and thus cooperates with CDKs, regulating entry into the cell cycle. p38γ shares high sequence homology, inhibition sensitivity and substrate specificity with CDK family members. In mouse hepatocytes, p38γ induces proliferation after partial hepatectomy by promoting the phosphorylation of retinoblastoma tumour suppressor protein at known CDK target residues. Lack of p38γ or treatment with the p38γ inhibitor pirfenidone protects against the chemically induced formation of liver tumours. Furthermore, biopsies of human hepatocellular carcinoma show high expression of p38γ, suggesting that p38γ could be a therapeutic target in the treatment of this disease.


Assuntos
Carcinogênese/patologia , Ciclo Celular , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/patologia , Fígado/enzimologia , Fígado/patologia , Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Idoso , Animais , Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/patologia , Humanos , Fígado/cirurgia , Neoplasias Hepáticas/induzido quimicamente , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Quinase 12 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Piridonas/farmacologia , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Homologia de Sequência , Especificidade por Substrato
6.
J Biol Chem ; 299(11): 105301, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777158

RESUMO

Wilm's tumor 1-associating protein (WTAP), a regulatory protein of the m6A methyltransferase complex, has been found to play a role in regulating various physiological and pathological processes. However, the in vivo role of WTAP in the pathogenesis of hepatocellular carcinoma (HCC) is unknown. In this study, we have elucidated the crucial role of WTAP in HCC progression and shown that hepatic deletion of Wtap promotes HCC pathogenesis through activation of multiple signaling pathways. A single dose of diethylnitrosamine injection causes more and larger HCCs in hepatocyte-specific Wtap knockout (Wtap-HKO) mice than Wtapflox/flox mice fed with either normal chow diet or a high-fat diet. Elevated CD36, IGFBP1 (insulin-like growth factor-binding protein 1), and chemokine (C-C motif) ligand 2 (CCL2) expression leads to steatosis and inflammation in the Wtap-HKO livers. The hepatocyte proliferation is dramatically increased in Wtap-HKO mice, which is due to higher activation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription-3 signaling pathways. Hepatic deletion of Wtap activates the ERK signaling pathway by increasing the protein stability of GRB2 and ERK1/2, which is due to the decreased expression of proteasome-related genes. Restoring PSMB4 or PSMB6 (two key components of the proteasome) leads to the downregulation of GRB2 and ERK1/2 in Wtap-HKO hepatocytes. Mechanistically, WTAP interacts with RNA polymerase II and H3K9ac to maintain expression of proteasome-related genes. These results demonstrate that hepatic deletion of Wtap promotes HCC progression through activating GRB2-ERK1/2-mediated signaling pathway depending on the downregulation of proteasome-related genes especially Psmb4 and Psmb6.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos Knockout , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Camundongos Endogâmicos C57BL
7.
Int J Cancer ; 154(4): 626-635, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37792464

RESUMO

While associations between maternal infections during pregnancy and childhood leukemia in offspring have been extensively studied, the evidence for other types of childhood cancers is limited. Additionally, antibiotic exposure during pregnancy could potentially increase the risk of childhood cancers. Our study investigates associations between maternal infections and antibiotic prescriptions during pregnancy and the risk of childhood cancer in Taiwan. We conducted a population-based cohort study using the Taiwan Maternal and Child Health Database (TMCHD), linked with national health and cancer registries. The study included 2 267 186 mother-child pairs, and the median follow-up time was 7.96 years. Cox proportional hazard models were utilized to estimate effects. Maternal infections during pregnancy were associated with a moderate increase in the risk of childhood hepatoblastoma (adjusted hazard ratio [HR] = 1.34; 95% confidence interval [CI]: 0.90-1.98) and a weaker increase in the risk of childhood acute lymphoblastic leukemia (ALL) (adjusted HR = 1.15; 95% CI: 0.99-1.35). Antibiotic prescriptions during pregnancy were also associated with an elevated risk of childhood ALL (adjusted HR = 1.30; 95% CI: 1.04-1.63), particularly with tetracyclines (adjusted HR = 2.15; 95% CI: 1.34-3.45). Several specific antibiotics were also associated with an increased risk of hepatoblastoma and medulloblastoma. Children exposed in utero to antibiotic prescription or both infections and antibiotics during pregnancy were at higher risk of developing ALL. Our findings suggest that there are associations between maternal infections, antibiotic use during pregnancy and the risk of several childhood cancers in addition to ALL and highlight the importance of further research in this area.


Assuntos
Hepatoblastoma , Leucemia Mieloide Aguda , Neoplasias Hepáticas , Efeitos Tardios da Exposição Pré-Natal , Criança , Gravidez , Feminino , Humanos , Estudos de Coortes , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Antibacterianos/efeitos adversos , Taiwan/epidemiologia , Leucemia Mieloide Aguda/induzido quimicamente , Neoplasias Hepáticas/induzido quimicamente , Prescrições , Fatores de Risco
8.
J Hepatol ; 80(1): 20-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734683

RESUMO

BACKGROUND & AIMS: Recent studies reported that moderate HBV DNA levels are significantly associated with hepatocellular carcinoma (HCC) risk in hepatitis B e antigen (HBeAg)-positive, non-cirrhotic patients with chronic hepatitis B (CHB). We aimed to develop and validate a new risk score to predict HCC development using baseline moderate HBV DNA levels in patients entering into HBeAg-positive CHB from chronic infection. METHODS: This multicenter cohort study recruited 3,585 HBeAg-positive, non-cirrhotic patients who started antiviral treatment with entecavir or tenofovir disoproxil fumarate at phase change into CHB from chronic infection in 23 tertiary university-affiliated hospitals of South Korea (2012-2020). A new HCC risk score (PAGED-B) was developed (training cohort, n = 2,367) based on multivariable Cox models. Internal validation using bootstrap sampling and external validation (validation cohort, n = 1,218) were performed. RESULTS: Sixty (1.7%) patients developed HCC (median follow-up, 5.4 years). In the training cohort, age, gender, platelets, diabetes and moderate HBV DNA levels (5.00-7.99 log10 IU/ml) were independently associated with HCC development; the PAGED-B score (based on these five predictors) showed a time-dependent AUROC of 0.81 for the prediction of HCC development at 5 years. In the validation cohort, the AUROC of PAGED-B was 0.85, significantly higher than for other risk scores (PAGE-B, mPAGE-B, CAMD, and REAL-B). When stratified by the PAGED-B score, the HCC risk was significantly higher in high-risk patients than in low-risk patients (sub-distribution hazard ratio = 8.43 in the training and 11.59 in the validation cohorts, all p <0.001). CONCLUSIONS: The newly established PAGED-B score may enable risk stratification for HCC at the time of transition into HBeAg-positive CHB. IMPACT AND IMPLICATIONS: In this study, we developed and validated a new risk score to predict hepatocellular carcinoma (HCC) development in patients entering into hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) from chronic infection. The newly established PAGED-B score, which included baseline moderate HBV DNA levels (5-8 log10 IU/ml), improved on the predictive performance of prior risk scores. Based on a patient's age, gender, diabetic status, platelet count, and moderate DNA levels (5-8 log10 IU/ml) at the phase change into CHB from chronic infection, the PAGED-B score represents a reliable and easily available risk score to predict HCC development during the first 5 years of antiviral treatment in HBeAg-positive patients entering into CHB. With a scoring range from 0 to 12 points, the PAGED-B score significantly differentiated the 5-year HCC risk: low <7 points and high ≥7 points.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Humanos , Pré-Escolar , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/induzido quimicamente , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Antígenos E da Hepatite B , DNA Viral , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/induzido quimicamente , Estudos de Coortes , Infecção Persistente , Antivirais/uso terapêutico , Fatores de Risco , Vírus da Hepatite B/genética
9.
Mol Med ; 30(1): 79, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844847

RESUMO

BACKGROUND: Increased level of serum cholic acid (CA) is often accompanied with decreased CYP2E1 expression in hepatocellular carcinoma (HCC) patients. However, the roles of CA and CYP2E1 in hepatocarcinogenesis have not been elucidated. This study aimed to investigate the roles and the underlying mechanisms of CYP2E1 and CA in HCC cell growth. METHODS: The proteomic analysis of liver tumors from DEN-induced male SD rats with CA administration was used to reveal the changes of protein expression in the CA treated group. The growth of CA-treated HCC cells was examined by colony formation assays. Autophagic flux was assessed with immunofluorescence and confocal microscopy. Western blot analysis was used to examine the expression of CYP2E1, mTOR, AKT, p62, and LC3II/I. A xenograft tumor model in nude mice was used to examine the role of CYP2E1 in CA-induced hepatocellular carcinogenesis. The samples from HCC patients were used to evaluate the clinical value of CYP2E1 expression. RESULTS: CA treatment significantly increased the growth of HCC cells and promoted xenograft tumors accompanied by a decrease of CYP2E1 expression. Further studies revealed that both in vitro and in vivo, upregulated CYP2E1 expression inhibited the growth of HCC cells, blocked autophagic flux, decreased AKT phosphorylation, and increased mTOR phosphorylation. CYP2E1 was involved in CA-activated autophagy through the AKT/mTOR signaling. Finally, decreased CYP2E1 expression was observed in the tumor tissues of HCC patients and its expression level in tumors was negatively correlated with the serum level of total bile acids (TBA) and gamma-glutamyltransferase (GGT). CONCLUSIONS: CYP2E1 downregulation contributes to CA-induced HCC development presumably through autophagy regulation. Thus, CYP2E1 may serve as a potential target for HCC drug development.


Assuntos
Autofagia , Carcinoma Hepatocelular , Proliferação de Células , Ácido Cólico , Citocromo P-450 CYP2E1 , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/induzido quimicamente , Humanos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Masculino , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Ratos , Proliferação de Células/efeitos dos fármacos , Camundongos , Ratos Sprague-Dawley , Transdução de Sinais , Proteômica/métodos , Modelos Animais de Doenças , Camundongos Nus
10.
J Gene Med ; 26(9): e3723, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228142

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) remains a formidable challenge in oncology, with its pathogenesis and progression influenced by myriad factors. Among them, the pervasive organic synthetic compound, bisphenol A (BPA), previously linked with various adverse health effects, has been speculated to play a role. This study endeavors to elucidate the complex interplay between BPA, the immune microenvironment of HCC, and the broader molecular landscape of this malignancy. METHODS: A comprehensive analysis was undertaken using data procured from both The Cancer Genome Atlas and the Comparative Toxicogenomics Database. Rigorous differential expression analyses were executed, supplemented by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. In addition, single-sample gene set enrichment analysis, gene set enrichment analysis and gene set variation analysis were employed to reveal potential molecular links and insights. Immune infiltration patterns were delineated, and a series of in vitro experiments on HCC cells were conducted to directly assess the impact of BPA exposure. RESULTS: Our findings unveiled a diverse array of active immune cells and functions within HCC. Distinct correlations emerged between high-immune-related scores, established markers of the tumor microenvironment and the expression of immune checkpoint genes. A significant discovery was the identification of key genes simultaneously associated with immune-related pathways and BPA exposure. Leveraging these genes, a prognostic model was crafted, offering predictive insights into HCC patient outcomes. Intriguingly, in vitro studies suggested that BPA exposure could promote proliferation in HCC cells. CONCLUSION: This research underscores the multifaceted nature of HCC's immune microenvironment and sheds light on BPA's potential modulatory effects therein. The constructed prognostic model, if validated further, could serve as a robust tool for risk stratification in HCC, potentially guiding therapeutic strategies. Furthermore, the implications of the findings for immunotherapy are profound, suggesting new avenues for enhancing treatment efficacy. As the battle against HCC continues, understanding of environmental modulators like BPA becomes increasingly pivotal.


Assuntos
Compostos Benzidrílicos , Carcinoma Hepatocelular , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Fenóis , Microambiente Tumoral , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Compostos Benzidrílicos/efeitos adversos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos dos fármacos , Fenóis/efeitos adversos , Fenóis/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética
11.
Histochem Cell Biol ; 161(4): 337-343, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296878

RESUMO

The third most prevalent malignancy to cause mortality is hepatocellular carcinoma (HCC). The Hedgehog (Hh) signaling pathway is activated by binding to the transmembrane receptor Patched-1 (PTCH-1), which depresses the transmembrane G protein-coupled receptor Smoothened (SMO). This study was performed to examine the preventative and therapeutic effects of cannabidiol in adult rats exposed to diethyl nitrosamine (DENA)-induced HCC.A total of 50 male rats were divided into five groups of 10 rats each. Group I was the control group. Group II received intraperitoneal (IP) injections of DENA for 14 weeks. Group III included rats that received cannabidiol (CBD) orally (3-30 mg/kg) for 2 weeks and DENA injections for 14 weeks. Group IV rats received oral CBD for 2 weeks before 14 weeks of DENA injections. Group V included rats that received CBD orally for 2 weeks after their last injection of DENA. Measurements were made for alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and alpha fetoprotein (AFP). Following total RNA extraction, Smo, Hhip, Ptch-1, and Gli-1 expressions were measured using quantitative real-time polymerase chain reaction (qRT-PCR). A histopathological analysis of liver tissues was performed.The liver enzymes, oxidant-antioxidant state, morphological, and molecular parameters of the adult male rat model of DENA-induced HCC showed a beneficial improvement after CBD administration. In conclusion, by focusing on the Hh signaling system, administration of CBD showed a beneficial improvement in the liver enzymes, oxidant-antioxidant status, morphological, and molecular parameters in the DENA-induced HCC in adult male rats.


Assuntos
Canabidiol , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Masculino , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Proteínas Hedgehog/genética , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Canabidiol/efeitos adversos , Antioxidantes , Dietilnitrosamina/efeitos adversos , Transdução de Sinais , Oxidantes/efeitos adversos , Expressão Gênica
12.
BMC Cancer ; 24(1): 33, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178090

RESUMO

BACKGROUND: Paracetamol induces hepatotoxicity and subsequent liver injury, which may increase the risk of liver cancer, but epidemiological evidence remains unclear. We conducted this study to evaluate the association between paracetamol use and the risk of liver cancer. METHODS: This prospective study included 464,244 participants free of cancer diagnosis from the UK Biobank. Incident liver cancer was identified through linkage to cancer and death registries and the National Health Service Central Register using the International Classification of Diseases (ICD)-10 codes (C22). An overlap-weighted Cox proportional hazards model was utilized to calculate the hazard ratio (HR) and 95% confidence interval (CI) for the risk of liver cancer associated with paracetamol use. The number needed to harm (NNH) was calculated at 10 years of follow-up. RESULTS: During a median of 12.6 years of follow-up, 627 cases of liver cancer were identified. Paracetamol users had a 28% higher risk of liver cancer than nonusers (HR 1.28, 95% CI 1.06-1.54). This association was robust in several sensitivity analyses and subgroup analyses, and the quantitative bias analysis indicated that the result remains sturdy to unmeasured confounding factors (E-value 1.88, lower 95% CI 1.31). The NNH was 1106.4 at the 10 years of follow-up. CONCLUSION: The regular use of paracetamol was associated with a higher risk of liver cancer. Physicians should be cautious when prescribing paracetamol, and it is recommended to assess the potential risk of liver cancer to personalize the use of paracetamol.


Assuntos
Acetaminofen , Neoplasias Hepáticas , Humanos , Acetaminofen/efeitos adversos , Estudos Prospectivos , Medicina Estatal , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/epidemiologia , Fatores de Risco
13.
Clin Sci (Lond) ; 138(19): 1227-1248, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39254423

RESUMO

Primary liver cancer is an increasing problem worldwide and is associated with significant mortality. A popular method of modeling liver cancer in mice is plasmid hydrodynamic tail vein injection (HTVI). However, plasmid-HTVI models rarely recapitulate the chronic liver injury which precedes the development of most human liver cancer. We sought to investigate how liver injury using thioacetamide contributes to the pathogenesis and progression of liver cancer in two oncogenic plasmid-HTVI-induced mouse liver cancer models. Fourteen-week-old male mice received double-oncogene plasmid-HTVI (SB/AKT/c-Met and SB/AKT/NRas) and then twice-weekly intraperitoneal injections of thioacetamide for 6 weeks. Liver tissue was examined for histopathological changes, including fibrosis and steatosis. Further characterization of fibrosis and inflammation was performed with immunostaining and real-time quantitative PCR. RNA sequencing with pathway analysis was used to explore novel pathways altered in the cancer models. Hepatocellular and cholangiocellular tumors were observed in mice injected with double-oncogene plasmid-HTVI models (SB/AKT/c-Met and SB/AKT/NRas). Thioacetamide induced mild fibrosis and increased alpha smooth muscle actin-expressing cells. However, the combination of plasmids and thioacetamide did not significantly increase tumor size, but increased multiplicity of small neoplastic lesions. Cancer and/or liver injury up-regulated profibrotic and proinflammatory genes while metabolic pathway genes were mostly down-regulated. We conclude that the liver injury microenvironment can interact with liver cancer and alter its presentation. However, the effects on cancer development vary depending on the genetic drivers with differing active oncogenic pathways. Therefore, the choice of plasmid-HTVI model and injury agent may influence the extent to which injury promotes liver cancer development.


Assuntos
Plasmídeos , Tioacetamida , Animais , Plasmídeos/genética , Tioacetamida/toxicidade , Masculino , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Modelos Animais de Doenças , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , DNA/genética , DNA/metabolismo
14.
Crit Rev Toxicol ; 54(9): 634-658, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39077834

RESUMO

Dieldrin is an organochlorine insecticide that was widely used until 1970 when its use was banned because of its liver carcinogenicity in mice. Several long-term rodent bioassays have reported dieldrin to induce liver tumors in in several strains of mice, but not in rats. This article reviews the available information on dieldrin liver effects and performs an analysis of mode of action (MOA) and human relevance of these liver findings. Scientific evidence strongly supports a MOA based on CAR activation, leading to alterations in gene expression, which result in increased hepatocellular proliferation, clonal expansion leading to altered hepatic foci, and ultimately the formation of hepatocellular adenomas and carcinomas. Associative events include increased liver weight, centrilobular hypertrophy, increased expression of Cyp2b10 and its resulting increased enzymatic activity. Other associative events include alterations of intercellular gap junction communication and oxidative stress. Alternative MOAs are evaluated and shown not to be related to dieldrin administration. Weight of evidence shows that dieldrin is not DNA reactive, it is not mutagenic, and it is not genotoxic in general. Furthermore, activation of other pertinent nuclear receptors, including PXR, PPARα, AhR, and estrogen are not related to dieldrin-induced liver tumors nor is there liver cytotoxicity. In previous studies, rats, dogs, and non-human primates did not show increased cell proliferation or production of pre-neoplastic or neoplastic lesions following dieldrin treatment. Thus, the evidence strongly indicates that dieldrin-induced mouse liver tumors are due to CAR activation and are specific to the mouse, which are qualitatively not relevant to human hepatocarcinogenesis. Thus, there is no carcinogenic risk to humans. This conclusion is also supported by a lack of positive epidemiologic findings for evidence of liver carcinogenicity. Based on current understanding of the mode of action of dieldrin-induced liver tumors in mice, the appropriate conclusion is that dieldrin is a mouse specific liver carcinogen and it does not pose a cancer risk to humans.


Assuntos
Dieldrin , Neoplasias Hepáticas , Dieldrin/toxicidade , Animais , Humanos , Neoplasias Hepáticas/induzido quimicamente , Medição de Risco , Inseticidas/toxicidade , Camundongos , Ratos , Receptor Constitutivo de Androstano , Fígado/efeitos dos fármacos , Fígado/patologia
15.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468664

RESUMO

We have shown previously that phosphorylation of Mdm2 by ATM and c-Abl regulates Mdm2-p53 signaling and alters the effects of DNA damage in mice, including bone marrow failure and tumorigenesis induced by ionizing radiation. Here, we examine the physiological effects of Mdm2 phosphorylation by Akt, another DNA damage effector kinase. Surprisingly, Akt phosphorylation of Mdm2 does not alter the p53-mediated effects of ionizing radiation in cells or mice but regulates the p53 response to oxidative stress. Akt phosphorylation of Mdm2 serine residue 183 increases nuclear Mdm2 stability, decreases p53 levels, and prevents senescence in primary cells exposed to reactive oxidative species (ROS). Using multiple mouse models of ROS-induced cancer, we show that Mdm2 phosphorylation by Akt reduces senescence to promote KrasG12D-driven lung cancers and carcinogen-induced papilloma and hepatocellular carcinomas. Collectively, we document a unique physiologic role for Akt-Mdm2-p53 signaling in regulating cell growth and tumorigenesis in response to oxidative stress.


Assuntos
Neoplasias Induzidas por Radiação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/efeitos da radiação , Carcinógenos/toxicidade , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Proliferação de Células/genética , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Modelos Animais de Doenças , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Neoplasias Induzidas por Radiação/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Papillomaviridae/patogenicidade , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Radiação Ionizante , Espécies Reativas de Oxigênio/metabolismo
16.
Ecotoxicol Environ Saf ; 271: 115952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218109

RESUMO

Cigarette smoking is one of the most impactful behavior-related risk factors for multiple cancers including hepatocellular carcinoma (HCC). Nicotine, as the principal component of tobacco, is not only responsible for smoking addiction but also a carcinogen; nevertheless, the underlying mechanisms remain unclear. Here we report that nicotine enhances HCC cancer stemness and malignant progression by upregulating the expression of GC-rich binding factor 2 (GCF2), a gene that was revealed to be upregulated in HCC and whose upregulation predicts poor prognosis, and subsequently activating the Wnt/ꞵ-catenin/SOX2 signaling pathway. We found that nicotine significantly increased GCF2 expression and that silencing of GCF2 reduced nicotine-induced cancer stemness and progression. Mechanistically, nicotine could stabilize the protein level of GCF2, and then GCF2 could robustly activate its downstream Wnt/ß-catenin signaling pathway. Taken together, our results thus suggest that GCF2 is a potential target for a therapeutic strategy against nicotine-promoted HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Nicotina/toxicidade , Linhagem Celular Tumoral , Via de Sinalização Wnt/genética , Regulação Neoplásica da Expressão Gênica , Proliferação de Células
17.
Endocr Res ; 49(2): 106-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597376

RESUMO

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Assuntos
Proliferação de Células , Estradiol , Flavanonas , Tartrazina , Humanos , Animais , Ratos , Estradiol/farmacologia , Flavanonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Tartrazina/farmacologia , Carcinoma Hepatocelular , Neoplasias Hepáticas/induzido quimicamente , Células Hep G2 , Estrogênios/farmacologia , Congêneres do Estradiol/farmacologia , Fitoestrógenos/farmacologia
18.
Environ Toxicol ; 39(6): 3666-3678, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506534

RESUMO

Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transdução de Sinais , Animais , Masculino , Ratos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Chenopodiaceae/química , Dietilnitrosamina/toxicidade , Proteína Forkhead Box O3/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
19.
Toxicol Ind Health ; 40(5): 272-291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38523547

RESUMO

Perchloroethylene (PCE) is used as a solvent and chemical intermediate. Following chronic inhalation exposure, PCE selectively induced liver tumors in mice. Understanding the mode of action (MOA) for PCE carcinogenesis in mice is important in defining its possible human cancer risk. The proposed MOA is based on the extensive examination of the peer-reviewed studies that have assessed the mouse liver effects of PCE and its major oxidative metabolite trichloroacetic acid (TCA). Similar to PCE, TCA has also been demonstrated to liver tumors selectively in mice following chronic exposure. The Key Events (KE) of the proposed PCE MOA involve oxidative metabolism of PCE to TCA [KE 1]; activation of the peroxisome proliferator-activated receptor alpha (PPARα) [KE 2]; alteration in hepatic gene expression including cell growth pathways [KE 3]; increase in cell proliferation [KE 4]; selective clonal expansion of hepatic preneoplastic foci [KE 5]; and formation of hepatic neoplasms [KE 6]. The scientific evidence supporting the PPARα MOA for PCE is strong and satisfies the requirements for a MOA analysis. The PPARα liver tumor MOA in rodents has been demonstrated not to occur in humans; thus, human liver cancer risk to PCE is not likely.


Assuntos
Neoplasias Hepáticas , Tetracloroetileno , Camundongos , Humanos , Animais , Tetracloroetileno/toxicidade , Tetracloroetileno/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR alfa/farmacologia , Neoplasias Hepáticas/induzido quimicamente , Fígado , Oxirredução , Medição de Risco
20.
Drug Dev Res ; 85(4): e22198, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38764200

RESUMO

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The prevention and therapy for this deadly disease remain a global medical challenge. In this study, we investigated the effect of pantoprazole (PPZ) on the carcinogenesis and growth of HCC. Both diethylnitrosamine (DEN) plus CCl4-induced and DEN plus high fat diet (HFD)-induced HCC models in mice were established. Cytokines and cell proliferation-associated gene in the liver tissues of mice and HCC cells were analyzed. Cellular glycolysis and Na+/H+ exchange activity were measured. The preventive administration of pantoprazole (PPZ) at a clinically relevant low dose markedly suppressed HCC carcinogenesis in both DEN plus CCl4-induced and HFD-induced murine HCC models, whereas the therapeutic administration of PPZ at the dose suppressed the growth of HCC. In the liver tissues of PPZ-treated mice, inflammatory cytokines, IL1, CXCL1, CXCL5, CXCL9, CXCL10, CCL2, CCL5, CCL6, CCL7, CCL20, and CCL22, were reduced. The administration of CXCL1, CXCL5, CCL2, or CCL20 all reversed PPZ-suppressed DEN plus CCL4-induced HCC carcinogenesis in mice. PPZ inhibited the expressions of CCNA2, CCNB2, CCNE2, CDC25C, CDCA5, CDK1, CDK2, TOP2A, TTK, AURKA, and BIRC5 in HCC cells. Further results showed that PPZ reduced the production of these inflammatory cytokines and the expression of these cell proliferation-associated genes through the inhibition of glycolysis and Na+/H+ exchange. In conclusion, PPZ suppresses the carcinogenesis and growth of HCC, which is related to inhibiting the production of inflammatory cytokines and the expression of cell proliferation-associated genes in the liver through the inhibition of glycolysis and Na+/H+ exchange.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Glicólise , Neoplasias Hepáticas , Pantoprazol , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/metabolismo , Glicólise/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Camundongos , Pantoprazol/farmacologia , Masculino , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Carcinogênese/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Citocinas/metabolismo , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA