Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 577(7788): 79-84, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853069

RESUMO

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1-3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


Assuntos
Genoma de Planta , Nymphaea/genética , Filogenia , Flores/genética , Flores/metabolismo , Nymphaea/metabolismo , Odorantes/análise
2.
Plant Cell Physiol ; 65(3): 428-446, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38174441

RESUMO

Many terrestrial plants produce large quantities of alkanes for use in epicuticular wax and the pollen coat. However, their carbon chains must be long to be useful as fuel or as a petrochemical feedstock. Here, we focus on Nymphaea odorata, which produces relatively short alkanes in its anthers. We identified orthologs of the Arabidopsis alkane biosynthesis genes AtCER1 and AtCER3 in N. odorata and designated them NoCER1A, NoCER3A and NoCER3B. Expression analysis of NoCER1A and NoCER3A/B in Arabidopsis cer mutants revealed that the N. odorata enzymes cooperated with the Arabidopsis enzymes and that the NoCER1A produced shorter alkanes than AtCER1, regardless of which CER3 protein it interacted with. These results indicate that AtCER1 frequently uses a C30 substrate, whereas NoCER1A, NoCER3A/B and AtCER3 react with a broad range of substrate chain lengths. The incorporation of shorter alkanes disturbed the formation of wax crystals required for water-repellent activity in stems, suggesting that chain-length specificity is important for surface cleaning. Moreover, cultured tobacco cells expressing NoCER1A and NoCER3A/B effectively produced C19-C23 alkanes, indicating that the introduction of the two enzymes is sufficient to produce alkanes. Taken together, our findings suggest that these N. odorata enzymes may be useful for the biological production of alkanes of specific lengths. 3D modeling revealed that CER1s and CER3s share a similar structure that consists of N- and C-terminal domains, in which their predicted active sites are respectively located. We predicted the complex structure of both enzymes and found a cavity that connects their active sites.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Nymphaea , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nymphaea/metabolismo , Alcanos/metabolismo , Carbono-Carbono Liases/metabolismo
3.
BMC Plant Biol ; 24(1): 370, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714932

RESUMO

BACKGROUND: Nymphaea (waterlily) is known for its rich colors and role as an important aquatic ornamental plant globally. Nymphaea atrans and some hybrids, including N. 'Feitian 2,' are more appealing due to the gradual color change of their petals at different flower developmental stages. The petals of N. 'Feitian 2' gradually change color from light blue-purple to deep rose-red throughout flowering. The mechanism of the phenomenon remains unclear. RESULTS: In this work, flavonoids in the petals of N. 'Feitian 2' at six flowering stages were examined to identify the influence of flavonoid components on flower color changes. Additionally, six cDNA libraries of N. 'Feitian 2' over two blooming stages were developed, and the transcriptome was sequenced to identify the molecular mechanism governing petal color changes. As a result, 18 flavonoid metabolites were identified, including five anthocyanins and 13 flavonols. Anthocyanin accumulation during flower development is the primary driver of petal color change. A total of 12 differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway were uncovered, and these DEGs were significantly positively correlated with anthocyanin accumulation. Six structural genes were ultimately focused on, as their expression levels varied significantly across different flowering stages. Moreover, 104 differentially expressed transcription factors (TFs) were uncovered, and three MYBs associated with flavonoid biosynthesis were screened. The RT-qPCR results were generally aligned with high-throughput sequencing results. CONCLUSIONS: This research offers a foundation to clarify the mechanisms underlying changes in the petal color of waterlilies.


Assuntos
Flavonoides , Flores , Regulação da Expressão Gênica de Plantas , Nymphaea , Transcriptoma , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Flavonoides/biossíntese , Flavonoides/metabolismo , Nymphaea/genética , Nymphaea/metabolismo , Pigmentação/genética , Antocianinas/biossíntese , Antocianinas/metabolismo , Perfilação da Expressão Gênica , Cor
4.
Phytochem Anal ; 35(4): 799-816, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38297293

RESUMO

INTRODUCTION: Nymphaea rubra belongs to the Nymphaea family and is regarded as a vegetable used in traditional medicine to cure several ailments. These species are rich in phenolic acid, flavonoids, and hydrolysable tannin. OBJECTIVE: This study aimed to assess the biological activities of Nymphaea rubra flowers (NRF) and leaves (NRL) by identifying and quantifying their polyphenolic compounds using ultra-performance liquid chromatography coupled to quadrupole cyclic ion mobility time-of-flight mass spectrometry (UHPLC-Q-cIM-TOF-MS) and triple quadrupole mass spectrometry (UHPLC-TQ-MS). METHODOLOGY: NRF and NRL powder was extracted with methanol and fractionated using hexane, ethylacetate, and water. Antioxidant and α-glucosidase, and tyrosinase enzyme inhibitory activities were evaluated. The polyphenolic components of NRF and NRL were identified and quantified using UHPLC-Q-cIM-TOF-MS and UHPLC-TQ-MS. The method was validated using linearity, precision, accuracy, limit of detection (LOD), and lower limit of quantification (LLOQ). RESULTS: Bioactive substances and antioxidants were highest in the ethylacetate fraction of flowers and leaves. Principal component analysis showed how solvent and plant components affect N. rubra's bioactivity and bioactive compound extraction. A total of 67 compounds were identified, and among them 21 significant polyphenols were quantified. Each calibration curve had R2 > 0.998. The LOD and LLOQ varied from 0.007 to 0.09 µg/mL and from 0.01 to 0.1 µg/mL, respectively. NRF contained a significant amount of gallic acid (10.1 mg/g), while NRL contained abundant pentagalloylglucose (2.8 mg/g). CONCLUSION: The developed method is simple, rapid, and selective for the identification and quantification of bioactive molecules. These findings provide a scientific basis for N. rubra's well-documented biological effects.


Assuntos
Antioxidantes , Flores , Nymphaea , Folhas de Planta , Polifenóis , Cromatografia Líquida de Alta Pressão/métodos , Folhas de Planta/química , Polifenóis/análise , Flores/química , Antioxidantes/análise , Antioxidantes/farmacologia , Nymphaea/química , Espectrometria de Massas/métodos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Reprodutibilidade dos Testes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , alfa-Glucosidases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/análise
5.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611890

RESUMO

Folk medicine is widely used in Angola, even for human African trypanosomiasis (sleeping sickness) in spite of the fact that the reference treatment is available for free. Aiming to validate herbal remedies in use, we selected nine medicinal plants and assessed their antitrypanosomal activity. A total of 122 extracts were prepared using different plant parts and solvents. A total of 15 extracts from seven different plants exhibited in vitro activity (>70% at 20 µg/mL) against Trypanosoma brucei rhodesiense bloodstream forms. The dichloromethane extract of Nymphaea lotus (leaves and leaflets) and the ethanolic extract of Brasenia schreberi (leaves) had IC50 values ≤ 10 µg/mL. These two aquatic plants are of particular interest. They are being co-applied in the form of a decoction of leaves because they are considered by local healers as male and female of the same species, the ethnotaxon "longa dia simbi". Bioassay-guided fractionation led to the identification of eight active molecules: gallic acid (IC50 0.5 µg/mL), methyl gallate (IC50 1.1 µg/mL), 2,3,4,6-tetragalloyl-glucopyranoside, ethyl gallate (IC50 0.5 µg/mL), 1,2,3,4,6-pentagalloyl-ß-glucopyranoside (IC50 20 µg/mL), gossypetin-7-O-ß-glucopyranoside (IC50 5.5 µg/mL), and hypolaetin-7-O-glucoside (IC50 5.7 µg/mL) in B. schreberi, and 5-[(8Z,11Z,14Z)-heptadeca-8,11,14-trienyl] resorcinol (IC50 5.3 µg/mL) not described to date in N. lotus. Five of these active constituents were detected in the traditional preparation. This work provides the first evidence for the ethnomedicinal use of these plants in the management of sleeping sickness in Angola.


Assuntos
Antiprotozoários , Nymphaea , Tripanossomíase Africana , Humanos , Animais , Angola , Sementes , Antiprotozoários/farmacologia , Extratos Vegetais/farmacologia
6.
BMC Genomics ; 24(1): 82, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36809964

RESUMO

BACKGROUND: Tropical water lily is an aquatic plant with high ornamental value, but it cannot overwinter naturally at high latitudes. The temperature drop has become a key factor restricting the development and promotion of the industry. RESULTS: The responses of Nymphaea lotus and Nymphaea rubra to cold stress were analyzed from the perspective of physiology and transcriptomics. Under the cold stress, Nymphaea rubra had obvious leaf edge curling and chlorosis. The degree of peroxidation of its membrane was higher than that of Nymphaea lotus, and the content of photosynthetic pigments also decreased more than that of Nymphaea lotus. The soluble sugar content, SOD enzyme activity and CAT enzyme activity of Nymphaea lotus were higher than those of Nymphaea rubra. This indicated that there were significant differences in the cold sensitivity of the two varieties. GO enrichment and KEGG pathway analysis showed that many stress response genes and pathways were affected and enriched to varying degrees under the cold stress, especially plant hormone signal transduction, metabolic pathways and some transcription factor genes were from ZAT gene family or WKRY gene family. The key transcription factor ZAT12 protein in the cold stress response process has a C2H2 conserved domain, and the protein is localized in the nucleus. Under the cold stress, overexpression of the NlZAT12 gene in Arabidopsis thaliana increased the expression of some cold-responsive protein genes. The content of reactive oxygen species and MDA in transgenic Arabidopsis thaliana was lower, and the content of soluble sugar was higher, indicating that overexpression of NlZAT12 can improve the cold tolerance of Arabidopsis thaliana. CONCLUSION: We demonstrate that ethylene signalling and reactive oxygen species signalling play critical roles in the response of the two cultivars to cold stress. The key gene NlZAT12 for improving cold tolerance was identified. Our study provides a theoretical basis for revealing the molecular mechanism of tropical water lily in response to cold stress.


Assuntos
Arabidopsis , Nymphaea , Nymphaeaceae , Resposta ao Choque Frio/genética , Arabidopsis/genética , Nymphaeaceae/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Transcriptoma , Fatores de Transcrição/metabolismo , Nymphaea/genética , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Baixa
7.
Ann Bot ; 131(5): 851-866, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36976535

RESUMO

BACKGROUND AND AIMS: Water lilies are of particular interest with regard to the evolution of angiosperms. They live in an aquatic environment and have been regarded as links to the monocots by some authors. Vascular bundles are sometimes described as scattered or atactostelar as in monocots. However, this view needs to be clarified as the morphology and vascularization of Nymphaea rhizomes remain to be understood. METHODS: The rhizome of Nymphaea alba was re-investigated morphologically and histologically. Developmental studies were conducted using scanning electron microscopy. Comprehensive histological analyses, including hand and microtome sections and a variety of specific staining procedures, were conducted to re-evaluate the composition of longitudinal and transverse tissue. KEY RESULTS: The rhizome is covered by parenchymatous nodal cushions each bearing a leaf and several adventitious roots. Internodes are extremely short. The apex is flat and early overtopped by developing leaf primordia and cushions. The phyllotaxis is spiral and passes alternately through vegetative and reproductive phases. Flowers appear in the leaf spiral, and lack a subtending bract and a cushion below the peduncle. The reproductive phase includes two or three flowers which alternate with a single leaf. The rhizome is histologically subdivided into a central core, an aerenchymatic cortex, and a parenchymatic exocortex formed to a great extent by the nodal cushions. The core contains strands of vascular bundles united to a complex vascular plexus. Vascular elements continuously anastomose and change shape and direction. Provascular strands originating from leaf primordia merge with the outer core vascular tissue whereas the flower strands run into the centre of the core. Roots originating from the parenchymatous cushions show the characteristic actinostelic pattern, which changes into a collateral pattern inside the rhizome. Several root traces merge and form one strand leading to the central core. Early cell divisions below the apical meristem dislocate leaf, flower and root primordia and their provascular strands outwards. Consequently, fully developed vascular strands insert horizontally into the vascular plexus at advanced rhizome stages. CONCLUSIONS: The absence of bracts and cushions below the flowers, the alternate leaf-flower sequence and the course of the peduncle strand suggest that the rhizome is sympodially instead of monopodially organized. The spiral phyllotaxis extends in this case over several shoot orders, masking the branching pattern. The vascular strands in the central plexus differ considerably from vascular bundles in monocots, confirming the unique vascularization in Nymphaea. Sclerenchymatic bundle sheaths are lacking, and vascular bundles continuously split and anastomose throughout the rhizome. Though vascular bundles in petioles and peduncles of N. alba show similarities with some Alismatales, the vascular system of N. alba in general has little in common with that of monocots.


Assuntos
Nymphaea , Nymphaea/anatomia & histologia , Rizoma , Flores/anatomia & histologia , Meristema , Folhas de Planta
8.
Proc Natl Acad Sci U S A ; 117(20): 10921-10926, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32366661

RESUMO

Flower biomass varies widely across the angiosperms. Each plant species invests a given amount of biomass to construct its sex organs. A comparative understanding of how this limited resource is partitioned among primary (male and female structures) and secondary (petals and sepals) sexual organs on hermaphrodite species can shed light on general evolutionary processes behind flower evolution. Here, we use allometries relating different flower biomass components across species to test the existence of broad allocation patterns across the angiosperms. Based on a global dataset with flower biomass spanning five orders of magnitude, we show that heavier angiosperm flowers tend to be male-biased and invest strongly in petals to promote pollen export, while lighter flowers tend to be female-biased and invest more in sepals to insure their own seed set. This result demonstrates that larger flowers are not simple carbon copies of small ones, indicating that sexual selection via male-male competition is an important driver of flower biomass evolution and sex allocation strategies across angiosperms.


Assuntos
Evolução Biológica , Flores/fisiologia , Magnoliopsida/fisiologia , Biomassa , Gentiana , Lepidium , Nymphaea , Orchidaceae , Pólen , Polinização , Sementes , Seleção Genética , Especificidade da Espécie
9.
Proc Natl Acad Sci U S A ; 117(15): 8649-8656, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32234787

RESUMO

For more than 225 million y, all seed plants were woody trees, shrubs, or vines. Shortly after the origin of angiosperms ∼140 million y ago (MYA), the Nymphaeales (water lilies) became one of the first lineages to deviate from their ancestral, woody habit by losing the vascular cambium, the meristematic population of cells that produces secondary xylem (wood) and phloem. Many of the genes and gene families that regulate differentiation of secondary tissues also regulate the differentiation of primary xylem and phloem, which are produced by apical meristems and retained in nearly all seed plants. Here, we sequenced and assembled a draft genome of the water lily Nymphaea thermarum, an emerging system for the study of early flowering plant evolution, and compared it to genomes from other cambium-bearing and cambium-less lineages (e.g., monocots and Nelumbo). This revealed lineage-specific patterns of gene loss and divergence. Nymphaea is characterized by a significant contraction of the HD-ZIP III transcription factors, specifically loss of REVOLUTA, which influences cambial activity in other angiosperms. We also found the Nymphaea and monocot copies of cambium-associated CLE signaling peptides display unique substitutions at otherwise highly conserved amino acids. Nelumbo displays no obvious divergence in cambium-associated genes. The divergent genomic signatures of convergent loss of vascular cambium reveals that even pleiotropic genes can exhibit unique divergence patterns in association with independent events of trait loss. Our results shed light on the evolution of herbaceousness-one of the key biological innovations associated with the earliest phases of angiosperm evolution.


Assuntos
Câmbio/química , Genoma de Planta , Magnoliopsida/genética , Nymphaea/genética , Proteínas de Plantas/genética , Madeira/química , Câmbio/genética , Câmbio/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Nymphaea/crescimento & desenvolvimento , Filogenia , Transcriptoma , Madeira/genética , Madeira/crescimento & desenvolvimento
10.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240320

RESUMO

In this study, polysaccharide-rich Nymphaea hybrid extracts (NHE) were obtained using the ultrasound-assisted cellulase extraction (UCE) method optimized by response surface methodology (RSM). The structural properties and thermal stability of NHE were characterized by Fourier-transform infrared (FT-IR), high-performance liquid chromatography (HPLC) and thermogravimetry-derivative thermogravimetry (TG-DTG) analysis, respectively. Moreover, the bioactivities of NHE, including the antioxidant, anti-inflammatory, whitening and scratch healing activities were evaluated by different in vitro assays. NHE conveyed a good ability to scavenge against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals and inhibit the hyaluronidase activity. NHE can effectively protect the HaCaT cells against oxidative damage by inhibiting the intracellular reactive oxygen species (ROS) production in the H2O2 stimulation assays and promoting the proliferation and migration in the scratch assays. In addition, NHE was proven to inhibit melanin production in B16 cells. Collectively, the above results seem to be the evidence needed to promote the potential of NHE to be regarded as a new functional raw material in the cosmetics or food industries.


Assuntos
Nymphaea , Nymphaea/química , Espectroscopia de Infravermelho com Transformada de Fourier , Peróxido de Hidrogênio , Antioxidantes/farmacologia , Antioxidantes/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
11.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982679

RESUMO

The water lily (Nymphaea tetragona) is an ancient angiosperm that belongs to the Nymphaeaceae family. As a rooted floating-leaf plant, water lilies are generally cultivated in fresh water, therefore, little is known about their survival strategies under salt stress. Long-term salt stress causes morphological changes, such as the rapid regeneration of floating leaves and a significant decrease in leaf number and surface area. We demonstrate that salt stress induces toxicity soon after treatment, but plants can adapt by regenerating floating leaves that are photosynthetically active. Transcriptome profiling revealed that ion binding was one of the most-enriched GO terms in leaf-petiole systems under salt stress. Sodium-transporter-related genes were downregulated, whereas K+ transporter genes were both up- and downregulated. These results suggest that restricting intracellular Na+ importing while maintaining balanced K+ homeostasis is an adaptive strategy for tolerating long-term salt stress. ICP-MS analysis identified the petioles and leaves as Na-hyperaccumulators, with a maximum content of over 80 g kg-1 DW under salt stress. Mapping of the Na-hyperaccumulation trait onto the phylogenetic relationships revealed that water lily plants might have a long evolutionary history from ancient marine plants, or may have undergone historical ecological events from salt to fresh water. Ammonium transporter genes involved in nitrogen metabolism were downregulated, whereas NO3--related transporters were upregulated in both the leaves and petioles, suggesting a selective bias toward NO3- uptake under salt stress. The morphological changes we observed may be due to the reduced expression of genes related to auxin signal transduction. In conclusion, the floating leaves and submerged petioles of the water lily use a series of adaptive strategies to survive salt stress. These include the absorption and transport of ions and nutrients from the surrounding environments, and the ability to hyperaccumulate Na+. These adaptations may serve as the physiological basis for salt tolerance in water lily plants.


Assuntos
Nymphaea , Filogenia , Estresse Salino , Folhas de Planta/metabolismo , Tolerância ao Sal/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
12.
Molecules ; 28(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894493

RESUMO

Blue lotus, also known as Nymphaea caerulea (Nymphaeaceae), is a water lily found globally in lakes and rivers. With its long history of use in Egyptian culture, blue lotus has been associated with spiritual rituals and health benefits. Nowadays, blue lotus is still consumed as a tea or tincture to induce relaxation and heightened spiritual awareness. In this study, six authentic N. caerulea extracts from trusted sources and eleven commercial products were analyzed using gas chromatography-mass spectrometry (GC-MS). Authentic blue lotus extracts were produced in industrial settings. Overall, the extracts were a mixture of aliphatic hydrocarbons, aromatic alcohols, fatty acids, phenyl derivatives, diterpenoids, phytosterols, and stigmastanes. Apomorphine and nuciferine, which are responsible for psychoactive effects of the blue lotus flower, were virtually absent from the authentic blue lotus extract. Although blue lotus has a long history of use, the safety data on the plant and its extracts is limited; however, together with the analytical data, the available information does not indicate major safety concerns for the topical application of authentic blue lotus flower concrete or absolute when diluted as a fragrance ingredient.


Assuntos
Nymphaea , Fitosteróis , Nymphaea/química , Apomorfina , Cromatografia Gasosa-Espectrometria de Massas , Egito , Extratos Vegetais/química
13.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570790

RESUMO

The objectives of this study were (1) to investigate the effect of extracts from some plants in the families Nelumbonaceae and Nymphaeaceae on phosphodiesterase 5 (PDE5) and arginase, which have been used in erectile dysfunction treatment, and (2) to isolate and identify the compounds responsible for such activities. The characterization and quantitative analysis of flavonoid constituents in the active extracts were performed by HPLC. Thirty-seven ethanolic extracts from different parts of plants in the genus Nymphaea and Victoria of Nymphaeaceae and genus Nelumbo of Nelumbonaceae were screened for PDE5 and arginase inhibitory activities. The ethanolic extracts of the receptacles and pollens of Nelumbo nucifera Gaertn., petals of Nymphaea cyanea Roxb. ex G.Don, Nymphaea stellata Willd., and Victoria amazonica (Poepp.) Sowerby and the petals and receptacles of Nymphaea pubescens Willd. showed IC50 values on PDE5 of less than 25 µg/mL while none of the extracts showed effects on arginase. The most active extract, N. pubescens petal extract, was fractionated to isolate and identify the PDE5 inhibitors. The results showed that six flavonoid constituents including quercetin 3'-O-ß-xylopyranoside (1), quercetin 3-methyl ether 3'-O-ß-xylopyranoside (2), quercetin (3), 3-O-methylquercetin (4), kaempferol (5) and 3-O-methylkaempferol (6) inhibited PDE5 with IC50 values at the micromolar level.


Assuntos
Nelumbo , Nelumbonaceae , Nymphaea , Nymphaeaceae , Humanos , Masculino , Quercetina , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Arginase , Extratos Vegetais/farmacologia , Flavonoides/análise
14.
Plant J ; 106(5): 1356-1365, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33735469

RESUMO

Sexual reproduction in angiosperms is siphonogamous, and the interaction between pollen tube and pistil is critical for successful fertilization. Our previous study demonstrated that mutation of the Arabidopsis turgor regulation defect 1 (TOD1) gene leads to reduced male fertility, a result of retarded pollen tube growth in the pistil. TOD1 encodes a Golgi-localized alkaline ceramidase, a key enzyme for the production of sphingosine-1-phosphate (S1P), which is involved in the regulation of turgor pressure in plant cells. However, whether TOD1s play a conserved role in the innovation of siphonogamy is largely unknown. In this study, we provide evidence that OsTOD1, which is similar to AtTOD1, is also preferentially expressed in rice pollen grains and pollen tubes. OsTOD1 knockout results in reduced pollen tube growth potential in rice pistil. Both the OsTOD1 genomic sequence with its own promoter and the coding sequence under the AtTOD1 promoter can partially rescue the attod1 mutant phenotype. Furthermore, TOD1s from other angiosperm species can partially rescue the attod1 mutant phenotype, while TOD1s from gymnosperm species are not able to complement the attod1 mutant phenotype. Our data suggest that TOD1 acts conservatively in angiosperms, and this opens up an opportunity to dissect the role of sphingolipids in pollen tube growth in angiosperms.


Assuntos
Magnoliopsida/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Flores/genética , Flores/fisiologia , Ginkgo biloba/genética , Ginkgo biloba/fisiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Magnoliopsida/fisiologia , Nelumbo/genética , Nelumbo/fisiologia , Nymphaea/genética , Nymphaea/fisiologia , Oryza/genética , Oryza/fisiologia , Pinus taeda/genética , Pinus taeda/fisiologia , Proteínas de Plantas/genética , Pólen/genética , Pólen/fisiologia , Tubo Polínico/genética , Tubo Polínico/fisiologia , Reprodução
15.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498849

RESUMO

As a tropical flower, Nymphaea lotus is a typical night-blooming waterlily used in water gardening. Its petals are rich in aromatic substances that can be used to extract essential oils and as flower tea. However, the short life of the flower seriously affects the development of its cut flowers. At present, neither the mechanism behind the night-opening waterlily flower's opening and closing nor the difference between day-opening and night-opening waterlily flowers' opening and closing mechanisms are clear. In this study, endogenous hormone contents of closed (CP) and open (OP) petals were measured, and transcriptome analysis of CP and OP petals was carried out to determine the signal transduction pathway and metabolic pathway that affect flower opening and closing. ABA and cell wall modification were selected as the most significant factors regulating flowering. We used qRT-PCR to identify the genes involved in the regulation of flower opening in waterlilies. Finally, by comparing the related pathways with those of the diurnal type, the obvious difference between them was found to be their hormonal regulation pathways. In conclusion, the endogenous ABA hormone may interact with the cell wall modification pathway to induce the flowering of N. lotus. Our data provide a new direction for the discovery of key factors regulating the flower opening and closing of N. lotus and provide basic theoretical guidance for future horticultural applications.


Assuntos
Nymphaea , Nymphaea/genética , Ácido Abscísico/metabolismo , Flores/metabolismo , Perfilação da Expressão Gênica , Hormônios/metabolismo , Parede Celular , Regulação da Expressão Gênica de Plantas , Transcriptoma
16.
J Environ Manage ; 309: 114674, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35182979

RESUMO

Invasive species and their management represent a multi-faceted issue affecting social and natural systems. People see the advantages and risks of these species through various value structures, which influences decisions on whether and where they can be managed. While many studies have focused on the ecological effects of invasive species, their impact on human livelihoods and well-being is less recognized. Understanding the effects (benefits and costs) of invasive species on livelihoods and human well-being, as well as people's perception, is important for guiding policy formulation and devising management strategies. Here we present a case study of Dal Lake - a freshwater urban lake of Kashmir Himalaya - providing various ecological, biological, and hydrological functions that offer economic, aesthetic, recreational, educational, and other values to the local populace. In the context of a gradually increasing attention on the impacts of Invasive Alien Plant species (IAPs) on this ecosystem, we conducted Focal Group Discussions (FGDs) to determine the perception of people living inside and around Dal Lake regarding two invasive species, namely, Nymphea mexicana and Hydrocharis dubia, and their capacity to provide ecosystem services (ES) and disservices (EDS). Following that, a discursive scenario assessment tool multi-criteria mapping (MCM) was used to involve stakeholders in ranking their priorities in two scenarios of the lake- 'status quo' vs 'clean lake with limited weeds' in the Dal Lake social-ecological system. We found that their perception of the impact of invasive species varies with factors such as the location of invasive plants in the lake, and people's occupation, and household characteristics. Most participants perceive these species positively (i.e., agreeing that they create ecosystem services in the form of cattle feed), but some recognize their importance in providing ecosystem disservices. Their primary concern and priority were the sustenance of their livelihood in any scenario, and most respondents did not oppose the eradication of two IAPs if their livelihood is secure. We conclude that a more nuanced strategy to IAS management is required, one that combines both local livelihood demands and broader environmental and social considerations.


Assuntos
Ecossistema , Hydrocharitaceae , Espécies Introduzidas , Nymphaea , Animais , Bovinos , Índia
17.
Molecules ; 27(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335279

RESUMO

In this study, ultrasonic-assisted cellulase extraction (UCE) was applied to extract flavonoids and polyphenols from the Nymphaea hybrid flower. The extraction conditions were optimized using the response surface method (RSM) coupled with a Box-Behnken design. The crude extract of Nymphaea hybrid (NHE) was further purified using AB-8 macroporous resins, and the purified extract (NHEP) was characterized by FTIR and HPLC. In vitro activity determination by chemical method showed that NHEP displayed strong free radical scavenging abilities against the DPPH and ABTS radicals, good reduction power, and hyaluronidase inhibition. The cell viability by CCK-8 assays showed that NHEP had no significant cytotoxicity for B16 and HaCaT cells when the concentration was below 100 µg/mL and 120 µg/mL, respectively. NHEP with a concentration of 20-160 µg/mL can more effectively reduce the ROS level in H2O2 damaged HaCaT cells compared with 10 µg/mL of VC. The 40 µg/mL of NHEP had similar activity against intracellular melanin production in the B16 melanoma cells compared with 20 µg/mL Kojic acid. Good activities of antioxidation, whitening and protective effect against H2O2-induced oxidative damage promote the potential for NHEP as a functional raw material in the field of cosmetics and medicine.


Assuntos
Celulase , Nymphaea , Antioxidantes/química , Antioxidantes/farmacologia , Flores , Células HaCaT , Humanos , Peróxido de Hidrogênio/farmacologia , Melaninas , Estresse Oxidativo , Espécies Reativas de Oxigênio
18.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684520

RESUMO

Nymphaea lotus L. is a potential plant in the Nymphaeaceae family that is well-recognized as an economic and traditional medicinal plant in Thailand and other countries. Its pharmacological and medicinal effects have been confirmed. However, there is no study going deeper into the population level to examine the phytochemical variation and biological activity of each population that benefits phytopharmaceutical and medical applications using this plant as raw material. This study was intensely conducted to complete this important research gap to investigate the flavonoid profiles from its floral parts, the stamen and perianth, as well as the antioxidant potential of the 13 populations collected from every floristic region by (1) analyzing their flavonoid profiles, including the HPLC analysis, and (2) investigating the antioxidant capacity of these populations using three assays to observe different antioxidant mechanisms. The results indicated that the northeastern and northern regions are the most abundant floristic regions, and flavonoids are the main phytochemical class of both stamen and perianth extracts from N. lotus. The stamen offers higher flavonoids and richer antioxidant potential compared with the perianth. This finding is also the first completed report at the population level to describe the significant correlation between the phytochemical profiles in floral parts extracts and the main antioxidant activity, which is mediated by the electron transfer mechanism. The results from the Pearson correlation coefficients between several phytochemicals and different antioxidant assessments highlighted that the antioxidant capability of these extracts is the result of complex phytochemical combinations. The frontier knowledge from these current findings helps to open up doors for phytopharmaceutical industries to discover their preferred populations and floral parts that fit with their targeted products.


Assuntos
Antioxidantes , Nymphaea , Antioxidantes/análise , Antioxidantes/farmacologia , Flavonoides/farmacologia , Fenóis/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Tailândia
19.
Molecules ; 27(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056722

RESUMO

Nymphaea hybrid, a precious water lily, is a widely-cultivated aquatic flower with high ornamental, economic, medicinal, and ecological value; it blooms recurrently and emits a strong fragrance. In the present study, in order to understand the volatile components of N. hybrid and its relationship with petals structure characteristics, the morphologies and anatomical structures of the flower petals of N. hybrid were investigated, and volatile compounds emitted from the petals were identified. Scanning and transmission electron microscopy were used to describe petal structures, and the volatile constituents were collected using headspace solid-phase microextraction (HS-SPME) fibers and analyzed using gas chromatography coupled with mass spectrometry (GC-MS). The results indicated that the density and degree of protrusion and the number of plastids and osmiophilic matrix granules in the petals play key roles in emitting the fragrance. There were distinct differences in the components and relative contents of volatile compounds among the different strains of N. hybrid. In total, 29, 34, 39, and 43 volatile compounds were detected in the cut flower petals of the blue-purple type (Nh-1), pink type (Nh-2), yellow type (Nh-3) and white type (Nh-4) of N. hybrid at the flowering stage, with total relative contents of 96.78%, 97.64%, 98.56%, and 96.15%, respectively. Analyses of these volatile components indicated that alkenes, alcohols, and alkanes were the three major types of volatile components in the flower petals of N. hybrid. The predominant volatile compounds were benzyl alcohol, pentadecane, trans-α-bergamotene, (E)-ß-farnesene, and (6E,9E)-6,9-heptadecadiene, and some of these volatile compounds were terpenes, which varied among the different strains. Moreover, on the basis of hierarchical cluster analysis (HCA) and principal component analysis (PCA), the N. hybrid samples were divided into four groups: alcohols were the most important volatile compounds for Nh-4 samples; esters and aldehydes were the predominant volatiles in Nh-3 samples; and ketones and alkenes were important for Nh-2 samples. These compounds contribute to the unique flavors and aromas of the four strains of N. hybrid.


Assuntos
Nymphaea
20.
Environ Monit Assess ; 194(12): 853, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36203117

RESUMO

Modeling and mapping the distribution of suitable habitats of aquatic plants are critical for assessing the impact of factors like changing climate on species habitat range shifts, declines, and expansions. Nymphaea is an aquatic perennial herb considered valuable because of its ornamental, economic, medicinal, and ecological importance. In India, the geographical distribution of Nymphaea is diverse, and the suitable habitats of individual species are vulnerable to the changing climate and global warming effects. Despite its increased vulnerability, only a few limited conservation efforts in aquatic environments are being made to date. In several places, the distribution of Nymphaea has been impacted by both anthropogenic and climate-related disturbances. A comprehensive strategy will be needed to meet the socio-ecological challenge of Nymphaea conservation. In this study, we employed maximum entropy (MaxEnt) method to assess how climate change affects the distribution of Nymphaea suitable habitat. The occurrence records of Nymphaea were collected from primary surveys, Global Biodiversity Information Facility (GBIF), and published works. Bioclimatic variables obtained from the Coupled Model Intercomparison Project (CMIP6) were employed as predictor variables in distribution modeling. The projections were made using three SSPs (stringent mitigation scenarios) for the future period of 2050. Our results showed shifts in the suitability ranges of Nymphaea under different projection scenarios. The study provides information about the distribution of suitable habitats for Nymphaea in India, which may be helpful for ongoing efforts to conserve and manage the aquatic plants, particularly in areas that are losing suitable climate conditions.


Assuntos
Mudança Climática , Ecossistema , Previsões , Modelos Biológicos , Nymphaea , Entropia , Monitoramento Ambiental , Aquecimento Global , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA