Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 556, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877484

RESUMO

BACKGROUND: Perfluoroalkyl substances (PFASs) are emerging contaminants of increasing concern due to their presence in the environment, with potential impacts on ecosystems and human health. These substances are considered "forever chemicals" due to their recalcitrance to degradation, and their accumulation in living organisms can lead to varying levels of toxicity based on the compound and species analysed. Furthermore, concerns have been raised about the possible transfer of PFASs to humans through the consumption of edible parts of food plants. In this regard, to evaluate the potential toxic effects and the accumulation of perfluorooctanoic acid (PFOA) in edible plants, a pot experiment in greenhouse using three-week-old basil (Ocimum basilicum L.) plants was performed adding PFOA to growth substrate to reach 0.1, 1, and 10 mg Kg- 1 dw. RESULTS: After three weeks of cultivation, plants grown in PFOA-added substrate accumulated PFOA at different levels, but did not display significant differences from the control group in terms of biomass production, lipid peroxidation levels (TBARS), content of α-tocopherol and activity of ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (POX) in the leaves. A reduction of total phenolic content (TPC) was instead observed in relation to the increase of PFOA content in the substrate. Furthermore, chlorophyll content and photochemical reflectance index (PRI) did not change in plants exposed to PFAS in comparison to control ones. Chlorophyll fluorescence analysis revealed an initial, rapid photoprotective mechanism triggered by PFOA exposure, with no impact on other parameters (Fv/Fm, ΦPSII and qP). Higher activity of glutathione S-transferase (GST) in plants treated with 1 and 10 mg Kg- 1 PFOA dw (30 and 50% to control, respectively) paralleled the accumulation of PFOA in the leaves of plants exposed to different PFOA concentration in the substrate (51.8 and 413.9 ng g- 1 dw, respectively). CONCLUSION: Despite of the absorption and accumulation of discrete amount of PFOA in the basil plants, the analysed parameters at biometric, physiological and biochemical level in the leaves did not reveal any damage effect, possibly due to the activation of a detoxification pathway likely involving GST.


Assuntos
Caprilatos , Fluorocarbonos , Ocimum basilicum , Fotossíntese , Folhas de Planta , Ocimum basilicum/metabolismo , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/efeitos dos fármacos , Caprilatos/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Fluorocarbonos/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos/efeitos dos fármacos
2.
BMC Plant Biol ; 24(1): 512, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849727

RESUMO

BACKGROUND: This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS: The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION: Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.


Assuntos
Cobre , Nanopartículas Metálicas , Ocimum basilicum , Spirulina , Spirulina/metabolismo , Spirulina/efeitos dos fármacos , Spirulina/crescimento & desenvolvimento , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/crescimento & desenvolvimento , Ocimum basilicum/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Fertilizantes , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Óleos Voláteis/farmacologia
3.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891916

RESUMO

Photosystem II (PSII) functions were investigated in basil (Ocimum basilicum L.) plants sprayed with 1 mM salicylic acid (SA) under non-stress (NS) or mild drought-stress (MiDS) conditions. Under MiDS, SA-sprayed leaves retained significantly higher (+36%) chlorophyll content compared to NS, SA-sprayed leaves. PSII efficiency in SA-sprayed leaves under NS conditions, evaluated at both low light (LL, 200 µmol photons m-2 s-1) and high light (HL, 900 µmol photons m-2 s-1), increased significantly with a parallel significant decrease in the excitation pressure at PSII (1-qL) and the excess excitation energy (EXC). This enhancement of PSII efficiency under NS conditions was induced by the mechanism of non-photochemical quenching (NPQ) that reduced singlet oxygen (1O2) production, as indicated by the reduced quantum yield of non-regulated energy loss in PSII (ΦNO). Under MiDS, the thylakoid structure of water-sprayed leaves appeared slightly dilated, and the efficiency of PSII declined, compared to NS conditions. In contrast, the thylakoid structure of SA-sprayed leaves did not change under MiDS, while PSII functionality was retained, similar to NS plants at HL. This was due to the photoprotective heat dissipation by NPQ, which was sufficient to retain the same percentage of open PSII reaction centers (qp), as in NS conditions and HL. We suggest that the redox status of the plastoquinone pool (qp) under MiDS and HL initiated the acclimation response to MiDS in SA-sprayed leaves, which retained the same electron transport rate (ETR) with control plants. Foliar spray of SA could be considered as a method to improve PSII efficiency in basil plants under NS conditions, at both LL and HL, while under MiDS and HL conditions, basil plants could retain PSII efficiency similar to control plants.


Assuntos
Secas , Ocimum basilicum , Complexo de Proteína do Fotossistema II , Folhas de Planta , Ácido Salicílico , Estresse Fisiológico , Complexo de Proteína do Fotossistema II/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Ocimum basilicum/metabolismo , Ocimum basilicum/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Clorofila/metabolismo , Fotossíntese/efeitos dos fármacos , Tilacoides/metabolismo , Tilacoides/efeitos dos fármacos , Luz
4.
Planta ; 251(2): 48, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932951

RESUMO

MAIN CONCLUSION: Salinity alters VOC profile in emitter sweet basil plants. Airborne signals by emitter plants promote earlier flowering of receivers and increase their reproductive success under salinity. Airborne signals can prime neighboring plants against pathogen and/or herbivore attacks, whilst little is known about the possibility that volatile organic compounds (VOCs) emitted by stressed plants alert neighboring plants against abiotic stressors. Salt stress (50 mM NaCl) was imposed on Ocimum basilicum L. plants (emitters, namely NaCl), and a putative alerting-priming interaction was tested on neighboring basil plants (receivers, namely NaCl-S). Compared with the receivers, the NaCl plants exhibited reduced biomass, lower photosynthesis, and changes in the VOC profile, which are common early responses of plants to salinity. In contrast, NaCl-S plants had physiological parameters similar to those of nonsalted plants (C), but exhibited a different VOC fingerprint, which overlapped, for most compounds, with that of emitters. NaCl-S plants exposed later to NaCl treatment (namely NaCl-S + NaCl) exhibited changes in the VOC profile, earlier plant senescence, earlier flowering, and higher seed yield than C + NaCl plants. This experiment offers the evidence that (1) NaCl-triggered VOCs promote metabolic changes in NaCl-S plants, which, finally, increase reproductive success and (2) the differences in VOC profiles observed between emitters and receivers subjected to salinity raise the question whether the receivers are able to "propagate" the warning signal triggered by VOCs in neighboring companions.


Assuntos
Ocimum basilicum/fisiologia , Reprodução/efeitos dos fármacos , Salinidade , Estresse Salino/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Biomassa , Carbono/metabolismo , Clorofila/metabolismo , Etilenos/biossíntese , Flavonoides/metabolismo , Fluorescência , Gases/metabolismo , Metabolômica , Nitrogênio/metabolismo , Ocimum basilicum/efeitos dos fármacos , Fenótipo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Análise de Componente Principal
5.
Physiol Plant ; 168(2): 361-373, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31433490

RESUMO

Sodium nitroprusside (SNP) and hydrogen peroxide (H2 O2 ), as priming agents, have the well-recorded property to increase plant tolerance against a range of different abiotic stresses such as salinity. In this regard, the present study was conducted to evaluate the effect of different levels of SNP (100 and 200 µM) and H2 O2 (2.5 and 5 mM) as well as their combinations under salt stress (0 and 50 mM NaCl) on key physiological and biochemical attributes of the economically important aromatic plant basil (Ocimum basilicum L.) grown under hydroponic culture. Results revealed that morphological parameters such as plant height, root length, leaf fresh and dry weights (FW and DW) were significantly decreased by salinity stress, while SNP and H2 O2 treatments, alone or combined, increased FW and DW thus enhancing plant tolerance to salt stress. Furthermore, 200 µM SNP + 2.5 mM H2 O2 appeared to be the most effective treatment by causing significant increase in chlorophyll a and b, anthocyanin content and guaiacol peroxidase and ascorbate peroxidase enzymes activities under saline condition. In addition, analytical measurements showed that essential oil profile (concentration of main components) under salt stress was mostly affected by SNP and H2 O2 treatments. The highest increase was observed for methyl chavicol (43.09-69.91%), linalool (4.8-17.9%), cadinol (1.5-3.2%) and epi-α-cadinol (0.18-10.75%) compounds. In conclusion, current findings demonstrated a positive crosstalk between SNP and H2 O2 toward improved basil plant tolerance to salt stress, linked with regulation of essential oil composition.


Assuntos
Peróxido de Hidrogênio/farmacologia , Nitroprussiato/farmacologia , Ocimum basilicum/fisiologia , Estresse Salino , Ocimum basilicum/efeitos dos fármacos , Óleos Voláteis/química , Óleos de Plantas/química , Salinidade
6.
Ecotoxicol Environ Saf ; 206: 111396, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039852

RESUMO

Salinity is a key worldwide ecological restriction to sustainable crop production and food security. Various methods were used for inducing salinity tolerance including biotechnological approaches or application of stress tolerance-inducing substances. Silicon supplementation has a decisive role in alleviating of salinity injury, however, the definite mechanisms behind stay scantily understood, and must be examined. The imperative roles of sodium metasilicate (Si, 100 ppm) application methods (foliar spraying at 100 mg/l; soil additive at 100 mg/kg soil; foliar spraying at 100 mg/l plus soil additive at 100 mg/kg soil), in improving growth and essential oil yield, maintaining water status, activating antioxidant system, and keeping ion homeostasis of salt affected-sweet basil (6000 mg NaCl/kg soil) were studied. Salinity induced a notable increase in oxidative biomarkers, coupled with higher osmolyte concentration and osmotic potential (OP) values, as well as increased superoxide dismutase and peroxidase activities. Alternatively, sweet basil growth, essential oil yield, and catalase activity were reduced under salinity. Furthermore, salinity aggravated ion imbalance, decreased photosynthetic pigment and disrupted the plants' water status. Silicon application drastically increased osmolyte accumulation associated with sustained water status, increased OP, and improved osmotic adjustment (OA) capacity. Additionally, Si application enhanced antioxidant aptitude associated with decreased oxidative biomarkers and improved growth, photosynthetic pigment, and essential oil yield. Greater outcomes were achieved with the foliar spraying method, compared with other application methods. Salinity stress evoked modification in protein assimilation capacity and possibly will withdraw protein biosynthesis and reduce total protein band number; however, Si application may adjust the expression of salinity inducible proteins. Foliar spraying of Si with or without soil additive accelerates the expression of peroxidase isozyme over salinized or control plants. Collectively, Si foliar spraying alleviated salinity-related injuries on sweet basil by maintaining water status, increasing osmolyte assimilation, improving OA, enhancing redox homeostasis, and antioxidant capacity.


Assuntos
Antioxidantes/metabolismo , Homeostase/efeitos dos fármacos , Ocimum basilicum/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Silicatos/farmacologia , Água/metabolismo , Ocimum basilicum/metabolismo , Óleos Voláteis/metabolismo , Oxirredução , Peroxidase/metabolismo , Fotossíntese/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Solo/química , Superóxido Dismutase/metabolismo
7.
Molecules ; 25(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481510

RESUMO

One of the major factors limiting the production of medicinal plants in arid and semi-arid areas is water deficit or drought stress. One-third of the land in the world is arid and semi-arid and is inhabited by nearly 4 × 108 people. Ocimum basilicum (sweet basil) is a valuable medicinal plant that is sensitive to water deficit, and water shortage negatively affects sweet basil yield and quality. Water availability in the root zone of basil could ameliorate the negative effects of water shortage. To the best of our knowledge, although the effects of hydrophilic polymers (HPs) have been studied in different agricultural crops, the effects of HP application in medicinal plants have not been previously investigated. This investigation was conducted to explore the effects on water use efficiency when using Stockosorb® (STS) and psyllium seed mucilage (PSM) as hydrophilic polymers (HPs) and the effects of these HPs on essential oil quality, quantity, and yield. The research was set up in a factorial experiment on the basis of completely randomized block design with three replications. We used two HPs, STS (industrial) and PSM (herbal), with two methods of application (mixed with soil, mixed with soil + root) at four concentrations (0%, 0.1%, 0.2%, and 0.3% (w/w)). Results showed that the STS and PSM significantly increased the dry herb yield (both shoot and root) in comparison to the control, and the improving effect was higher when these HPs were mixed with soil + root. The highest dry herb yield (6.74 and 3.68 g/plant for shoot and root, respectively) was detected in the PSM at 0.1% mixed with soil + root. There was not any significant difference in dry herb yield among PSM (0.1%), PSM (0.2%), and STS (0.2%) when mixed with soil + root. Soil application of PSM and soil + root application of STS at a concentration of 0.3% increased the Essential Oil (EO) content almost three-fold in comparison to the control (0.5% and 0.52% to 0.18% v/w, respectively). The maximum essential oil yield was recorded in plants treated with STS (0.2% in) or PSM (0.1%) by soil + root application (0.21 and 0.19 mL/plant, respectively). PSM at concentrations of 0.1% and 0.2% (mixed with soil + root) showed the highest water use efficiency (1.91 and 1.82 g dry weight (DW)/L H2O, respectively). STS mixed with soil also significantly improved water use efficiency (WUE) in comparison to the control. The application of these HPs improved the quality of sweet basil essential oil by increasing the linalool and decreasing the eugenol, epi-α-cadinol, and trans-α-bergamotene content.


Assuntos
Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/metabolismo , Óleos Voláteis/metabolismo , Mucilagem Vegetal/farmacologia , Polímeros/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Psyllium/farmacologia , Água/metabolismo
8.
Molecules ; 25(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32121015

RESUMO

The present study evaluated the interactive effect of melatonin and UV-C on phenylpropanoid metabolites profile and antioxidant potential of Ocimum basilicum L. Callus was treated with varying concentrations of melatonin and UV-C radiations for different time durations, either alone and/or in combination. Individual treatments of both UV-C and melatonin proved to be more effective than combine treatments. Results indicated that UV-C (10 min) exposure increased rosmarinic acid (134.5 mg/g dry weight (DW)), which was 2.3-fold greater than control. Chichoric acid (51.52 mg/g DW) and anthocyanin (cyanide 0.50 mg/g DW) were almost 4.1-fold, while peonidin was found 2.7-fold higher in UV-C (50 min) exposure. In the case of melatonin, 1.0 mg/L concentrations showed maximum rosmarinic acid (79.4 mg/g DW) accumulation; i.e., 1.4-fold more, as compared to the control. However, 2 mg/L melatonin accumulate chichoric acid (39.99 mg/g DW) and anthocyanin (cyanide: 0.45 mg/g DW and peonidin: 0.22 mg/g DW); i.e., 3.2, 3.7 and 2.0-fold increase, as compared to the control, respectively. On the other hand, melatonin-combined treatment (melatonin (Mel) (4 mg/L) + UV-C (20 min)) was proved to be effective in caffeic acid elicitation, which was 1.9-fold greater than the control. Furthermore, antioxidant potential was evaluated by both in vitro (DPPH, ABTS and FRAP assays) and in cellulo methods. Maximum in vitro antioxidant activity (DPPH: 90.6% and ABTS: 1909.5 µM) was observed for UV-C (50 min)-treated cultures. The highest in vitro antioxidant activity measured with the ABTS assay as compared to the FRAP assay, suggesting the main contribution of antioxidants from basil callus extracts acting through a hydrogen atom transfer (HAT) over an electron transfer (ET)-based mechanism. Cellular antioxidant assay was evaluated by production of ROS/RNS species using yeast cell cultures and further confirmed the protective action of the corresponding callus extracts against oxidative stress. Overall, both melatonin and UV-C are here proved to be effective elicitors since a positive correlation between the induced production of phenolic compounds, and in cellulo antioxidant action of basil callus extracts were observed.


Assuntos
Antioxidantes/metabolismo , Melatonina/administração & dosagem , Ocimum basilicum/metabolismo , Organoides/efeitos dos fármacos , Organoides/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Antocianinas/metabolismo , Biomassa , Ácidos Cafeicos/metabolismo , Cromatografia Líquida de Alta Pressão , Cinamatos/metabolismo , Depsídeos/metabolismo , Flavonoides/metabolismo , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/efeitos da radiação , Organoides/metabolismo , Fenóis/metabolismo , Raios Ultravioleta , Ácido Rosmarínico
9.
Acta Biol Hung ; 67(4): 412-423, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28000503

RESUMO

Essential oil content and oil composition of paclobutrazol treated sweet basil (Ocimum basilicum L.) plant inoculated with Piriformospora indica under salt stress were investigated by GC-MS. The results show a slight increase in essential oil content when basil plants subjected to moderate salinity stress (3 dS m-1 of NaCl). It decreased signifiicantly with increasing salinity level to 9 dS m-1. The findings revealed that leaf area, above ground and leaf dry weights, essential oil content and yield were significantly affected by P. indica inoculation, however paclobutrazol application significantly influenced essential oil yield but not content. Fungal symbiosis as well as paclobutrazol application ameliorated the negative effects of salinity on dry matter and essential oil yield. The main constituents found in the volatile oil of O. basilicum in control treatment were Geranial (26.03%), Neral (24.88%) and Estragole (24.78%). The compounds concentrations showed some differences in P. indica and paclobutrazol treatments. The results demonstrate that micorrhiza-like fungi concomitantly increase essential oil production and biomass in sweet basil, a medicinal herb rich in commercially valuable essential oils.


Assuntos
Basidiomycota , Ocimum basilicum/efeitos dos fármacos , Óleos Voláteis/metabolismo , Folhas de Planta/efeitos dos fármacos , Óleos de Plantas/metabolismo , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Simbiose , Triazóis/farmacologia , Monoterpenos Acíclicos , Derivados de Alilbenzenos , Anisóis/metabolismo , Biomassa , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/metabolismo , Ocimum basilicum/metabolismo , Folhas de Planta/metabolismo
10.
Acta Pol Pharm ; 73(5): 1229-1234, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29638063

RESUMO

Basil (Ocimum basilicun L.) belongs to the family Lamiaceae and is an important aromatic and medicinal plant, which it widely cultivated in many countries. This plant is a good source of phenolic com- pounds and natural antioxidants. The main aim of present study was to determine effect of jasmonic acid on total phenolic content and antioxidant activity of ethanolic extract from the aerial parts of the purple and green landraces of basil. The pot experiment was conducted in an experimental field with cold and semiarid climate in southwestern Iran. Treatments comprised control (water), ethanol as solvent, 200 and 400 pLjasmonic acid. The total phenolic content of the extract by Folin-Ciocalteu method and the antioxidant activity using DPPH assay were determined. Results indicated that the different levels of jasmonic acid had significant effects on total phenolics content and antioxidant activity of the extracts. Foliar-applied jasmonic acid in particular 400 µL increased total phenolic content in the plants as compared to untreated plants. In conclusion, it is suggested that jasmonic acid as an abiotic elicitor could be a promising material used to increase biological activity and pro-health functional value of basil plants.


Assuntos
Antioxidantes/farmacologia , Ciclopentanos/farmacologia , Ocimum basilicum/química , Oxilipinas/farmacologia , Fenóis/análise , Extratos Vegetais/farmacologia , Ocimum basilicum/efeitos dos fármacos
11.
Plant Cell Physiol ; 56(1): 126-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25378691

RESUMO

Small molecule demethylation is considered unusual in plants. Of the studied instances, the N-demethylation of nicotine is catalyzed by a Cyt P450 monooxygenase, while the O-dealkylation of alkaloids in Papaver somniferum is mediated by 2-oxoglutarate-dependent dioxygenases (2-ODDs). This report describes a 2-ODD regiospecifically catalyzing the 7-O-demethylation of methoxylated flavones in peltate trichomes of sweet basil (Ocimum basilicum L.). Three candidate 2-ODDs were identified in the basil trichome transcriptome database. Only the candidate designated ObF7ODM1 was found to be active with and highly specific for the proposed natural substrates, gardenin B and 8-hydroxysalvigenin. Of the characterized 2-ODDs, ObF7ODM1 is most closely related to O-demethylases from Papaver. The demethylase activity in trichomes from four basil chemotypes matches well with the abundance of ObF7ODM1 peptides and transcripts in the same trichome preparations. Treatment of basil plants with a 2-ODD inhibitor prohexadione-calcium significantly reduced the accumulation of 7-O-demethylated flavone nevadensin, confirming the involvement of a 2-ODD in its formation. Notably, the full-length open reading frame of ObF7ODM1 contains a second in-frame AUG codon 57 nucleotides downstream of the first translation initiation codon. Both AUG codons are recognized by bacterial translation machinery during heterologous gene expression. The N-truncated ObF7ODM1 is nearly inactive. The N-terminus essential for activity is unique to ObF7ODM1 and does not align with the sequences of other 2-ODDs. Further studies will reveal whether alternative translation initiation plays a role in regulating the O-demethylase activity in planta. Molecular identification of the flavone 7-O-demethylase completes the biochemical elucidation of the lipophilic flavone network in basil.


Assuntos
Flavonas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Ocimum basilicum/enzimologia , Oxirredutases O-Desmetilantes/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Flavonas/química , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/farmacologia , Cinética , Metilação , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/genética , Oxirredutases O-Desmetilantes/genética , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Especificidade por Substrato , Tricomas/efeitos dos fármacos , Tricomas/enzimologia , Tricomas/genética
12.
Plant Physiol ; 164(2): 1028-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24367017

RESUMO

Sweet basil (Ocimum basilicum) is well known for its diverse pharmacological properties and has been widely used in traditional medicine for the treatment of various ailments. Although a variety of secondary metabolites with potent biological activities are identified, our understanding of the biosynthetic pathways that produce them has remained largely incomplete. We studied transcriptional changes in sweet basil after methyl jasmonate (MeJA) treatment, which is considered an elicitor of secondary metabolites, and identified 388 candidate MeJA-responsive unique transcripts. Transcript analysis suggests that in addition to controlling its own biosynthesis and stress responses, MeJA up-regulates transcripts of the various secondary metabolic pathways, including terpenoids and phenylpropanoids/flavonoids. Furthermore, combined transcript and metabolite analysis revealed MeJA-induced biosynthesis of the medicinally important ursane-type and oleanane-type pentacyclic triterpenes. Two MeJA-responsive oxidosqualene cyclases (ObAS1 and ObAS2) that encode for 761- and 765-amino acid proteins, respectively, were identified and characterized. Functional expressions of ObAS1 and ObAS2 in Saccharomyces cerevisiae led to the production of ß-amyrin and α-amyrin, the direct precursors of oleanane-type and ursane-type pentacyclic triterpenes, respectively. ObAS1 was identified as a ß-amyrin synthase, whereas ObAS2 was a mixed amyrin synthase that produced both α-amyrin and ß-amyrin but had a product preference for α-amyrin. Moreover, transcript and metabolite analysis shed light on the spatiotemporal regulation of pentacyclic triterpene biosynthesis in sweet basil. Taken together, these results will be helpful in elucidating the secondary metabolic pathways of sweet basil and developing metabolic engineering strategies for enhanced production of pentacyclic triterpenes.


Assuntos
Acetatos/farmacologia , Ciclopentanos/farmacologia , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/genética , Oxilipinas/farmacologia , Triterpenos Pentacíclicos/química , Transcrição Gênica/efeitos dos fármacos , Sequência de Aminoácidos , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Clonagem Molecular , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biblioteca Gênica , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Dados de Sequência Molecular , Triterpenos Pentacíclicos/biossíntese , Filogenia , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
13.
Phytopathology ; 105(8): 1059-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25760521

RESUMO

Nutritional elements can affect plant susceptibility to plant pathogens, including Botrytis cinerea. We tested the effect of potassium (K) fertilization on gray mold in sweet basil grown in pots, containers, and soil. Increased K in the irrigation water and in the sweet basil tissue resulted in an exponential decrease in gray mold severity. Potassium supplied to plants by foliar application resulted in a significant decrease in gray mold in plants grown with a low rate of K fertigation. Lower K fertigation resulted in a significant increase in B. cinerea infection under semi-commercial conditions. Gray mold severity in harvested shoots was significantly negatively correlated with K concentration in the irrigation solution, revealing resistance to B. cinerea infection as a result of high K concentration in sweet basil tissue. Gray mold was reduced following K foliar application of the plants. In general, there was no synergy between the fertigation and foliar spray treatments. Proper K fertilization can replace some of the required chemical fungicide treatments and it may be integrated into gray mold management for improved disease suppression.


Assuntos
Botrytis/efeitos dos fármacos , Cálcio/farmacologia , Ocimum basilicum/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Potássio/farmacologia , Irrigação Agrícola , Botrytis/crescimento & desenvolvimento , Suscetibilidade a Doenças , Fungicidas Industriais/farmacologia , Ocimum basilicum/imunologia , Ocimum basilicum/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta , Água/química
14.
Chemosphere ; 362: 142623, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897325

RESUMO

The modified biochars have positive effects in reducing heavy metal toxicity for plants. However, the mechanism and extent of these effects on mitigating arsenic toxicity and plant performance are not clear. Thus, a pot experiment was conducted as factorial to evaluate the potential of fresh and enriched biochars with potassium and magnesium nano-sulfates [potassium-enriched biochar (K-BC), magnesium-enriched biochar (Mg-BC) in individual and combined forms] on reducing arsenic toxicity (non-contamination, 50, and 100 mg NaAsO2 kg-1 soil) in basil plants. Biochar-related treatments reduced plant arsenic absorption rate (up to 24%), arsenic content of root (up to 38%) and shoot (up to 21%) and root tonoplast H+-ATPase activity (up to 30%). The fresh and particularly enriched biochars improved soil properties (pH, CEC, and available iron content), ferric chelate reductase activity, iron, potassium and magnesium contents of plant tissues, chlorophyll content index, photochemical efficiency of photosystem II, relative electron transport rate, leaf area, and basil growth (shoot and root dry weight). These results revealed that enriched biochars are useful soil amendments for improving physiological performance of plants via reducing heavy metal toxicity and enhancing cation exchange capacity, nutrient availability and ferric chelate reductase activity. Therefore, soil amendment by enriched biochars could be a sustainable solution for enhancing plant productivity in contaminated soils via mitigating environmental impacts. This is an environmentally friendly method for using the natural wastes to overcome the adverse effects of soil pollutants on medicinal plants.


Assuntos
Arsênio , Carvão Vegetal , Ocimum basilicum , Poluentes do Solo , Carvão Vegetal/química , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/química , Arsênio/toxicidade , Poluentes do Solo/toxicidade , Nanopartículas/química , Nanopartículas/toxicidade , FMN Redutase/metabolismo , Solo/química , Clorofila/metabolismo , Cátions , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
15.
BMC Ecol ; 13: 19, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23647722

RESUMO

BACKGROUND: Both competitive and facilitative interactions between species play a fundamental role in shaping natural communities. A recent study showed that competitive interactions between plants can be mediated by some alternative signalling channel, extending beyond those channels studied so far (i.e. chemicals, contact and light). Here, we tested whether such alternative pathway also enables facilitative interactions between neighbouring plant species. Specifically, we examined whether the presence of a 'good' neighbouring plant like basil positively influenced the germination of chilli seeds when all known signals were blocked. For this purpose, we used a custom-designed experimental set-up that prevented above- and below-ground contact and blocked chemical and light-mediated signals normally exchange by plants. RESULTS: We found that seed germination was positively enhanced by the presence of a 'good' neighbour, even when the known signalling modalities were blocked, indicating that light, touch or chemical signals may not be indispensible for different plant species to sense each other's presence. CONCLUSIONS: We propose that this alternative signalling modality operates as a general indicator of the presence of heterospecifics, enabling seeds to detect and identify a neighbour prior to engaging in a more finely-tuned, but potentially more costly, response.


Assuntos
Capsicum/metabolismo , Ocimum basilicum/metabolismo , Transdução de Sinais , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos da radiação , Ecossistema , Germinação/efeitos da radiação , Luz , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais/efeitos da radiação
16.
PLoS One ; 16(2): e0246493, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529247

RESUMO

Salinity is among the most important abiotic stresses, which negatively affect growth, nutrient uptake and yield of crop plants. Application of different micronutrients, particularly zinc (Zn) have the potential to ameliorate the negative impacts of salinity stress. However, the role of Zn in improving salinity tolerance of basil (Ocimum basilicum L.) is poorly understood. This study evaluated the impact of different Zn levels (0, 5 and 10 mg kg-1) on growth and nutrient acquisition traits of basil under different salinity levels (0, 0.5, 1.0 and 1.5% NaCl). Data relating to biomass production, chlorophyll index, sodium (Na), potassium (K) uptake, K/Na ratio, Zn, copper (Cu), manganese (Mn) and iron (Fe) uptake were recorded. Increasing salinity level reduced biomass production, chlorophyll index and nutrient uptake traits (except for Na and Fe accumulation) of basil. Zinc application (10 mg kg-1) improved biomass production, chlorophyll index and nutrient acquisition traits under normal as well as saline conditions. The reduction in chlorophyll index and biomass production was higher under 0 and 5 mg kg-1 than 10 mg kg-1 Zn application. The K concentration decreased under increasing salinity; however, Zn application improved K uptake under normal as well as saline conditions. Different growth and nutrient acquisition traits had negative correlations with Na accumulation; however, no positive correlation was recorded among growth and nutrient uptake traits. The results revealed that Zn application could improve the salinity tolerance of basil. However, actual biochemical and genetic mechanisms involved in Zn-induced salinity tolerance warrant further investigation.


Assuntos
Nitrogênio/metabolismo , Ocimum basilicum/crescimento & desenvolvimento , Fósforo/metabolismo , Estresse Salino , Zinco/farmacologia , Análise de Variância , Biomassa , Clorofila/metabolismo , Ocimum basilicum/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Sódio/análise , Cloreto de Sódio/farmacologia
17.
Food Chem ; 342: 128358, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33092914

RESUMO

An increase in the content of secondary metabolites in herbal plants is desirable due to their therapeutic and nutraceutical properties. Therefore, the effects of foliar spray of 100 mg/L or 500 mg/L of chitosan lactate (ChL) on the accumulation of selected phenolics and physiological parameters of basil and lemon balm were investigated. In basil, the concentration of rosmarinic acid (RA) increased after application of 100 mg/L of ChL. In turn, in lemon balm both ChL concentrations increased the accumulation of RA and anthocyanins, while the level of total phenolic compounds (TPC) was elevated only at the dose of 100 mg/L of ChL. Elicitation of basil with 500 mg/L of ChL increased the shoot biomass. Therefore, such an elicitor as ChL can enhance the accumulation of valuable phytochemicals in Lamiaceae species. This simple and non-laborious method can be used for elicitation of herbal plants in production of functional food.


Assuntos
Lactatos/farmacologia , Melissa/efeitos dos fármacos , Melissa/metabolismo , Ocimum basilicum/efeitos dos fármacos , Ocimum basilicum/metabolismo , Compostos Fitoquímicos/metabolismo , Relação Dose-Resposta a Droga
18.
Chemosphere ; 249: 126171, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32087452

RESUMO

Carbon-based materials including multiwall carbon nanotubes (MWCNTs) have been recently implicated in a number of reports dealing with their potential use in agriculture, leading to contradictory findings. In this study, MWCNTs were successfully functionalized with carboxylic acid groups (MWCNTs-COOH) in order to increase water dispersion. Hydroponically cultured sweet basil (Ocimum basilicum L.) seedlings were subjected to four concentrations (0, 25, 50 and 100 mg L-1) of MWCNTs-COOH under three salt stress levels (0, 50 and 100 mM NaCl). An array of agronomic, physiological, analytical and biochemical parameters were evaluated in an attempt to examine the potential use of MWCNTs in plants under optimal and abiotic stress conditions. Application of MWCNTs-COOH at optimum concentration (50 mg L-1) could ameliorate the negative effects of salinity stress by increasing chlorophyll and carotenoids content and inducing non-enzymatic (i.e. phenolic content) and enzymatic antioxidant components (i.e. ascorbate peroxidase (APX), catalase (CAT) and guaiacol peroxidase (GP) activity). Furthermore, MWCNTs-COOH treatments under optimal conditions induced plant growth, while a significant increase (P ≤ 0.01) was recorded in essential oil content and compound profile. On the other hand, biochemical and epifluorescence microscopy evidence suggested that high dosage (100 mg L-1) of MWCNTs-COOH leads to toxicity effects in plant tissue. Overall, the positive response of plants to low concentrations of MWCNTs-COOH under control and abiotic stress conditions renders them as potential novel plant growth promoting and stress protecting agents, opening up new perspectives for their use in agriculture.


Assuntos
Nanotubos de Carbono/toxicidade , Ocimum basilicum/fisiologia , Antioxidantes/metabolismo , Ascorbato Peroxidases , Ácidos Carboxílicos/química , Carotenoides , Catalase , Clorofila , Nanotubos de Carbono/química , Ocimum basilicum/efeitos dos fármacos , Óleos Voláteis/metabolismo , Fenóis/metabolismo , Desenvolvimento Vegetal , Plântula/efeitos dos fármacos , Estresse Fisiológico
19.
Commun Agric Appl Biol Sci ; 74(3): 933-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20222581

RESUMO

Eight experimental trials were carried out during 2007 and 2008 to evaluate the efficacy of different fungicides against downy mildew of lettuce (Bremia lactucae) and basil (Peronospora belbahrii) under greenhouse conditions, at temperatures ranging from 19 to 24 degrees C. The mixture fluopicolide (fungicide belonging to the + propamocarb hydrochloride (fungicide belonging to the new chemical class of acyl-picolides) was compared with metalaxyl m + copper, zoxamide + mancozeb, iprovalicarb + Cu, fenamidone + fosetyl-Al and azoxystrobin. Two treatments were carried out at 8-12 day interval on lettuce and basil. The artificial inoculation of B. lactucae on lettuce (cv Cobham Green) and P. belbahrii. on basil (cv Genovese gigante) was carried out by using 1 x 10(5) CFU/ml 24 h after the first treatment. In the presence of a medium-high disease severity, all fungicides tested in these trials were effective against downy mildew on lettuce and basil as the other fungicides already available. The importance of the availability of a number of different chemicals to control downy mildews is discussed.


Assuntos
Fungicidas Industriais/farmacologia , Lactuca/microbiologia , Ocimum basilicum/microbiologia , Doenças das Plantas/microbiologia , Amidas/farmacologia , Carbamatos/farmacologia , Cobre/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/microbiologia , Imidazolinas/farmacologia , Lactuca/efeitos dos fármacos , Micoses/prevenção & controle , Ocimum basilicum/efeitos dos fármacos , Peronospora/efeitos dos fármacos , Peronospora/patogenicidade , Doenças das Plantas/prevenção & controle , Sementes/efeitos dos fármacos , Sementes/microbiologia , Estrobilurinas
20.
J Nat Med ; 73(1): 283-288, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30343352

RESUMO

The sedative effects of the essential oil released by living Ocimum basilicum (basil) plants were investigated using a mouse activity monitoring system. Ocimum basilicum plants were grown in a hydroponic chamber, and either the headspace air from the hydroponic chamber or the essential oil extracted from mature plants was administered by the inhalation route to mice in an open field test. The most effective dose of O. basilicum essential oil for reducing the locomotor activity of the mice was found to be 4.0 × 10-3 mg per cage. The headspace air was administered to mice held in a glass cage via a Teflon tube connected to a hydroponic chamber containing O. basilicum plants. A significant decrease in locomotor activity was observed when the hydroponic chamber contained nine plants. The results of this study demonstrate that the headspace air of living basil plants could effectively reduce the locomotor activity of mice.


Assuntos
Hipnóticos e Sedativos/uso terapêutico , Ocimum basilicum/efeitos dos fármacos , Óleos Voláteis/uso terapêutico , Óleos de Plantas/uso terapêutico , Animais , Hipnóticos e Sedativos/farmacologia , Camundongos , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA