Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.814
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 167(6): 1650-1662.e15, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27912066

RESUMO

Electrophysiological field potential dynamics are of fundamental interest in basic and clinical neuroscience, but how specific cell types shape these dynamics in the live brain is poorly understood. To empower mechanistic studies, we created an optical technique, TEMPO, that records the aggregate trans-membrane voltage dynamics of genetically specified neurons in freely behaving mice. TEMPO has >10-fold greater sensitivity than prior fiber-optic techniques and attains the noise minimum set by quantum mechanical photon shot noise. After validating TEMPO's capacity to track established oscillations in the delta, theta, and gamma frequency bands, we compared the D1- and D2-dopamine-receptor-expressing striatal medium spiny neurons (MSNs), which are interspersed and electrically indistinguishable. Unexpectedly, MSN population dynamics exhibited two distinct coherent states that were commonly indiscernible in electrical recordings and involved synchronized hyperpolarizations across both MSN subtypes. Overall, TEMPO allows the deconstruction of normal and pathologic neurophysiological states into trans-membrane voltage activity patterns of specific cell types.


Assuntos
Ondas Encefálicas , Camundongos/fisiologia , Neurofisiologia/métodos , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Feminino , Masculino , Camundongos Endogâmicos BALB C
2.
Annu Rev Neurosci ; 45: 317-337, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35363533

RESUMO

Nervous systems evolved to effectively navigate the dynamics of the environment to achieve their goals. One framework used to study this fundamental problem arose in the study of learning and decision-making. In this framework, the demands of effective behavior require slow dynamics-on the scale of seconds to minutes-of networks of neurons. Here, we review the phenomena and mechanisms involved. Using vignettes from a few species and areas of the nervous system, we view neuromodulators as key substrates for temporal scaling of neuronal dynamics.


Assuntos
Tomada de Decisões , Neurofisiologia , Tomada de Decisões/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Neurotransmissores
3.
Nature ; 630(8017): 587-595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898291

RESUMO

Advances in large-scale single-unit human neurophysiology, single-cell RNA sequencing, spatial transcriptomics and long-term ex vivo tissue culture of surgically resected human brain tissue have provided an unprecedented opportunity to study human neuroscience. In this Perspective, we describe the development of these paradigms, including Neuropixels and recent brain-cell atlas efforts, and discuss how their convergence will further investigations into the cellular underpinnings of network-level activity in the human brain. Specifically, we introduce a workflow in which functionally mapped samples of human brain tissue resected during awake brain surgery can be cultured ex vivo for multi-modal cellular and functional profiling. We then explore how advances in human neuroscience will affect clinical practice, and conclude by discussing societal and ethical implications to consider. Potential findings from the field of human neuroscience will be vast, ranging from insights into human neurodiversity and evolution to providing cell-type-specific access to study and manipulate diseased circuits in pathology. This Perspective aims to provide a unifying framework for the field of human neuroscience as we welcome an exciting era for understanding the functional cytoarchitecture of the human brain.


Assuntos
Encéfalo , Neurofisiologia , Neurociências , Análise de Célula Única , Humanos , Encéfalo/citologia , Encéfalo/fisiologia , Neuropatologia/métodos , Neuropatologia/tendências , Neurofisiologia/métodos , Neurofisiologia/tendências , Neurociências/métodos , Neurociências/tendências , Análise de Célula Única/métodos , Análise de Célula Única/tendências , Análise da Expressão Gênica de Célula Única , Transcriptoma , Fluxo de Trabalho , Animais
4.
Cell ; 154(6): 1171-4, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-24034236

RESUMO

This year, the Albert Lasker Basic Medical Research Award will be shared by Richard Scheller and Thomas Südhof for their elucidation of the molecular mechanisms underlying neurotransmitter release. Their discoveries provided insight into the molecular basis of synaptic transmission and enhanced our understanding of how synaptic dysfunction may cause neuropsychiatric disorders.


Assuntos
Distinções e Prêmios , Neurofisiologia/história , Neurotransmissores/metabolismo , Sinapses , Animais , História do Século XX , História do Século XXI , Humanos , Doenças do Sistema Nervoso/metabolismo , Sinaptotagminas/metabolismo , Estados Unidos
5.
Nat Methods ; 20(3): 403-407, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864199

RESUMO

We describe an architecture for organizing, integrating and sharing neurophysiology data within a single laboratory or across a group of collaborators. It comprises a database linking data files to metadata and electronic laboratory notes; a module collecting data from multiple laboratories into one location; a protocol for searching and sharing data and a module for automatic analyses that populates a website. These modules can be used together or individually, by single laboratories or worldwide collaborations.


Assuntos
Laboratórios , Neurofisiologia , Bases de Dados Factuais
6.
J Neurosci ; 43(24): 4498-4512, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37188515

RESUMO

Two sensory neurons usually display trial-by-trial spike-count correlations given the repeated representations of a stimulus. The effects of such response correlations on population-level sensory coding have been the focal contention in computational neuroscience over the past few years. In the meantime, multivariate pattern analysis (MVPA) has become the leading analysis approach in functional magnetic resonance imaging (fMRI), but the effects of response correlations among voxel populations remain underexplored. Here, instead of conventional MVPA analysis, we calculate linear Fisher information of population responses in human visual cortex (five males, one female) and hypothetically remove response correlations between voxels. We found that voxelwise response correlations generally enhance stimulus information, a result standing in stark contrast to the detrimental effects of response correlations reported in empirical neurophysiological studies. By voxel-encoding modeling, we further show that these two seemingly opposite effects actually can coexist within the primate visual system. Furthermore, we use principal component analysis to decompose stimulus information in population responses onto different principal dimensions in a high-dimensional representational space. Interestingly, response correlations simultaneously reduce and enhance information on higher- and lower-variance principal dimensions, respectively. The relative strength of the two antagonistic effects within the same computational framework produces the apparent discrepancy in the effects of response correlations in neuronal and voxel populations. Our results suggest that multivariate fMRI data contain rich statistical structures that are directly related to sensory information representation, and the general computational framework to analyze neuronal and voxel population responses can be applied in many types of neural measurements.SIGNIFICANCE STATEMENT Despite the vast research interest in the effect of spike-count noise correlations on population codes in neurophysiology, it remains unclear how the response correlations between voxels influence MVPA in human imaging. We used an information-theoretic approach and showed that unlike the detrimental effects of response correlations reported in neurophysiology, voxelwise response correlations generally improve sensory coding. We conducted a series of in-depth analyses and demonstrated that neuronal and voxel response correlations can coexist within the visual system and share some common computational mechanisms. These results shed new light on how the population codes of sensory information can be evaluated via different neural measurements.


Assuntos
Neurofisiologia , Neurociências , Masculino , Animais , Humanos , Feminino , Imageamento por Ressonância Magnética/métodos , Neurônios/fisiologia , Neurônios Aferentes
7.
J Neurophysiol ; 132(1): 308-315, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865216

RESUMO

Neurophysiological recording with a new probe often yields better signal quality than with a used probe. Why does the signal quality degrade after only a few experiments? Here, we considered silicon probes in which the contacts are densely packed, and each contact is coated with a conductive polymer that increases its surface area. We tested 12 Cambridge Neurotech silicon probes during 61 recording sessions from the brain of three marmosets. Out of the box, each probe arrived with an electrodeposited polymer coating on 64 gold contacts and an impedance of around 50 kΩ. With repeated use, the impedance increased and there was a corresponding decrease in the number of well-isolated neurons. Imaging of the probes suggested that the reduction in signal quality was due to a gradual loss of the polymer coating. To rejuvenate the probes, we first stripped the contacts, completely removing their polymer coating, and then recoated them in a solution of 10 mM 3,4-Ethylenedioxythiophene (EDOT) monomer with 11 mM Poly(sodium 4-styrenesulfonate) (PSS) using a current density of about 3 mA/cm2 for 30 s. This recoating process not only returned probe impedance to around 50 kΩ but also yielded significantly improved signal quality during neurophysiological recordings. Thus, insertion into the brain promoted the loss of the polymer that coated the contacts of the silicon probes. This led to degradation of signal quality, but recoating rejuvenated the probes.NEW & NOTEWORTHY With repeated use, a silicon probe's ability to isolate neurons degrades. As a result, the probe is often discarded after only a handful of uses. Here, we demonstrate a major source of this problem and then produce a solution to rejuvenate the probes.


Assuntos
Callithrix , Neurônios , Silício , Animais , Silício/farmacologia , Neurônios/fisiologia , Neurônios/efeitos dos fármacos , Impedância Elétrica , Eletrodos Implantados , Encéfalo/fisiologia , Encéfalo/efeitos dos fármacos , Polímeros/farmacologia , Masculino , Neurofisiologia/instrumentação , Neurofisiologia/métodos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Microeletrodos
8.
Artigo em Inglês | MEDLINE | ID: mdl-38551673

RESUMO

The Journal of Comparative Physiology A is the premier peer-reviewed scientific journal in comparative physiology, in particular sensory physiology, neurophysiology, and neuroethology. Founded in 1924 by Karl von Frisch and Alfred Kühn, it celebrates its 100th anniversary in 2024. During these 100 years, many of the landmark achievements in these disciplines were published in this journal. To commemorate these accomplishments, we have compiled a list of the Top 100 Authors over these 100 years, representing approximately 1% of all its authors. To select these individuals, three performance criteria were applied: number of publications, total number of citations attracted by these articles, and mean citation rate of the papers published by each author. The resulting list of the Top 100 Authors provides a fascinating insight into the history of the disciplines covered by the Journal of Comparative Physiology A and into the academic careers of many of their leading representatives.


Assuntos
Neurofisiologia , Fisiologia Comparada , Animais , Humanos
9.
Epilepsia ; 65(3): 664-674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265624

RESUMO

OBJECTIVE: Electroencephalographic (EEG) microstate abnormalities have been documented in different neurological disorders. We aimed to assess whether EEG microstates are altered also in patients with temporal epilepsy (TLE) and whether they show different activations in patients with unilateral TLE (UTLE) and bilateral TLE (BTLE). METHODS: Nineteen patients with UTLE, 12 with BTLE, and 15 healthy controls were enrolled. Resting state high-density electroencephalography (128 channels) was recorded for 15 min with closed eyes. We obtained a set of stable scalp maps representing the EEG activity, named microstates, from which we acquired the following variables: global explained variance (GEV), mean duration (MD), time coverage (TC), and frequency of occurrence (FO). Two-way repeated measures analysis of variance was used to compare groups, and Spearman correlation was performed to study the maps in association with the clinical and neuropsychological data. RESULTS: Patients with BTLE and UTLE showed differences in most of the parameters (GEV, MD, TC, FO) of the four microstate maps (A-D) compared to controls. Patients with BTLE showed a significant increase in all parameters for the microstates in Map-A and a decrease in Map-D compared to UTLE and controls. We observed a correlation between Map-A, disease duration, and spatial short-term memory, whereas microstate Map-D was correlated with the global intelligence score and short-term memory performance. SIGNIFICANCE: A global alteration of the neural dynamics was observed in patients with TLE compared to controls. A different pattern of EEG microstate abnormalities was identified in BTLE compared to UTLE, which might represent a distinctive biomarker.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico , Eletroencefalografia , Neurofisiologia , Encéfalo/fisiologia
10.
Cell ; 139(7): 1212-5, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064363

RESUMO

My professional life over five decades meandered from a high school ambition to be a psychiatrist and understand the "mind" to biochemical studies of neurotransmitters and drugs. Hopefully, the tale of my quirky impatient curiosity about "too many" different areas will be useful for young scientists embarking on their own careers.


Assuntos
Biologia Molecular/história , Neurofisiologia/história , Neurotransmissores/fisiologia , História do Século XX , Humanos , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
11.
Cereb Cortex ; 33(7): 3960-3968, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35989316

RESUMO

Cognitive decline with age is associated with brain atrophy and reduced brain activations, but the underlying neurophysiological mechanisms are unclear, especially in deeper brain structures primarily affected by healthy aging or neurodegenerative processes. Here, we characterize time-resolved, resting-state magnetoencephalography activity of the hippocampus and subcortical brain regions in a large cohort of healthy young (20-30 years) and older (70-80 years) volunteers from the Cam-CAN (Cambridge Centre for Ageing and Neuroscience) open repository. The data show age-related changes in both rhythmic and arrhythmic signal strength in multiple deeper brain regions, including the hippocampus, striatum, and thalamus. We observe a slowing of neural activity across deeper brain regions, with increased delta and reduced gamma activity, which echoes previous reports of cortical slowing. We also report reduced occipito-parietal alpha peak associated with increased theta-band activity in the hippocampus, an effect that may reflect compensatory processes as theta activity, and slope of arrhythmic activity were more strongly expressed when short-term memory performances were preserved. Overall, this study advances the understanding of the biological nature of inter-individual variability in aging. The data provide new insight into how hippocampus and subcortical neurophysiological activity evolve with biological age, and highlight frequency-specific effects associated with cognitive decline versus cognitive maintenance.


Assuntos
Encéfalo , Disfunção Cognitiva , Humanos , Magnetoencefalografia , Envelhecimento , Neurofisiologia
12.
BMC Psychiatry ; 24(1): 433, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858652

RESUMO

BACKGROUND: Objective and quantifiable markers are crucial for developing novel therapeutics for mental disorders by 1) stratifying clinically similar patients with different underlying neurobiological deficits and 2) objectively tracking disease trajectory and treatment response. Schizophrenia is often confounded with other psychiatric disorders, especially bipolar disorder, if based on cross-sectional symptoms. Awake and sleep EEG have shown promise in identifying neurophysiological differences as biomarkers for schizophrenia. However, most previous studies, while useful, were conducted in European and American populations, had small sample sizes, and utilized varying analytic methods, limiting comprehensive analyses or generalizability to diverse human populations. Furthermore, the extent to which wake and sleep neurophysiology metrics correlate with each other and with symptom severity or cognitive impairment remains unresolved. Moreover, how these neurophysiological markers compare across psychiatric conditions is not well characterized. The utility of biomarkers in clinical trials and practice would be significantly advanced by well-powered transdiagnostic studies. The Global Research Initiative on the Neurophysiology of Schizophrenia (GRINS) project aims to address these questions through a large, multi-center cohort study involving East Asian populations. To promote transparency and reproducibility, we describe the protocol for the GRINS project. METHODS: The research procedure consists of an initial screening interview followed by three subsequent sessions: an introductory interview, an evaluation visit, and an overnight neurophysiological recording session. Data from multiple domains, including demographic and clinical characteristics, behavioral performance (cognitive tasks, motor sequence tasks), and neurophysiological metrics (both awake and sleep electroencephalography), are collected by research groups specialized in each domain. CONCLUSION: Pilot results from the GRINS project demonstrate the feasibility of this study protocol and highlight the importance of such research, as well as its potential to study a broader range of patients with psychiatric conditions. Through GRINS, we are generating a valuable dataset across multiple domains to identify neurophysiological markers of schizophrenia individually and in combination. By applying this protocol to related mental disorders often confounded with each other, we can gather information that offers insight into the neurophysiological characteristics and underlying mechanisms of these severe conditions, informing objective diagnosis, stratification for clinical research, and ultimately, the development of better-targeted treatment matching in the clinic.


Assuntos
Eletroencefalografia , Esquizofrenia , Adulto , Feminino , Humanos , Masculino , Biomarcadores , Estudos de Coortes , Eletroencefalografia/métodos , Neurofisiologia/métodos , Projetos de Pesquisa , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico , Sono/fisiologia , Estudos Transversais , Pessoa de Meia-Idade , Idoso
13.
J Acoust Soc Am ; 155(2): 817-825, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299939

RESUMO

The oyster toadfish, Opsanus tau, has been a valuable biomedical model for a wide diversity of studies. However, its vocalization ability arguably has attracted the most attention, with numerous studies focusing on its ecology, behavior, and neurophysiology in regard to its sound production and reception. This paper reviews 30 years of research in my laboratory using this model to understand how aquatic animals detect, integrate, and respond to external environment cues. The dual vestibular and auditory role of the utricle is examined, and its ability to integrate multimodal input is discussed. Several suggestions for future research are provided, including in situ auditory recording, interjecting natural relevant ambient soundscapes into laboratory sound studies, adding transparency to the field of acoustic deterrents, and calls for fish bioacoustics teaching modules to be incorporated in K-12 curricula to excite and diversify the next generation of scientists.


Assuntos
Batracoidiformes , Animais , Acústica , Sinais (Psicologia) , Currículo , Neurofisiologia
14.
Adv Physiol Educ ; 48(3): 655-660, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935756

RESUMO

Teaching physiology can be challenging as students are initially required to understand basic and abstract concepts. Thus students typically view physiology as a "difficult" subject and place an emphasis on rote learning and memorization. Here, we attempted to address this knowledge gap by introducing a pedagogical intervention into the neurophysiology lesson plan of first-year medical and health physiology students at the University of La Réunion. This intervention aimed to better link abstract concepts (e.g., saltatory conduction) and a pathological disorder (multiple sclerosis), together with a discussion of a specific therapeutic intervention (fampridine). Students were required to complete readings (focused on neurophysiology aspects) and two online quizzes before two scheduled in-person lectures. They could also pose questions on a dedicated online forum. Thereafter, the in-person lectures discussed questions posted on the online forum, provided feedback on poorly answered questions (from the online quizzes), and dealt with questions posed by students attending classes. Student feedback regarding the pedagogic intervention was assessed by an anonymous online survey. This survey revealed that the pedagogical intervention was positively received. For example, 94% of respondents agreed the course was well developed, while 80% indicated that the pedagogical intervention was beneficial in terms of their understanding of basic and abstract neurophysiology concepts. Together, this pedagogical intervention was enthusiastically received by the students who better understood how basic nerve physiology concepts fit into the broader context and that such an understanding can result in the development and the roll-out of unique therapeutic interventions for multiple sclerosis.NEW & NOTEWORTHY First-year physiology students can find the subject challenging, struggling to understand abstract concepts without any context. To address this, we introduced a pedagogical intervention for first-year medical and health physiology students that aimed to link abstract concepts and a pathological disorder, together with a discussion of a specific therapeutic intervention. This pedagogical intervention was well received by first-year physiology students who better understood how basic nerve physiology concepts can be applied within the clinical setting.


Assuntos
Compreensão , Neurofisiologia , Humanos , Neurofisiologia/educação , Universidades , Estudantes de Medicina/psicologia , Avaliação Educacional/métodos , Masculino , Feminino , Educação de Graduação em Medicina/métodos , Fisiologia/educação
15.
Neuromodulation ; 27(3): 409-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37462595

RESUMO

OBJECTIVE: This systematic review is conducted to identify, compare, and analyze neurophysiological feature selection, extraction, and classification to provide a comprehensive reference on neurophysiology-based subthalamic nucleus (STN) localization. MATERIALS AND METHODS: The review was carried out using the methods and guidelines of the Kitchenham systematic review and provides an in-depth analysis on methods proposed on STN localization discussed in the literature between 2000 and 2021. Three research questions were formulated, and 115 publications were identified to answer the questions. RESULTS: The three research questions formulated are answered using the literature found on the respective topics. This review discussed the technologies used in past research, and the performance of the state-of-the-art techniques is also reviewed. CONCLUSION: This systematic review provides a comprehensive reference on neurophysiology-based STN localization by reviewing the research questions other new researchers may also have.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/cirurgia , Estimulação Encefálica Profunda/métodos , Neurofisiologia , Doença de Parkinson/cirurgia
16.
Neuroimage ; 270: 119961, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36848970

RESUMO

Intracranial electroencephalography (iEEG) presents a unique opportunity to extend human neuroscientific understanding. However, typically iEEG is collected from patients diagnosed with focal drug-resistant epilepsy (DRE) and contains transient bursts of pathological activity. This activity disrupts performances on cognitive tasks and can distort findings from human neurophysiology studies. In addition to manual marking by a trained expert, numerous IED detectors have been developed to identify these pathological events. Even so, the versatility and usefulness of these detectors is limited by training on small datasets, incomplete performance metrics, and lack of generalizability to iEEG. Here, we employed a large annotated public iEEG dataset from two institutions to train a random forest classifier (RFC) to distinguish data segments as either 'non-cerebral artifact' (n = 73,902), 'pathological activity' (n = 67,797), or 'physiological activity' (n = 151,290). We found our model performed with an accuracy of 0.941, specificity of 0.950, sensitivity of 0.908, precision of 0.911, and F1 score of 0.910, averaged across all three event types. We extended the generalizability of our model to continuous bipolar data collected in a task-state at a different institution with a lower sampling rate and found our model performed with an accuracy of 0.789, specificity of 0.806, and sensitivity of 0.742, averaged across all three event types. Additionally, we created a custom graphical user interface to implement our classifier and enhance usability.


Assuntos
Artefatos , Eletroencefalografia , Humanos , Eletrocorticografia , Neurofisiologia , Cognição
17.
Neuroimage ; 281: 120368, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696424

RESUMO

Recently, Fong et al. published EEG responses in cerebral cortex elicited by cerebellar TMS (cbTMS) (Fong et al., 2023), which differ from our recently identified cbTMS-EEG responses (Gassmann et al., 2022). Fong et al. argued that this discrepancy is due to coil placement unsuitable for eliciting cerebellar brain inhibition (CBI) in our study. However, we reliably elicited CBI in our subjects. Consequently, this leads to a compelling discussion on possible reasons for the observed discrepancies in cbTMS-evoked EEG responses. Reliably measuring cbTMS-evoked EEG responses could become an important neurophysiological tool to test effective cerebellum-to-cortex connectivity.


Assuntos
Córtex Cerebral , Estimulação Magnética Transcraniana , Humanos , Córtex Cerebral/fisiologia , Cerebelo/fisiologia , Neurofisiologia , Eletroencefalografia , Potencial Evocado Motor/fisiologia
18.
Neuroimage ; 271: 120021, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918139

RESUMO

The discovery that human brain connectivity data can be used as a "fingerprint" to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have identified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography (MEG) recordings. Nevertheless, it is still uncertain to what extent MEG signatures can serve as an indicator of human identifiability during task-related conduct. Here, using MEG data from naturalistic and neurophysiological tasks, we show that identification improves in tasks relative to resting-state, providing compelling evidence for a task dependent axis of MEG signatures. Notably, improvements in identifiability were more prominent in strictly controlled tasks. Lastly, the brain regions contributing most towards individual identification were also modified when engaged in task activities. We hope that this investigation advances our understanding of the driving factors behind brain identification from MEG signals.


Assuntos
Imageamento por Ressonância Magnética , Magnetoencefalografia , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico , Neurofisiologia
19.
Hum Brain Mapp ; 44(5): 1862-1867, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579658

RESUMO

Neural communication across different spatial and temporal scales is a topic of great interest in clinical and basic science. Phase-amplitude coupling (PAC) has attracted particular interest due to its functional role in a wide range of cognitive and motor functions. Here, we introduce a novel measure termed the direct modulation index (dMI). Based on the classical modulation index, dMI provides an estimate of PAC that is (1) bound to an absolute interval between 0 and +1, (2) resistant against noise, and (3) reliable even for small amounts of data. To highlight the properties of this newly-proposed measure, we evaluated dMI by comparing it to the classical modulation index, mean vector length, and phase-locking value using simulated data. We ascertained that dMI provides a more accurate estimate of PAC than the existing methods and that is resilient to varying noise levels and signal lengths. As such, dMI permits a reliable investigation of PAC, which may reveal insights crucial to our understanding of functional brain architecture in key contexts such as behaviour and cognition. A Python toolbox that implements dMI and other measures of PAC is freely available at https://github.com/neurophysiological-analysis/FiNN.


Assuntos
Encéfalo , Neurofisiologia , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Modelos Neurológicos
20.
Hum Brain Mapp ; 44(14): 4833-4847, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516916

RESUMO

Overlapping clinical presentations in primary progressive aphasia (PPA) variants present challenges for diagnosis and understanding pathophysiology, particularly in the early stages of the disease when behavioral (speech) symptoms are not clearly evident. Divergent atrophy patterns (temporoparietal degeneration in logopenic variant lvPPA, frontal degeneration in nonfluent variant nfvPPA) can partially account for differential speech production errors in the two groups in the later stages of the disease. While the existing dogma states that neurodegeneration is the root cause of compromised behavior and cortical activity in PPA, the extent to which neurophysiological signatures of speech dysfunction manifest independent of their divergent atrophy patterns remain unknown. We test the hypothesis that nonword deficits in lvPPA and nfvPPA arise from distinct patterns of neural oscillations that are unrelated to atrophy. We use a novel structure-function imaging approach integrating magnetoencephalographic imaging of neural oscillations during a non-word repetition task with voxel-based morphometry-derived measures of gray matter volume to isolate neural oscillation abnormalities independent of atrophy. We find reduced beta band neural activity in left temporal regions associated with the late stages of auditory encoding unique to patients with lvPPA and reduced high-gamma neural activity over left frontal regions associated with the early stages of motor preparation in patients with nfvPPA. Neither of these patterns of reduced cortical oscillations was explained by cortical atrophy in our statistical model. These findings highlight the importance of structure-function imaging in revealing neurophysiological sequelae in early stages of dementia when neither structural atrophy nor behavioral deficits are clinically distinct.


Assuntos
Afasia Primária Progressiva , Afasia Primária Progressiva não Fluente , Humanos , Afasia Primária Progressiva/diagnóstico por imagem , Neurofisiologia , Imageamento por Ressonância Magnética , Substância Cinzenta/patologia , Atrofia/patologia , Afasia Primária Progressiva não Fluente/diagnóstico por imagem , Afasia Primária Progressiva não Fluente/complicações , Afasia Primária Progressiva não Fluente/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA