Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.051
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(1): 59-71.e21, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938123

RESUMO

We assembled genome-wide data from 16 prehistoric Africans. We show that the anciently divergent lineage that comprises the primary ancestry of the southern African San had a wider distribution in the past, contributing approximately two-thirds of the ancestry of Malawi hunter-gatherers ∼8,100-2,500 years ago and approximately one-third of the ancestry of Tanzanian hunter-gatherers ∼1,400 years ago. We document how the spread of farmers from western Africa involved complete replacement of local hunter-gatherers in some regions, and we track the spread of herders by showing that the population of a ∼3,100-year-old pastoralist from Tanzania contributed ancestry to people from northeastern to southern Africa, including a ∼1,200-year-old southern African pastoralist. The deepest diversifications of African lineages were complex, involving either repeated gene flow among geographically disparate groups or a lineage more deeply diverging than that of the San contributing more to some western African populations than to others. We finally leverage ancient genomes to document episodes of natural selection in southern African populations. PAPERCLIP.


Assuntos
População Negra/genética , Genoma Humano , África , Osso e Ossos/química , DNA Antigo/análise , Feminino , Fósseis , Genética Médica , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Estilo de Vida , Masculino
2.
Nature ; 618(7964): 328-332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138083

RESUMO

Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.


Assuntos
Osso e Ossos , DNA Antigo , Dente , Animais , Feminino , Humanos , Arqueologia/métodos , Osso e Ossos/química , Cervos/genética , DNA Antigo/análise , DNA Antigo/isolamento & purificação , DNA Mitocondrial/análise , DNA Mitocondrial/isolamento & purificação , História Antiga , Sibéria , Dente/química , Cavernas , Federação Russa
3.
J Biol Chem ; 300(4): 107164, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484798

RESUMO

O-glycosylation is a conserved posttranslational modification that impacts many aspects of organismal viability and function. Recent studies examining the glycosyltransferase Galnt11 demonstrated that it glycosylates the endocytic receptor megalin in the kidneys, enabling proper binding and reabsorption of ligands, including vitamin D-binding protein (DBP). Galnt11-deficient mice were unable to properly reabsorb DBP from the urine. Vitamin D plays an essential role in mineral homeostasis and its deficiency is associated with bone diseases such as rickets, osteomalacia, and osteoporosis. We therefore set out to examine the effects of the loss of Galnt11 on vitamin D homeostasis and bone composition. We found significantly decreased levels of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, consistent with decreased reabsorption of DBP. This was accompanied by a significant reduction in blood calcium levels and a physiologic increase in parathyroid hormone (PTH) in Galnt11-deficient mice. Bones in Galnt11-deficient mice were smaller and displayed a decrease in cortical bone accompanied by an increase in trabecular bone and an increase in a marker of bone formation, consistent with PTH-mediated effects on bone. These results support a unified model for the role of Galnt11 in bone and mineral homeostasis, wherein loss of Galnt11 leads to decreased reabsorption of DBP by megalin, resulting in a cascade of disrupted mineral and bone homeostasis including decreased circulating vitamin D and calcium levels, a physiological increase in PTH, an overall loss of cortical bone, and an increase in trabecular bone. Our study elucidates how defects in O-glycosylation can influence vitamin D and mineral homeostasis and the integrity of the skeletal system.


Assuntos
Osso e Ossos , Homeostase , Polipeptídeo N-Acetilgalactosaminiltransferase , Vitamina D , Animais , Masculino , Camundongos , Osso e Ossos/anatomia & histologia , Osso e Ossos/química , Osso e Ossos/metabolismo , Cálcio/metabolismo , Glicosilação , Homeostase/genética , Hormônio Paratireóideo/metabolismo , Vitamina D/metabolismo , Vitamina D/análogos & derivados , Proteína de Ligação a Vitamina D/metabolismo
4.
Chem Soc Rev ; 53(9): 4490-4606, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38502087

RESUMO

Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.


Assuntos
Materiais Biomiméticos , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Humanos , Animais , Biomineralização , Osso e Ossos/química , Osso e Ossos/metabolismo , Biomimética/métodos , Dente/química
5.
J Proteome Res ; 23(5): 1844-1858, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38621258

RESUMO

The application of proteomic analysis to forensic skeletal remains has gained significant interest in improving biological and chronological estimations in medico-legal investigations. To enhance the applicability of these analyses to forensic casework, it is crucial to maximize throughput and proteome recovery while minimizing interoperator variability and laboratory-induced post-translational protein modifications (PTMs). This work compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC-MS)/MS including an in-StageTip protocol previously optimized for forensic applications and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions. This study also compared data-dependent acquisition (DDA) with data-independent acquisition (DIA). By testing all of the workflows on 30 human cortical tibiae samples, S-Trap workflows resulted in increased proteome recovery with both lysis solutions tested and in decreased levels of induced deamidations, and the DIA mode resulted in greater sensitivity and window of identification for the identification of lower-abundance proteins, especially when open-source software was utilized for data processing in both modes. The newly developed S-Trap protocol is, therefore, suitable for forensic bone proteomic workflows and, particularly when paired with DIA mode, can offer improved proteomic outcomes and increased reproducibility, showcasing its potential in forensic proteomics and contributing to achieving standardization in bone proteomic analyses for forensic applications.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Osso e Ossos/química , Osso e Ossos/metabolismo , Proteoma/análise , Fluxo de Trabalho , Processamento de Proteína Pós-Traducional , Software
6.
J Proteome Res ; 23(5): 1810-1820, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38634750

RESUMO

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a widely employed technique in proteomics research for studying the proteome biology of various clinical samples. Hard tissues, such as bone and teeth, are routinely preserved using synthetic poly(methyl methacrylate) (PMMA) embedding resins that enable histological, immunohistochemical, and morphological examination. However, the suitability of PMMA-embedded hard tissues for large-scale proteomic analysis remained unexplored. This study is the first to report on the feasibility of PMMA-embedded bone samples for LC-MS/MS analysis. Conventional workflows yielded merely limited coverage of the bone proteome. Using advanced strategies of prefractionation by high-pH reversed-phase liquid chromatography in combination with isobaric tandem mass tag labeling resulted in proteome coverage exceeding 1000 protein identifications. The quantitative comparison with cryopreserved samples revealed that each sample preparation workflow had a distinct impact on the proteomic profile. However, workflow replicates exhibited a high reproducibility for PMMA-embedded samples. Our findings further demonstrate that decalcification prior to protein extraction, along with the analysis of solubilization fractions, is not preferred for PMMA-embedded bone. The biological applicability of the proposed workflow was demonstrated using samples of human PMMA-embedded alveolar bone and the iliac crest, which revealed anatomical site-specific proteomic profiles. Overall, these results establish a crucial foundation for large-scale proteomics studies contributing to our knowledge of bone biology.


Assuntos
Polimetil Metacrilato , Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Humanos , Polimetil Metacrilato/química , Espectrometria de Massas em Tandem/métodos , Proteoma/análise , Cromatografia Líquida/métodos , Osso e Ossos/química , Osso e Ossos/metabolismo , Inclusão do Tecido/métodos , Reprodutibilidade dos Testes
7.
Anal Chem ; 96(23): 9478-9485, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38807457

RESUMO

A major challenge in forensic anthropology and bioarcheology is the development of fast and effective methods for sorting commingled remains. This study assesses how portable laser-induced breakdown spectroscopy (LIBS) can be used to group skeletal remains based on their elemental profiles. LIBS spectra were acquired from the remains of 45 modern skeletons, with a total data set of 8388 profiles from 1284 bones. Spectral feature selection was conducted to reduce the spectral profiles to the peaks exhibiting the highest variation among individuals. Emission lines corresponding to 9 elements (Ca, P, C, K, Mg, Na, Al, Ba, and Sr) were found important for classification. Linear discriminant analysis (LDA) was concurrently used to classify each spectral profile. From the 45 individuals, each LIBS spectrum was successfully sorted to its corresponding skeleton with an average accuracy of 87%. These findings indicate that variation exists among the LIBS profiles of individuals' skeletal remains, highlighting the potential for portable LIBS technology to aid in the sorting of commingled remains.


Assuntos
Osso e Ossos , Lasers , Análise Espectral , Humanos , Análise Espectral/métodos , Osso e Ossos/química , Análise Discriminante , Antropologia Forense/métodos , Restos Mortais/química
8.
Nature ; 558(7708): 68-72, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29849142

RESUMO

The fish-to-tetrapod transition-followed later by terrestrialization-represented a major step in vertebrate evolution that gave rise to a successful clade that today contains more than 30,000 tetrapod species. The early tetrapod Ichthyostega was discovered in 1929 in the Devonian Old Red Sandstone sediments of East Greenland (dated to approximately 365 million years ago). Since then, our understanding of the fish-to-tetrapod transition has increased considerably, owing to the discovery of additional Devonian taxa that represent early tetrapods or groups evolutionarily close to them. However, the aquatic environment of early tetrapods and the vertebrate fauna associated with them has remained elusive and highly debated. Here we use a multi-stable isotope approach (δ13C, δ18O and δ34S) to show that some Devonian vertebrates, including early tetrapods, were euryhaline and inhabited transitional aquatic environments subject to high-magnitude, rapid changes in salinity, such as estuaries or deltas. Euryhalinity may have predisposed the early tetrapod clade to be able to survive Late Devonian biotic crises and then successfully colonize terrestrial environments.


Assuntos
Evolução Biológica , Ecossistema , Vertebrados/classificação , Animais , Organismos Aquáticos/classificação , Osso e Ossos/química , Peixes/classificação , Água Doce/química , Isótopos/análise , Paleontologia , Filogenia , Água do Mar/química
9.
Environ Res ; 252(Pt 3): 118990, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670214

RESUMO

This study aimed to investigate bone char's physicochemical transformations through co-torrefaction and co-pyrolysis processes with biomass. Additionally, it aimed to analyze the carbon sequestration process during co-torrefaction of bone and biomass and optimize the process parameters of co-torrefaction. Finally, the study sought to evaluate the arsenic sorption capacity of both torrefied and co-torrefied bone char. Bone and biomass co-torrefaction was conducted at 175 °C-300 °C. An orthogonal array of Taguchi techniques and artificial neural networks (ANN) were employed to investigate the influence of various torrefaction parameters on carbon dioxide sequestration within torrefied bone char. A co-torrefied bone char, torrefied at a reaction temperature of 300 °C, a heating rate of 15 °C·min-1, and mixed with 5 g m of biomass (wood dust), was selected for the arsenic (III) sorption experiment due to its elevated carbonate content. The results revealed a higher carbonate fraction (21%) in co-torrefied bone char at 300 °C compared to co-pyrolyzed bone char (500-700 °C). Taguchi and artificial neural network (ANN) analyses indicated that the relative impact of process factors on carbonate substitution in bone char followed the order of co-torrefaction temperature (38.8%) > heating rate (31.06%) > addition of wood biomass (30.1%). Co-torrefied bone chars at 300 °C exhibited a sorption capacity of approximately 3 mg g-1, surpassing values observed for pyrolyzed bone chars at 900 °C in the literature. The findings suggest that co-torrefied bone char could serve effectively as a sorbent in filters for wastewater treatment and potentially fulfill roles such as a remediation agent, pH stabilizer, or valuable source of biofertilizer in agricultural applications.


Assuntos
Arsênio , Biomassa , Carvão Vegetal , Águas Residuárias , Poluentes Químicos da Água , Arsênio/análise , Arsênio/química , Carvão Vegetal/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Adsorção , Osso e Ossos/química , Redes Neurais de Computação , Animais , Pirólise
10.
Environ Res ; 250: 118514, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38373545

RESUMO

Osteoporosis is the most common bone disease, characterized by decreased bone mineral density (BMD) and often associated to decreased muscle mass and function. Metal exposure plays a role in the pathophysiology of osteoporosis and affects also muscle quality. The aim of this study was to assess the association between metal levels in bone and muscle samples and the degeneration of these tissues. A total of 58 subjects (30 male and 28 female) was enrolled and classified in osteoporotic (OP, n = 8), osteopenic (Ope, n = 30) and healthy (CTR, n = 20) subjects, according to BMD measures. Femoral head bone samples and vastus lateralis muscle samples were collected during hip arthroplasty surgeries. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis showed increased levels of Al, Cd and Pb in OP and Ope bone tissue compared to CTR subjects (p = 0.04, p = 0.005 and p = 0.01, respectively). Whereas, increased levels of Co, Cd and Pb were measured in OP and Ope muscle tissues, compared to CTRs (p < 0.001, p = 0.02 and p = 0.01, respectively). In addition, Al, Cd and Pb levels in bone and Cd and Co levels in muscle were negatively correlated with BMD. A negative association among Co, Cd, Cr and Hg levels and muscle fibers diameter was also observed in muscle tissues. This study assessed that metal exposure can affects bone and muscle tissue quality and may contribute to the onset and progression of musculoskeletal diseases such as osteoporosis. Therefore, it is important to implement metal exposure assessment and their impact on disease development, in order to manage and prevent metal accumulation effects on bone and muscle quality.


Assuntos
Densidade Óssea , Osteoporose , Humanos , Projetos Piloto , Feminino , Masculino , Osteoporose/metabolismo , Osteoporose/induzido quimicamente , Idoso , Pessoa de Meia-Idade , Metais/metabolismo , Metais/análise , Osso e Ossos/metabolismo , Osso e Ossos/química , Músculo Esquelético/metabolismo
11.
Nucleic Acids Res ; 50(D1): D402-D412, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34986601

RESUMO

Transcription factors (TFs) play key roles in biological processes and are usually used as cell markers. The emerging importance of TFs and related markers in identifying specific cell types in human diseases increases the need for a comprehensive collection of human TFs and related markers sets. Here, we developed the TF-Marker database (TF-Marker, http://bio.liclab.net/TF-Marker/), aiming to provide cell/tissue-specific TFs and related markers for human. By manually curating thousands of published literature, 5905 entries including information about TFs and related markers were classified into five types according to their functions: (i) TF: TFs which regulate expression of the markers; (ii) T Marker: markers which are regulated by the TF; (iii) I Marker: markers which influence the activity of TFs; (iv) TFMarker: TFs which play roles as markers and (v) TF Pmarker: TFs which play roles as potential markers. The 5905 entries of TF-Marker include 1316 TFs, 1092 T Markers, 473 I Markers, 1600 TFMarkers and 1424 TF Pmarkers, involving 383 cell types and 95 tissue types in human. TF-Marker further provides a user-friendly interface to browse, query and visualize the detailed information about TFs and related markers. We believe TF-Marker will become a valuable resource to understand the regulation patterns of different tissues and cells.


Assuntos
Bases de Dados Genéticas , Neoplasias/genética , Software , Fatores de Transcrição/genética , Transcrição Gênica , Osso e Ossos/química , Osso e Ossos/metabolismo , Encéfalo/metabolismo , Colo/química , Colo/metabolismo , Feminino , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Internet , Fígado/química , Fígado/metabolismo , Pulmão/química , Pulmão/metabolismo , Masculino , Glândulas Mamárias Humanas/química , Glândulas Mamárias Humanas/metabolismo , Anotação de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Especificidade de Órgãos , Próstata/química , Próstata/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
12.
Mar Drugs ; 22(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786589

RESUMO

Glycosaminoglycans (GAGs) are valuable bioactive polysaccharides with promising biomedical and pharmaceutical applications. In this study, we analyzed GAGs using HPLC-MS/MS from the bone (B), muscle (M), skin (S), and viscera (V) of Scophthalmus maximus (SM), Paralichthysi (P), Limanda ferruginea (LF), Cleisthenes herzensteini (G), Platichthys bicoloratus (PB), Pleuronichthys cornutus (PC), and Cleisthenes herzensteini (CH). Unsaturated disaccharide products were obtained by enzymatic hydrolysis of the GAGs and subjected to compositional analysis of chondroitin sulfate (CS), heparin sulfate (HS), and hyaluronic acid (HA), including the sulfation degree of CS and HS, as well as the content of each GAG. The contents of GAGs in the tissues and the sulfation degree differed significantly among the fish. The bone of S. maximus contained more than 12 µg of CS per mg of dry tissue. Although the fish typically contained high levels of CSA (CS-4S), some fish bone tissue exhibited elevated levels of CSC (CS-6S). The HS content was found to range from 10-150 ug/g, primarily distributed in viscera, with a predominant non-sulfated structure (HS-0S). The structure of HA is well-defined without sulfation modification. These analytical results are independent of biological classification. We provide a high-throughput rapid detection method for tissue samples using HPLC-MS/MS to rapidly screen ideal sources of GAG. On this basis, four kinds of CS were prepared and purified from flounder bone, and their molecular weight was determined to be 23-28 kDa by HPGPC-MALLS, and the disaccharide component unit was dominated by CS-6S, which is a potential substitute for CSC derived from shark cartilage.


Assuntos
Sulfatos de Condroitina , Linguado , Glicosaminoglicanos , Espectrometria de Massas em Tandem , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/isolamento & purificação , Glicosaminoglicanos/isolamento & purificação , Glicosaminoglicanos/química , Cromatografia Líquida de Alta Pressão , Osso e Ossos/química , Pele/química , Pele/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/isolamento & purificação , Músculos/química
13.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941703

RESUMO

Stable carbon and nitrogen isotope analyses are widely used to infer diet and mobility in ancient and modern human populations, potentially providing a means to situate humans in global food webs. We collated 13,666 globally distributed analyses of ancient and modern human collagen and keratin samples. We converted all data to a common "Modern Diet Equivalent" reference frame to enable direct comparison among modern human diets, human diets prior to the advent of industrial agriculture, and the natural environment. This approach reveals a broad diet prior to industrialized agriculture and continued in modern subsistence populations, consistent with the human ability to consume opportunistically as extreme omnivores within complex natural food webs and across multiple trophic levels in every terrestrial and many marine ecosystems on the planet. In stark contrast, isotope dietary breadth across modern nonsubsistence populations has compressed by two-thirds as a result of the rise of industrialized agriculture and animal husbandry practices and the globalization of food distribution networks.


Assuntos
Isótopos de Carbono/análise , Dieta/história , Saúde Global/estatística & dados numéricos , Isótopos de Nitrogênio/análise , Algoritmos , Osso e Ossos/química , Colágeno/análise , Geografia , Cabelo/química , História do Século XX , História do Século XXI , História Antiga , Humanos , Queratinas/análise , Unhas/química
14.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845028

RESUMO

The Lake Titicaca basin was one of the major centers for cultural development in the ancient world. This lacustrine environment is unique in the high, dry Andean altiplano, and its aquatic and terrestrial resources are thought to have contributed to the florescence of complex societies in this region. Nevertheless, it remains unclear to what extent local aquatic resources, particularly fish, and the introduced crop, maize, which can be grown in regions along the lakeshores, contributed to facilitating sustained food production and population growth, which underpinned increasing social political complexity starting in the Formative Period (1400 BCE to 500 CE) and culminating with the Tiwanaku state (500 to 1100 CE). Here, we present direct dietary evidence from stable isotope analysis of human skeletal remains spanning over two millennia, together with faunal and floral reference materials, to reconstruct foodways and ecological interactions in southern Lake Titicaca over time. Bulk stable isotope analysis, coupled with compound-specific amino acid stable isotope analysis, allows better discrimination between resources consumed across aquatic and terrestrial environments. Together, this evidence demonstrates that human diets predominantly relied on C3 plants, particularly quinoa and tubers, along with terrestrial animals, notably domestic camelids. Surprisingly, fish were not a significant source of animal protein, but a slight increase in C4 plant consumption verifies the increasing importance of maize in the Middle Horizon. These results underscore the primary role of local terrestrial food resources in securing a nutritious diet that allowed for sustained population growth, even in the face of documented climate and political change across these periods.


Assuntos
Agricultura/tendências , Dieta/tendências , Condições Sociais/tendências , Agricultura/história , Animais , Antropologia Física , Arqueologia/métodos , Restos Mortais/química , Bolívia/etnologia , Osso e Ossos/química , Camelídeos Americanos , Isótopos de Carbono/análise , Chenopodium quinoa , Alimentos , História Antiga , História Medieval , Humanos , Lagos , Isótopos de Nitrogênio/análise , Peru/etnologia , Tubérculos , Condições Sociais/história , Fatores Socioeconômicos/história , Solanum tuberosum
15.
Cell Tissue Bank ; 25(2): 697-703, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489016

RESUMO

Demineralized bone matrix (DBM) has been regarded as an ideal bone substitute as a native carrier of bone morphogenetic proteins (BMPs) and other growth factors. However, the osteoinductive properties diverse in different DBM products. We speculate that the harvest origin further contributing to variability of BMPs contents in DBM products besides the process technology. In the study, the cortical bone of femur, tibia, humerus, and ulna from a signal donor were prepared and followed demineralizd into DBM products. Proteins in bone martix were extracted using guanidine-HCl and collagenase, respectively, and BMP-2 content was detected by sandwich enzyme-linked immunosorbent assay (ELISA). Variability of BMP-2 content was found in 4 different DBM products. By guanidine-HCl extraction, the average concentration in DBMs harvested from ulna, humerus, tibia, and femur were 0.613 ± 0.053, 0.848 ± 0.051, 3.293 ± 0.268, and 21.763 ± 0.344, respectively (p < 0.05), while using collagenase, the levels were 0.089 ± 0.004, 0.097 ± 0.004, 0.330 ± 0.012, and 1.562 ± 0.008, respectively (p < 0.05). In general, the content of BMP-2 in long bones of Lower limb was higher than that in long bones of upper limb, and GuHCl had remarkably superior extracted efficiency for BMP-2 compared to collagenase. The results suggest that the origin of cortical bones harvested to fabricate DBM products contribute to the variability of native BMP-2 content, while the protein extracted method only changes the measured values of BMP-2.


Assuntos
Matriz Óssea , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 2/análise , Proteína Morfogenética Óssea 2/metabolismo , Humanos , Matriz Óssea/química , Técnica de Desmineralização Óssea , Osso e Ossos/química
16.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791155

RESUMO

DNA analysis plays a crucial role in forensic investigations, helping in criminal cases, missing persons inquiries, and archaeological research. This study focuses on the DNA concentration in different skeletal elements to improve human identification efforts. Ten cases of unidentified skeletal remains brought to the Institute of Forensic Medicine in Timisoara, Romania, underwent DNA analysis between 2019 and 2023. The results showed that teeth are the best source for DNA extraction as they contain the highest concentration of genetic material, at 3.68 ng/µL, compared to the petrous temporal bone (0.936 ng/µL) and femur bone (0.633 ng/µL). These findings highlight the significance of teeth in forensic contexts due to their abundant genetic material. Combining anthropological examination with DNA analysis enhances the understanding and precision of identifying human skeletal remains, thus advancing forensic science. Selecting specific skeletal elements, such as the cochlea or teeth, emerges as crucial for reliable genetic analyses, emphasizing the importance of careful consideration in forensic identification procedures. Our study concludes that automated DNA extraction protocols without liquid nitrogen represent a significant advancement in DNA extraction technology, providing a faster, more efficient, and less labor-intensive method for extracting high-quality DNA from damaged bone and tooth samples.


Assuntos
DNA , Dente , Humanos , Dente/química , DNA/isolamento & purificação , DNA/genética , Osso e Ossos/química , Restos Mortais/química , Genética Forense/métodos , Masculino , Romênia , Feminino
17.
J Sci Food Agric ; 104(10): 6108-6117, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445510

RESUMO

BACKGROUND: Excessive NaCl intake in liquid and semi-solid food (e.g. soup, hot pot base, sauce) poses a high risk to human health, and reducing NaCl intake is a major concern for global health. RESULTS: Using the generalized Labeled Magnitude Scale (gLMS) method, the study verified the possibility of sodium reduction through oil addition. The compromised acceptance threshold (CAT) and hedonic rejection threshold (HRT) were determined. The gLMS results showed that the saltiness intensity of samples containing 0.36% NaCl and 2.29% sunflower seed oil was significantly higher than that of samples containing only 0.36% NaCl (P < 0.05). CAT and HRT results indicated that by adding 3.59% sunflower oil, the NaCl content could be reduced to a minimum of 0.14% without causing sensory rejection in bone broth samples. The quantitative descriptive analysis method was used to determine the effects of NaCl and oil concentrations on the sensory attributes of bone broth samples. Furthermore, it was used to analyze the consumer acceptability drivers in combination with the hedonic scale to optimize the formulation of reduced-salt bone broth products. Notably, sample E (0.36% NaCl, 2.29% fat) not only had a significant salt reduction effect with a 20% decrease in NaCl, but also had improved overall acceptability. CONCLUSION: This study provides theoretical guidance for designing salt-reduction cuisine within the catering and food industries, including bone broth and hot pot bases. © 2024 Society of Chemical Industry.


Assuntos
Comportamento do Consumidor , Paladar , Humanos , Adulto , Óleo de Girassol/química , Feminino , Masculino , Aditivos Alimentares/análise , Aditivos Alimentares/química , Cloreto de Sódio/análise , Cloreto de Sódio/química , Adulto Jovem , Pessoa de Meia-Idade , Cloreto de Sódio na Dieta/análise , Osso e Ossos/química
18.
Stomatologiia (Mosk) ; 103(3): 5-10, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38904552

RESUMO

THE AIM OF THE STUDY: Was to determine the presence of an amoxicillin-based antibiotic in bone implant biopsies by Raman spectroscopy in an experiment. MATERIALS AND METHODS: Experimental animals (n=10, a miniature pig of the Svetlogorsk breed) were divided into 2 groups of 5 animals. Groups 1 and 2 were injected with amoxicillin 2 ml per 20 kg of body weight 30 minutes before dental implantation surgery, then group 2 was additionally injected with 1 ml per 20 kg of body weight for 5 days. Each animal has 6 implants installed. On the 1st, 3rd, 7th, 14th day, an implant-bone biopsy was removed from each animal, micro-preparations were made and Raman spectroscopy was performed to assess the peak matching of the Raman spectrum. RESULTS: In animals of the 1st and 2nd groups, the main peak of the Raman spectrum, which is closest to the values of the antibiotic spectrum of interest to us, is located closer to 1448 cm-1 and 1446 cm-1, respectively. At the same time, in both observations, the peaks relate to the spectrum of bone tissue, which cannot indicate the content of an antibiotic in the drug. CONCLUSION: No scattering spectra corresponding to the antibiotic molecule were found in any animal from both groups, regardless of the mode of administration and dosage of amoxicillin. The detected peaks corresponded to bone tissue without an antibiotic.


Assuntos
Amoxicilina , Antibacterianos , Implantes Dentários , Análise Espectral Raman , Análise Espectral Raman/métodos , Animais , Amoxicilina/análise , Amoxicilina/administração & dosagem , Suínos , Antibacterianos/análise , Antibacterianos/administração & dosagem , Biópsia , Porco Miniatura , Osso e Ossos/química , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Implantação Dentária/métodos
19.
Proc Natl Acad Sci U S A ; 117(31): 18393-18400, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32661154

RESUMO

In the past decade, the early Acheulean before 1 Mya has been a focus of active research. Acheulean lithic assemblages have been shown to extend back to ∼1.75 Mya, and considerable advances in core reduction technologies are seen by 1.5 to 1.4 Mya. Here we report a bifacially flaked bone fragment (maximum dimension ∼13 cm) of a hippopotamus femur from the ∼1.4 Mya sediments of the Konso Formation in southern Ethiopia. The large number of flake scars and their distribution pattern, together with the high frequency of cone fractures, indicate anthropogenic flaking into handaxe-like form. Use-wear analyses show quasi-continuous alternate microflake scars, wear polish, edge rounding, and striae patches along an ∼5-cm-long edge toward the handaxe tip. The striae run predominantly oblique to the edge, with some perpendicular, on both the cortical and inner faces. The combined evidence is consistent with the use of this bone artifact in longitudinal motions, such as in cutting and/or sawing. This bone handaxe is the oldest known extensively flaked example from the Early Pleistocene. Despite scarcity of well-shaped bone tools, its presence at Konso shows that sophisticated flaking was practiced by ∼1.4 Mya, not only on a range of lithic materials, but also occasionally on bone, thus expanding the documented technological repertoire of African Early Pleistocene Homo.


Assuntos
Osso e Ossos/química , Fósseis/história , Artefatos , Osso e Ossos/anatomia & histologia , Etiópia , Fósseis/anatomia & histologia , História Antiga
20.
Proc Natl Acad Sci U S A ; 117(38): 23450-23459, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32913055

RESUMO

Cuttlefish, a unique group of marine mollusks, produces an internal biomineralized shell, known as cuttlebone, which is an ultra-lightweight cellular structure (porosity, ∼93 vol%) used as the animal's hard buoyancy tank. Although cuttlebone is primarily composed of a brittle mineral, aragonite, the structure is highly damage tolerant and can withstand water pressure of about 20 atmospheres (atm) for the species Sepia officinalis Currently, our knowledge on the structural origins for cuttlebone's remarkable mechanical performance is limited. Combining quantitative three-dimensional (3D) structural characterization, four-dimensional (4D) mechanical analysis, digital image correlation, and parametric simulations, here we reveal that the characteristic chambered "wall-septa" microstructure of cuttlebone, drastically distinct from other natural or engineering cellular solids, allows for simultaneous high specific stiffness (8.4 MN⋅m/kg) and energy absorption (4.4 kJ/kg) upon loading. We demonstrate that the vertical walls in the chambered cuttlebone microstructure have evolved an optimal waviness gradient, which leads to compression-dominant deformation and asymmetric wall fracture, accomplishing both high stiffness and high energy absorption. Moreover, the distribution of walls is found to reduce stress concentrations within the horizontal septa, facilitating a larger chamber crushing stress and a more significant densification. The design strategies revealed here can provide important lessons for the development of low-density, stiff, and damage-tolerant cellular ceramics.


Assuntos
Materiais Biomiméticos/química , Osso e Ossos/química , Sepia/química , Animais , Fenômenos Biomecânicos , Cerâmica/química , Desenho de Equipamento , Dureza , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA