Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Ann Surg Oncol ; 31(9): 6282-6290, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38743283

RESUMO

BACKGROUND AND OBJECTIVES: Curettage is the removal of a tumor from the bone while preserving the surrounding healthy cortical bone, and is associated with higher rates of local recurrence. To lower these rates, curettage should be combined with local adjuvants, although their use is associated with damage to nearby healthy bone. OBJECTIVE: The purpose of this analysis is to determine the effect of local adjuvants on cortical porcine bone by using micro-computed tomography (micro-CT) along with histological and mechanical examination. METHODS: Local adjuvants were applied to porcine specimens under defined conditions. To assess changes in bone mineral density (BMD), a micro-CT scan was used. The pixel gray values of the volume of interest (VOI) were evaluated per specimen and converted to BMD values. The Vickers hardness test was employed to assess bone hardness (HV). The depth of necrosis was measured histologically using hematoxylin and eosin-stained tissue sections. RESULTS: A noticeable change in BMD was observed on the argon beam coagulation (ABC) sample. Comparable hardness values were measured on samples following electrocautery and ABC, and lowering of bone hardness was obtained in the case of liquid nitrogen. Extensive induced depth of necrosis was registered in the specimen treated with liquid nitrogen. CONCLUSION: This study determined the effect of local adjuvants on cortical bone by using micro-CT along with histological and mechanical examination. Phenolization and liquid nitrogen application caused a decrease in bone hardness. The bone density was affected in the range of single-digit percentage values. Liquid nitrogen induced extensive depth of necrosis with a wide variance of values.


Assuntos
Densidade Óssea , Neoplasias Ósseas , Osso Cortical , Curetagem , Microtomografia por Raio-X , Animais , Suínos , Neoplasias Ósseas/cirurgia , Neoplasias Ósseas/patologia , Curetagem/métodos , Osso Cortical/patologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/cirurgia , Osso Cortical/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos
2.
J Craniofac Surg ; 35(4): 1284-1288, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727232

RESUMO

Cortical bone thickness is essential for the mechanical function of bone. Some factors including aging, sex, body size, hormone levels, behavior, and genetics lead to changes in cranial cortical robusticity. Moreover, the skull is one of the hardest and most durable structures in the human body. Schizophrenia is defined as a psychiatric disease characterized by delusions and hallucinations, and these patients have reduced brain volume; however, there is no study including cortical bone structure. For this reason, the aim of this study was to determine whether there is a difference in the skull cortical thickness of patients with schizophrenia and, compare it with healthy subjects. The cranial length, cranial width, anterior cortical thickness, right and left anterior cortical thickness, right and left lateral cortical thickness, right and left posterior lateral thickness, and posterior cortical thickness were measured with axial computed tomography images of 30 patients with schizophrenia and 132 healthy individuals aged between 18 and 69years. A statistically significant difference was found between the two groups in the measurements of right and left posterior lateral thickness, and posterior cortical thickness ( P = 0.006, P = 0.001, and P = 0.047, respectively). The sexes were compared, and it was found that the cranial width, anterior thickness, left anterior thickness, and right and left posterior thickness measurements of patients with schizophrenia showed a statistically significant difference compared with the control group ( P < 0.001, P = 0.003, P = 0.001, P < 0.001 and P < 0.001, respectively). The authors observed that skull cortical thickness may be different in schizophrenia. The results obtained from this study may be beneficial for evaluating these structures for clinical and pathological processes. Furthermore, knowledge about the skull cortical thickness in planning surgical procedures will increase the reliability and effectiveness of the surgical method, and this will minimize the risk of complications.


Assuntos
Esquizofrenia , Crânio , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Adulto , Pessoa de Meia-Idade , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adolescente , Idoso , Adulto Jovem , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Estudos de Casos e Controles
3.
Biomech Model Mechanobiol ; 23(4): 1277-1287, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38553591

RESUMO

Exploring the stochastic intricacies of bone microstructure is a promising way to make progress on the practical issue of bone fracture. This study investigates the fracture of human complete ribs subjected to bending and using acoustic emission (AE) for microfailure detection. As the strain increases, the number of AE signals per unit of time rises until, beyond a certain threshold, an avalanche of signals occurs, indicating the aggregation of numerous microfailures into a macroscopic fracture. Since microfailures appear randomly throughout the bending test, and given the lack of a deterministic law and the random nature of microfailures during the bending test, we opted to develop a stochastic model to account for their occurrence within the irregular and random microstructure of the cortical bone. Notable discoveries encompass the significant correlation between adjusted parameters of the stochastic model and the total number of microfailures with anthropometric variables such as age and body mass index (BMI). The progression of microfailures with strain is significantly more pronounced with age and BMI, as measured by the rate of bone deterioration. In addition, the rate of microfailures is significantly impacted by BMI alone. It is also observed that the average energy of the identified AE events adheres to a precisely defined Pareto distribution for every specimen, with the principal exponent exhibiting a significant correlation with anthropometric variables. From a mathematical standpoint, the model can be described as a double Cox stochastic and explosive (coxplosive process) model. This further provides insight into the reason why the ribs of older individuals are considerably less resilient than those of younger individuals, breaking under a considerably lower maximum strain ( ε max ).


Assuntos
Acústica , Modelos Biológicos , Processos Estocásticos , Humanos , Estresse Mecânico , Idoso , Pessoa de Meia-Idade , Masculino , Osso Cortical/patologia
4.
J Bone Miner Res ; 39(7): 1025-1041, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38722812

RESUMO

Skeletal growth, modeling, and remodeling are regulated by various molecules, one of them being the recently identified osteoanabolic factor WNT1. We have previously reported that WNT1 transcriptionally activates the expression of Omd, encoding Osteomodulin (OMD), in a murine mesenchymal cell line, which potentially explained the skeletal fragility of mice with mutational WNT1 inactivation, since OMD has been shown to regulate type I collagen fibril formation in vitro. In this study we confirmed the strong induction of Omd expression in a genome-wide expression analysis of transfected cells, and we obtained further evidence for Omd being a direct target gene of WNT1. To assess the in vivo relevance of this regulation, we crossed Omd-deficient mice with a mouse line harboring an inducible, osteoblast-specific Wnt1 transgene. After induction of Wnt1 expression for 1 or 3 weeks, the osteoanabolic potency of WNT1 was not impaired despite the Omd deficiency. Since current knowledge regarding the in vivo physiological function of OMD is limited, we next focused on skeletal phenotyping of wild-type and Omd-deficient littermates, in the absence of a Wnt1 transgene. Here we did not observe an impact of Omd deficiency on trabecular bone parameters by histomorphometry and µCT either. Importantly, however, male and female Omd-deficient mice at the ages of 12 and 24 weeks displayed a slender bone phenotype with significantly smaller long bones in the transversal dimension, while the longitudinal bone growth remained unaffected. Although mechanical testing revealed no significant changes explained by impaired bone material properties, atomic force microscopy of the femoral bone surface of Omd-deficient mice revealed moderate changes at the nanostructural level, indicating altered regulation of collagen fibril formation and aggregation. Taken together, our data demonstrate that, although OMD is dispensable for the osteoanabolic effect of WNT1, its deficiency in mice specifically modulates transversal cortical bone morphology.


We explored the physiological relevance of the protein Osteomodulin (OMD) that we previously found to be induced by the osteoanabolic molecule WNT1. While other studies have shown that OMD is involved in the regulation of collagen fibril formation in vitro, its function in vivo has not been investigated. We confirmed that OMD is directly regulated by WNT1 but surprisingly, when we bred mice lacking OMD with mice engineered to highly express WNT1, we found that the osteoanabolic effect of WNT1 was unaffected by the absence of OMD. Interestingly, mice lacking OMD did show differences in the shape of their bones, particularly in their width, despite no significant changes in bone density or length. Investigation of the bone matrix of mice lacking OMD at the nanostructural level indicated moderate differences in the organization of collagen fibrils. This study provided further insights into the effect of WNT1 on bone metabolism and highlighted a specific function of OMD in skeletal morphology.


Assuntos
Osso Cortical , Proteína Wnt1 , Animais , Osso Cortical/metabolismo , Osso Cortical/patologia , Osso Cortical/diagnóstico por imagem , Camundongos , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Tamanho do Órgão , Feminino , Masculino , Osteoblastos/metabolismo , Osteoblastos/patologia , Regulação da Expressão Gênica , Microtomografia por Raio-X
5.
Bone ; 187: 117209, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39047900

RESUMO

Complications of diabetes is a major health problem affecting multiple organs including bone, where the chronic disease increases the risk of fragility fractures. One hypothesis suggests a pathogenic role for hyperglycemia-induced modification of proteins, a.k.a. advanced glycation end products (AGEs), resulting in structural and functional damage to bone extracellular matrix (ECM). Evidence supporting this hypothesis has been limited by the lack of comprehensive information about the location of AGEs that accumulate in vivo at specific sites within the proteins of bone ECM. Analyzing extracts from cortical bone of cadaveric femurs by liquid chromatography tandem mass spectrometry, we generated a quantitative AGE map of human collagen I for male and female adult donors with and without diabetes. The map describes the chemical nature, sequence position, and levels of four major physiological AGEs, e.g. carboxymethyllysine, and an AGE precursor fructosyllysine within the collagen I triple-helical region. The important features of the map are: 1) high map reproducibility in the individual bone extracts, i.e. 20 male and 20 female donors; 2) localization of modifications to distinct clusters: 10 clusters containing 34 AGE sites in male donors and 9 clusters containing 28 sites in female donors; 3) significant increases in modification levels in diabetes at multiple sites: 26 out of 34 sites in males and in 17 out of 28 sites in females; and 4) generally higher modification levels in male vs. female donors. Moreover, the AGE levels at multiple individual sites correlated with total bone pentosidine levels in male but not in female donors. Molecular dynamics simulations and molecular modeling predicted significant impact of modifications on solvent exposure, charge distribution, and hydrophobicity of the triple helix as well as disruptions to the structure of collagen I fibril. In summary, the AGE map of collagen I revealed diabetes-induced, sex-specific non-enzymatic modifications at distinct triple helical sites that can disrupt collagen structure, thus proposing a specific mechanism of AGE contribution to diabetic complications in human bone.


Assuntos
Colágeno Tipo I , Osso Cortical , Diabetes Mellitus Tipo 2 , Produtos Finais de Glicação Avançada , Humanos , Masculino , Feminino , Osso Cortical/metabolismo , Osso Cortical/patologia , Diabetes Mellitus Tipo 2/metabolismo , Colágeno Tipo I/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Glicosilação , Pessoa de Meia-Idade , Idoso , Adulto , Caracteres Sexuais
6.
Jt Dis Relat Surg ; 35(2): 417-421, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727123

RESUMO

Although hemangiomas are the most common soft tissue tumors, intramuscular hemangiomas account for only 0.8% of all vascular tumors. These lesions are rarely located adjacent to the bone and cause changes in the adjacent bone. They are often mistakenly diagnosed as bone tumors. In this study, a case of a 19-year-old male patient with intramuscular hemangioma causing cortical thickening was reported.


Assuntos
Neoplasias Ósseas , Hemangioma , Hipertrofia , Neoplasias Musculares , Humanos , Masculino , Hemangioma/patologia , Hemangioma/diagnóstico , Hemangioma/diagnóstico por imagem , Diagnóstico Diferencial , Adulto Jovem , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/patologia , Neoplasias Musculares/patologia , Neoplasias Musculares/diagnóstico por imagem , Neoplasias Musculares/diagnóstico , Hipertrofia/patologia , Imageamento por Ressonância Magnética , Osso Cortical/patologia , Osso Cortical/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
J Orthop Surg Res ; 19(1): 355, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879553

RESUMO

BACKGROUND: The purpose of this study was to clarify (1) the differences in cortical bone thickness (CBT) of the tibial diaphysis between healthy and osteoarthritic knees and (2) the influences of the femorotibial angle (FTA) and inclination of the medial compartment of the proximal tibia (MCT) on tibial CBT. METHODS: The study assessed 60 subjects with varus knee osteoarthritis (OA) (22 males and 38 females; mean age, 74 ± 7 years) and 53 healthy elderly subjects (28 males and 25 females; mean age, 70 ± 6 years). Three-dimensional estimated CBT of the tibial diaphysis was automatically calculated for 2752-11,296 points using high-resolution measurements from CT. The standardized CBT was assessed in 24 regions by combining six heights and four areas. Additionally, the association between the CBT, each FTA, and MCT inclination was investigated. RESULTS: The OA group showed a thicker CBT in the medial areas than in the lateral areas of the proximal tibia, while the healthy group had a thicker lateral CBT. The medial-to-lateral ratio of the proximal tibia was significantly higher in the OA group than in the healthy group. The proximal-medial CBT correlated with FTA and MCT inclinations in the OA group. CONCLUSIONS: This study demonstrated that varus osteoarthritic knees showed a different trend of proximal-medial CBT with associations in FTA and MCT inclination from healthy knees, possibly due to medial load concentration.


Assuntos
Osso Cortical , Diáfises , Osteoartrite do Joelho , Tíbia , Humanos , Masculino , Feminino , Tíbia/diagnóstico por imagem , Tíbia/patologia , Idoso , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/patologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Diáfises/diagnóstico por imagem , Diáfises/patologia , Idoso de 80 Anos ou mais , Tomografia Computadorizada por Raios X , Extremidade Inferior/diagnóstico por imagem , Pessoa de Meia-Idade
8.
J Bone Miner Res ; 39(8): 1083-1093, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38861455

RESUMO

The basis for increased fracture risk in type 2 diabetes (T2DM) is not well understood. In this multi-ethnic, population-based study (n = 565), we investigated bone microstructure, trabecular plate/rod morphology, and mineralization in women with T2DM (n = 175) with and without fracture using a second-generation HRpQCT and individual trabecula segmentation and mineralization (ITS; ITM). Covariate-adjusted aBMD was 3.0%-6.5% higher at all sites (all p<.005) in T2DM vs controls. By HRpQCT, T2DM had higher covariate-adjusted trabecular vBMD (5.3%-6.4%) and number (3.8%-5.1%) and greater cortical area at the radius and tibia. Covariate-adjusted cortical porosity was 10.0% higher at the tibia only in T2DM vs controls, but failure load did not differ. Among women with T2DM, those with adult atraumatic fracture (n = 59) had 5.2%-8.5% lower adjusted aBMD at all sites by DXA compared with those without fracture (n = 103). By HRpQCT, those with fracture had lower adjusted total vBMD and smaller cortical area (10.2%-16.1%), lower cortical thickness (10.5-15.8%) and lower cortical vBMD associated with 18.1 and 17.2% lower failure load at the radius and tibia, respectively (all p<.05); plate volume and thickness were 5.7% and 4.7% lower, respectively, (p<.05) while rod volume fraction was 12.8% higher in the fracture group at the tibia only. Sodium glucose cotransporter 2 inhibitor users (SGLT2i; n = 19), tended to have lower radial rod tissue mineral density by ITS (p=.06). GLP1 agonist users (n = 19) had trabecular deficits at both sites and higher cortical porosity and larger pores at the distal tibia. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits and fewer trabecular plates associated with lower failure load.


Reasons for increased fracture risk in type 2 diabetes (T2DM) are not well-understood. We used a multi-ethnic, population-based cohort (n = 565), to study bone structure in women with T2DM (n = 175) using advanced imaging and analysis techniques. Participants with T2DM tended to have higher bone density and better structure by DXA and HRpQCT, respectively, at the radius and tibia; only cortical porosity was higher (worse) in participants with diabetes compared with those without diabetes but there was no difference in bone strength. Participants with T2DM and fracture had lower cortical parameters and bone strength compared with participants with T2DM without fracture at both sites. In summary, T2DM is associated with increased cortical porosity while those with T2DM and fracture have more marked cortical deficits associated with lower failure load.


Assuntos
Osso Cortical , Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Feminino , Idoso , Pessoa de Meia-Idade , Osso Cortical/patologia , Osso Cortical/diagnóstico por imagem , Fraturas Ósseas/patologia , Fraturas Ósseas/diagnóstico por imagem , Osso Esponjoso/patologia , Osso Esponjoso/diagnóstico por imagem , Densidade Óssea , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/patologia
9.
J Bone Miner Res ; 39(8): 1188-1199, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38995944

RESUMO

Calorie restriction (CR) can lead to weight loss and decreased substrate availability for bone cells. Ultimately, this can lead to impaired peak bone acquisition in children and adolescence and bone loss in adults. But the mechanisms that drive diet-induced bone loss in humans are not well characterized. To explore those in greater detail, we examined the impact of 30% CR for 4 and 8 wk in both male and female 8-wk-old C57BL/6 J mice. Body composition, areal bone mineral density (aBMD), skeletal microarchitecture by micro-CT, histomorphometric parameters, and in vitro trajectories of osteoblast and adipocyte differentiation were examined. After 8 wk, CR mice lost weight and exhibited lower femoral and whole-body aBMD vs ad libitum (AL) mice. By micro-CT, CR mice had lower cortical bone area fraction vs AL mice, but males had preserved trabecular bone parameters and females showed increased bone volume fraction compared to AL mice. Histomorphometric analysis revealed that CR mice had a profound suppression in trabecular as well as endocortical and periosteal bone formation in addition to reduced bone resorption compared to AL mice. Bone marrow adipose tissue was significantly increased in CR mice. In vitro, the pace of adipogenesis in bone marrow stem cells was greatly accelerated with higher markers of adipocyte differentiation and more oil red O staining, whereas osteogenic differentiation was reduced. qRT-PCR and western blotting suggested that the expression of Wnt16 and the canonical ß-catenin pathway was compromised during CR. In sum, CR causes impaired peak cortical bone mass due to a profound suppression in bone remodeling. The increase in marrow adipocytes in vitro and in vivo is related to both progenitor recruitment and adipogenesis in the face of nutrient insufficiency. Long-term CR may lead to lower bone mass principally in the cortical envelope, possibly due to impaired Wnt signaling.


Calorie restriction led to impaired bone mass and increased accumulation of bone marrow adipose tissue. During the development of bone-fat imbalance due to calorie restriction, bone remodeling was notably inhibited. Calorie restriction may shift the differentiation of bone marrow stem cells toward adipocytes instead of osteoblasts. This process involves a disruption in the canonical Wnt signaling pathway.


Assuntos
Densidade Óssea , Remodelação Óssea , Restrição Calórica , Osso Esponjoso , Osso Cortical , Animais , Osso Cortical/patologia , Osso Cortical/metabolismo , Osso Cortical/diagnóstico por imagem , Feminino , Osso Esponjoso/patologia , Osso Esponjoso/metabolismo , Osso Esponjoso/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Adipogenia , Adipócitos/metabolismo , Adipócitos/patologia , Osteogênese , Tamanho do Órgão , Diferenciação Celular , Via de Sinalização Wnt , Microtomografia por Raio-X
10.
J Bone Miner Res ; 39(6): 707-716, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591788

RESUMO

Ultrashort echo time (UTE) MRI can quantify the major proton pool densities in cortical bone, including total (TWPD), bound (BWPD), and pore water (PWPD) proton densities, as well as the macromolecular proton density (MMPD), associated with the collagen content, which is calculated using macromolecular fraction (MMF) from UTE magnetization transfer (UTE-MT) modeling. This study aimed to investigate the differences in water and collagen contents in tibial cortical bone, between female osteopenia (OPe) patients, osteoporosis (OPo) patients, and young participants (Young). Being postmenopausal and above 55 yr old were the inclusion criteria for OPe and OPo groups. The tibial shaft of 14 OPe (72.5 ± 6.8 yr old), 31 OPo (72.0 ± 6.4 yr old), and 31 young subjects (28.0 ± 6.1 yr old) were scanned using a knee coil on a clinical 3T scanner. Basic UTE, inversion recovery UTE, and UTE-MT sequences were performed. Investigated biomarkers were compared between groups using Kruskal-Wallis test. Spearman's correlation coefficients were calculated between the TH DXA T-score and UTE-MRI results. MMF, BWPD, and MMPD were significantly lower in OPo patients than in the young group, whereas T1, TWPD, and PWPD were significantly higher in OPo patients. The largest OPo/Young average percentage differences were found in MMF (41.9%), PWPD (103.5%), and MMPD (64.0%). PWPD was significantly higher (50.7%), while BWPD was significantly lower (16.4%) in OPe than the Young group on average. MMF was found to be significantly lower (27%) in OPo patients compared with OPe group. T1, MMF, TWPD, PWPD, and MMPD values significantly correlated with the TH DXA T-scores (provided by the patients and only available for OPe and OPo patients). DXA T-score showed the highest correlations with PWPD (R = 0.55) and MMF (R = 0.56) values. TWPD, PWPD, and MMF estimated using the UTE-MRI sequences were recommended to evaluate individuals with OPe and OPo.


Ultrashort echo time (UTE) is an MRI technique that can quantify the water and collagen content of cortical bone. Water in the bone can be found residing in pores (pore water) or bound to the bone matrix (bound water). We investigated the differences in water and collagen contents of tibial cortical bone between female osteopenia patients, osteoporosis patients, and young participants. Bound water and collagen contents were significantly lower in osteoporosis patients than in the young group, whereas total water and pore water contents were significantly higher in osteoporosis patients. Pore water was significantly higher, while bound water was significantly lower in osteopenia than in the Young group. Collagen content was found to be significantly lower in osteoporosis patients compared with the osteopenia group. The estimated water and collagen contents were significantly correlated with the TH bone densitometry measures in the patients.


Assuntos
Doenças Ósseas Metabólicas , Colágeno , Imageamento por Ressonância Magnética , Osteoporose , Tíbia , Humanos , Feminino , Tíbia/diagnóstico por imagem , Tíbia/patologia , Tíbia/metabolismo , Osteoporose/diagnóstico por imagem , Osteoporose/metabolismo , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/metabolismo , Adulto , Idoso , Colágeno/metabolismo , Pessoa de Meia-Idade , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Osso Cortical/metabolismo , Água/metabolismo , Porosidade
11.
J Bone Miner Res ; 39(8): 1094-1102, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38864569

RESUMO

Nephropathic cystinosis is an orphan autosomal recessive lysosomal storage disease characterized by a deficiency of cystinosin, a cystine transporter protein, leading to tissue damage, primarily in the kidney and cornea. With the introduction of cystine-depleting therapy with cysteamine and the possibility to survive to adulthood, new challenges of skeletal complications are a concern, with sparse data available regarding bone development. The aim of the current study was to gain more information on bone density and geometry in these patients. Fifty-one patients (29 males, 22 females) with genetically proven nephropathic cystinosis were clinically evaluated with a medical history, physical examination, grip strength measurements, and biochemical and imaging studies. Bone mineral density, bone geometry, and muscle cross sectional area were measured, and muscle was evaluated. Results were compared with age- and gender-specific reference data. Z-scores for height (mean [M] = -1.75, standard deviation [SD] = 1.43), weight (M = -1.67, SD = 1.29), and BMI (M = -0.98, SD = 1.29) were lower than reference data. Medullary cross-sectional area (CSA) and cortical density z-scores were not compromised (M = 0.12, SD = 1.56 and M = -0.25, SD = 1.63, respectively), but cortical CSA z-scores and Strength-Strain Index (SSI) were reduced (M = -2.16, SD = 1.08, M = -2.07, SD = 1.08). Muscular deficits were reflected by reduced z-scores for muscle CSA (M = -2.43, SD = 1.27) and grip strength (M = -3.01, SD = 1.10), along with jump force (34% lower than reference value). Multiple regression analyses indicated an association of muscle mass with medullary CSA and SSI, but not with cortical CSA. While bone density parameters were normal, bone geometry was altered, resulting in a thinner cortex with possible impact on bone strength. Muscle weakness be partially responsible for altered bone geometry and could provide a potential treatment target.


Nephropathic cystinosis is a rare lysosomal storage disease affecting primarily the kidney and cornea. With new treatment options, patients survive to adulthood and challenges such as bone development and fracture risk become a matter of concern. In this study, we investigated bone density, bone geometry, and muscle mass and function using peripheral quantitative-computed tomography. We included 51 patients with genetically proven cystinosis at an age between 6.6 and 39.6 yr. Beside height impairment and low body weight, patients had a thinner bone cortex leading to a reduced stress­strain index. This index represents the resistance of bone against torsional load and, therefore, is considered to be a good marker of bone strength: with low values fracture risk might increase. Furthermore, patients had lower muscle mass and muscle function, the latter evaluated by grip strength and jump force. Looking for the interaction of muscle and bone multiple regression analyses indicated an association of muscle mass with strength strain index. The muscle weakness might be partially responsible for altered bone geometry and lower bone strength and is possibly a treatment target, which has to be investigated in the future.


Assuntos
Cistinose , Humanos , Masculino , Feminino , Cistinose/patologia , Cistinose/fisiopatologia , Cistinose/tratamento farmacológico , Cistinose/complicações , Criança , Adolescente , Adulto , Adulto Jovem , Densidade Óssea , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Tamanho do Órgão , Osso Cortical/patologia , Osso Cortical/diagnóstico por imagem , Osso Cortical/fisiopatologia , Pré-Escolar
12.
Bone ; 185: 117111, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38679220

RESUMO

Chronic heavy alcohol consumption is a risk factor for low trauma bone fracture. Using a non-human primate model of voluntary alcohol consumption, we investigated the effects of 6 months of ethanol intake on cortical bone in cynomolgus macaques (Macaca fascicularis). Young adult (6.4 ± 0.1 years old, mean ± SE) male cynomolgus macaques (n = 17) were subjected to a 4-month graded ethanol induction period, followed by voluntary self-administration of water or ethanol (4 % w/v) for 22 h/d, 7 d/wk. for 6 months. Control animals (n = 6) consumed an isocaloric maltose-dextrin solution. Tibial response was evaluated using densitometry, microcomputed tomography, histomorphometry, biomechanical testing, and Raman spectroscopy. Global bone response was evaluated using biochemical markers of bone turnover. Monkeys in the ethanol group consumed an average of 2.3 ± 0.2 g/kg/d ethanol resulting in a blood ethanol concentration of 90 ± 12 mg/dl in longitudinal samples taken 7 h after the daily session began. Ethanol consumption had no effect on tibia length, mass, density, mechanical properties, or mineralization (p > 0.642). However, compared to controls, ethanol intake resulted in a dose-dependent reduction in intracortical bone porosity (Spearman rank correlation = -0.770; p < 0.0001) and compared to baseline, a strong tendency (p = 0.058) for lower plasma CTX, a biochemical marker of global bone resorption. These findings are important because suppressed cortical bone remodeling can result in a decrease in bone quality. In conclusion, intracortical bone porosity was reduced to subnormal values 6 months following initiation of voluntary ethanol consumption but other measures of tibia architecture, mineralization, or mechanics were not altered.


Assuntos
Consumo de Bebidas Alcoólicas , Calcificação Fisiológica , Osso Cortical , Macaca fascicularis , Animais , Masculino , Porosidade , Consumo de Bebidas Alcoólicas/fisiopatologia , Osso Cortical/efeitos dos fármacos , Osso Cortical/patologia , Osso Cortical/diagnóstico por imagem , Calcificação Fisiológica/efeitos dos fármacos , Fenômenos Biomecânicos/efeitos dos fármacos , Microtomografia por Raio-X , Tíbia/efeitos dos fármacos , Tíbia/diagnóstico por imagem , Tíbia/patologia , Etanol/farmacologia , Análise Espectral Raman , Densidade Óssea/efeitos dos fármacos
13.
Bone ; 187: 117189, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960296

RESUMO

PURPOSE: The effects of daily teriparatide (D-PTH, 20 µg/day), weekly high-dose teriparatide (W-PTH, 56.5 µg/week), or bisphosphonate (BP) on the vertebra and proximal femur were investigated using quantitative computed tomography (QCT). METHODS: A total of 131 postmenopausal women with a history of fragility fractures were randomized to receive D-PTH, W-PTH, or bisphosphonate (oral alendronate or risedronate). QCT were evaluated at baseline and after 18 months of treatment. RESULTS: A total of 86 participants were evaluated by QCT (Spine: D-PTH: 25, W-PTH: 21, BP: 29. Hip: PTH: 22, W-PTH: 21, BP: 32. Dropout rate: 30.5 %). QCT of the vertebra showed that D-PTH, W-PTH, and BP increased total vBMD (+34.8 %, +18.2 %, +11.1 %), trabecular vBMD (+50.8 %, +20.8 %, +12.2 %), and marginal vBMD (+20.0 %, +14.0 %, +11.5 %). The increase in trabecular vBMD was greater in the D-PTH group than in the W-PTH and BP groups. QCT of the proximal femur showed that D-PTH, W-PTH, and BP increased total vBMD (+2.8 %, +3.6 %, +3.2 %) and trabecular vBMD (+7.7 %, +5.1 %, +3.4 %), while only W-PTH and BP significantly increased cortical vBMD (-0.1 %, +1.5 %, +1.6 %). Although there was no significant increase in cortical vBMD in the D-PTH group, cortical bone volume (BV) increased in all three treatment groups (+2.1 %, +3.6 %, +3.1 %). CONCLUSIONS: D-PTH had a strong effect on trabecular bone of vertebra. Although D-PTH did not increase cortical BMD of proximal femur, it increased cortical BV. W-PTH had a moderate effect on trabecular bone of vertebra, while it increased both cortical BMD and BV of proximal femur. Although BP had a limited effect on trabecular bone of vertebra compared to teriparatide, it increased both cortical BMD and BV of proximal femur.


Assuntos
Osso Esponjoso , Difosfonatos , Fêmur , Pós-Menopausa , Teriparatida , Tomografia Computadorizada por Raios X , Humanos , Teriparatida/administração & dosagem , Teriparatida/uso terapêutico , Teriparatida/farmacologia , Feminino , Idoso , Fêmur/efeitos dos fármacos , Fêmur/diagnóstico por imagem , Fêmur/patologia , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/patologia , Difosfonatos/administração & dosagem , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Pós-Menopausa/efeitos dos fármacos , Osso Cortical/efeitos dos fármacos , Osso Cortical/diagnóstico por imagem , Osso Cortical/patologia , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/uso terapêutico , Pessoa de Meia-Idade , Densidade Óssea/efeitos dos fármacos , Fraturas Ósseas/diagnóstico por imagem , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA