Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L687-L697, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563965

RESUMO

Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1ß, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.


Assuntos
Células Endoteliais , Inflamação , Camundongos Knockout , Lesão Pulmonar Induzida por Ventilação Mecânica , Oxidorredutase com Domínios WW , Animais , Oxidorredutase com Domínios WW/metabolismo , Oxidorredutase com Domínios WW/genética , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Inflamação/metabolismo , Inflamação/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Técnicas de Silenciamento de Genes , Masculino , Pulmão/metabolismo , Pulmão/patologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
2.
Cell Mol Life Sci ; 80(11): 338, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37897534

RESUMO

Induction of DNA damage response (DDR) to ensure accurate duplication of genetic information is crucial for maintaining genome integrity during DNA replication. Cellular senescence is a DDR mechanism that prevents the proliferation of cells with damaged DNA to avoid mitotic anomalies and inheritance of the damage over cell generations. Human WWOX gene resides within a common fragile site FRA16D that is preferentially prone to form breaks on metaphase chromosome upon replication stress. We report here that primary Wwox knockout (Wwox-/-) mouse embryonic fibroblasts (MEFs) and WWOX-knockdown human dermal fibroblasts failed to undergo replication-induced cellular senescence after multiple passages in vitro. Strikingly, by greater than 20 passages, accelerated cell cycle progression and increased apoptosis occurred in these late-passage Wwox-/- MEFs. These cells exhibited γH2AX upregulation and microsatellite instability, indicating massive accumulation of nuclear DNA lesions. Ultraviolet radiation-induced premature senescence was also blocked by WWOX knockdown in human HEK293T cells. Mechanistically, overproduction of cytosolic reactive oxygen species caused p16Ink4a promoter hypermethylation, aberrant p53/p21Cip1/Waf1 signaling axis and accelerated p27Kip1 protein degradation, thereby leading to the failure of senescence induction in Wwox-deficient cells after serial passage in culture. We determined that significantly reduced protein stability or loss-of-function A135P/V213G mutations in the DNA-binding domain of p53 caused defective induction of p21Cip1/Waf1 in late-passage Wwox-/- MEFs. Treatment of N-acetyl-L-cysteine prevented downregulation of cyclin-dependent kinase inhibitors and induced senescence in Wwox-/- MEFs. Our findings support an important role for fragile WWOX gene in inducing cellular senescence for maintaining genome integrity during DDR through alleviating oxidative stress.


Assuntos
Proteína Supressora de Tumor p53 , Raios Ultravioleta , Animais , Humanos , Camundongos , Senescência Celular/genética , DNA/metabolismo , Fibroblastos/metabolismo , Instabilidade Genômica , Células HEK293 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542478

RESUMO

We reported that a 31-amino-acid Zfra protein (zinc finger-like protein that regulates apoptosis) blocks neurodegeneration and cancer growth. Zfra binds WW domain-containing oxidoreductase (WWOX) to both N- and C-termini, which leads to accelerated WWOX degradation. WWOX limits the progression of neurodegeneration such as Alzheimer's disease (AD) by binding tau and tau-hyperphosphorylating enzymes. Similarly, Zfra binds many protein targets and accelerates their degradation independently of ubiquitination. Furthermore, Zfra4-10 peptide strongly prevents the progression of AD-like symptoms in triple-transgenic (3xTg) mice during aging. Zfra4-10 peptide restores memory loss in 9-month-old 3xTg mice by blocking the aggregation of a protein cascade, including TPC6AΔ, TIAF1, and SH3GLB2, by causing aggregation of tau and amyloid ß. Zfra4-10 also suppresses inflammatory NF-κB activation. Zfra-activated Hyal-2+ CD3- CD19- Z cells in the spleen, via Hyal-2/WWOX/Smad4 signaling, are potent in cancer suppression. In this perspective review, we provide mechanistic insights regarding how Zfra overrides WWOX to induce cancer suppression and retard AD progression via Z cells.


Assuntos
Peptídeos beta-Amiloides , Neoplasias , Camundongos , Animais , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo , Apoptose , Transdução de Sinais/fisiologia , Neoplasias/metabolismo
4.
J Virol ; 96(6): e0202621, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107375

RESUMO

Ebola virus (EBOV) and Marburg virus (MARV) continue to emerge and cause severe hemorrhagic disease in humans. A comprehensive understanding of the filovirus-host interplay will be crucial for identifying and developing antiviral strategies. The filoviral VP40 matrix protein drives virion assembly and egress, in part by recruiting specific WW domain-containing host interactors via its conserved PPxY late (L) domain motif to positively regulate virus egress and spread. In contrast to these positive regulators of virus budding, a growing list of WW domain-containing interactors that negatively regulate virus egress and spread have been identified, including BAG3, YAP/TAZ, and WWOX. In addition to host WW domain regulators of virus budding, host PPxY-containing proteins also contribute to regulating this late stage of filovirus replication. For example, angiomotin (AMOT) is a multi-PPxY-containing host protein that functionally interacts with many of the same WW domain-containing proteins that regulate virus egress and spread. In this report, we demonstrate that host WWOX, which negatively regulates egress of VP40 virus-like particles (VLPs) and recombinant vesicular stomatitis virus (VSV) M40 virus, interacts with and suppresses the expression of AMOT. We found that WWOX disrupts AMOT's scaffold-like tubular distribution and reduces AMOT localization at the plasma membrane via lysosomal degradation. In sum, our findings reveal an indirect and novel mechanism by which modular PPxY-WW domain interactions between AMOT and WWOX regulate PPxY-mediated egress of filovirus VP40 VLPs. A better understanding of this modular network and competitive nature of protein-protein interactions will help to identify new antiviral targets and therapeutic strategies. IMPORTANCE Filoviruses (Ebola virus [EBOV] and Marburg virus [MARV]) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we reveal a novel mechanism by which host proteins WWOX and AMOTp130 interact with each other and with the filovirus matrix protein VP40 to regulate VP40-mediated egress of virus-like particles (VLPs). Our results highlight the biological impact of competitive interplay of modular virus-host interactions on both the virus life cycle and the host cell.


Assuntos
Ebolavirus , Marburgvirus , Oxidorredutase com Domínios WW , Angiomotinas/metabolismo , Ebolavirus/fisiologia , Humanos , Marburgvirus/metabolismo , Proteínas da Matriz Viral/metabolismo , Liberação de Vírus/fisiologia , Oxidorredutase com Domínios WW/metabolismo
5.
Epilepsia ; 64(5): 1351-1367, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36779245

RESUMO

OBJECTIVE: WWOX is an autosomal recessive cause of early infantile developmental and epileptic encephalopathy (WWOX-DEE), also known as WOREE (WWOX-related epileptic encephalopathy). We analyzed the epileptology and imaging features of WWOX-DEE, and investigated genotype-phenotype correlations, particularly with regard to survival. METHODS: We studied 13 patients from 12 families with WWOX-DEE. Information regarding seizure semiology, comorbidities, facial dysmorphisms, and disease outcome were collected. Electroencephalographic (EEG) and brain magnetic resonance imaging (MRI) data were analyzed. Pathogenic WWOX variants from our cohort and the literature were coded as either null or missense, allowing individuals to be classified into one of three genotype classes: (1) null/null, (2) null/missense, (3) missense/missense. Differences in survival outcome were estimated using the Kaplan-Meier method. RESULTS: All patients experienced multiple seizure types (median onset = 5 weeks, range = 1 day-10 months), the most frequent being focal (85%), epileptic spasms (77%), and tonic seizures (69%). Ictal EEG recordings in six of 13 patients showed tonic (n = 5), myoclonic (n = 2), epileptic spasms (n = 2), focal (n = 1), and migrating focal (n = 1) seizures. Interictal EEGs demonstrated slow background activity with multifocal discharges, predominantly over frontal or temporo-occipital regions. Eleven of 13 patients had a movement disorder, most frequently dystonia. Brain MRIs revealed severe frontotemporal, hippocampal, and optic atrophy, thin corpus callosum, and white matter signal abnormalities. Pathogenic variants were located throughout WWOX and comprised both missense and null changes including five copy number variants (four deletions, one duplication). Survival analyses showed that patients with two null variants are at higher mortality risk (p-value = .0085, log-rank test). SIGNIFICANCE: Biallelic WWOX pathogenic variants cause an early infantile developmental and epileptic encephalopathy syndrome. The most common seizure types are focal seizures and epileptic spasms. Mortality risk is associated with mutation type; patients with biallelic null WWOX pathogenic variants have significantly lower survival probability compared to those carrying at least one presumed hypomorphic missense pathogenic variant.


Assuntos
Encefalopatias , Síndromes Epilépticas , Espasmos Infantis , Humanos , Encefalopatias/genética , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/genética , Espasmos Infantis/complicações , Convulsões/diagnóstico por imagem , Convulsões/genética , Convulsões/complicações , Encéfalo/patologia , Síndromes Epilépticas/complicações , Eletroencefalografia , Espasmo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
Cell Mol Life Sci ; 79(9): 487, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35984507

RESUMO

Diabetes has been associated with an increased risk of cognitive decline and dementia. However, the mechanisms underlying this association remain unclear and no effective therapeutic interventions exist. Accumulating evidence demonstrates that mitochondrial defects are a key feature of diabetes contributing to neurodegenerative events. It has also been demonstrated that the putative tumor suppressor WW domain-containing oxidoreductase 1 (WWOX) can interact with mitochondria in several pathological conditions. However, its role in diabetes-associated neurodegeneration remains unknown. So, this study aimed to evaluate the role of WWOX activation in high glucose-induced neuronal damage and death. Our experiments were mainly performed in differentiated SH-SY5Y neuroblastoma cells exposed to high glucose and treated (or not) with Zfra1-31, the specific inhibitor of WWOX. Several parameters were analyzed namely cell viability, WWOX activation (tyrosine 33 residue phosphorylation), mitochondrial function, reactive oxygen species (ROS) production, biogenesis, and dynamics, autophagy and oxidative stress/damage. The levels of the neurotoxic proteins amyloid ß (Aß) and phosphorylated Tau (pTau) and of synaptic integrity markers were also evaluated. We observed that high glucose increased the levels of activated WWOX. Interestingly, brain cortical and hippocampal homogenates from young (6-month old) diabetic GK rats showed increased levels of activated WWOX compared to older GK rats (12-month old) suggesting that WWOX plays an early role in the diabetic brain. In neuronal cells, high glucose impaired mitochondrial respiration, dynamics and biogenesis, increased mitochondrial ROS production and decreased mitochondrial membrane potential and ATP production. More, high glucose augmented oxidative stress/damage and the levels of Aß and pTau proteins and affected autophagy, contributing to the loss of synaptic integrity and cell death. Of note, the activation of WWOX preceded mitochondrial dysfunction and cell death. Importantly, the inhibition of WWOX with Zfra1-31 reversed, totally or partially, the alterations promoted by high glucose. Altogether our observations demonstrate that under high glucose conditions WWOX activation contributes to mitochondrial anomalies and neuronal damage and death, which suggests that WWOX is a potential therapeutic target for early interventions. Our findings also support the efficacy of Zfra1-31 in treating hyperglycemia/diabetes-associated neurodegeneration.


Assuntos
Peptídeos beta-Amiloides , Mitocôndrias , Neuroblastoma , Oxidorredutase com Domínios WW , Animais , Humanos , Ratos , Peptídeos beta-Amiloides/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Homeostase , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo
7.
Am J Pathol ; 191(10): 1805-1821, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214506

RESUMO

This study tested the hypothesis that diabetes promotes a greater than normal cytosolic calcium level in rod cells that activates a Ca2+-sensitive protease, calpain, resulting in oxidative stress and inflammation, two pathogenic factors of early diabetic retinopathy. Nondiabetic and 2-month diabetic C57Bl/6J and calpain1 knockout (Capn1-/-) mice were studied; subgroups were treated with a calpain inhibitor (CI). Ca2+ content was measured in photoreceptors using Fura-2. Retinal calpain expression was studied by quantitative RT-PCR and immunohistochemistry. Superoxide and expression of inflammatory proteins were measured using published methods. Proteomic analysis was conducted on photoreceptors isolated from untreated diabetic mice or treated daily with CI for 2 months. Cytosolic Ca2+ content was increased twofold in photoreceptors of diabetic mice as compared with nondiabetic mice. Capn1 expression increased fivefold in photoreceptor outer segments of diabetic mice. Pharmacologic inhibition or genetic deletion of Capn1 significantly suppressed diabetes-induced oxidative stress and expression of proinflammatory proteins in retina. Proteomics identified a protein (WW domain-containing oxidoreductase [WWOX]) whose expression was significantly increased in photoreceptors from mice diabetic for 2 months and was inhibited with CI. Knockdown of Wwox using specific siRNA in vitro inhibited increase in superoxide caused by the high glucose. These results suggest that reducing Ca2+ accumulation, suppressing calpain activation, and/or reducing Wwox up-regulation are novel targets for treating early diabetic retinopathy.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Retinopatia Diabética/patologia , Inflamação/patologia , Estresse Oxidativo , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Animais , Calpaína/genética , Linhagem Celular , Retinopatia Diabética/complicações , Retinopatia Diabética/genética , Retinopatia Diabética/fisiopatologia , Ativação Enzimática/efeitos dos fármacos , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/farmacologia , Inflamação/complicações , Inflamação/genética , Inflamação/fisiopatologia , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Retina/patologia , Índice de Gravidade de Doença , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Oxidorredutase com Domínios WW/metabolismo
8.
Pharmacol Res ; 186: 106534, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36336217

RESUMO

Migration, invasion, epithelial-mesenchymal transformation (EMT), and chemotherapeutic resistance are the leading causes of therapeutic failure in people with colorectal cancer (CRC). The migration of exosomal miRNA between cancer cells and the tumor microenvironment is directly associated with malignant behavior in cancer-associated fibroblasts (CAFs). In the context of earlier research, the purpose of the current study was to assess the role and potential mechanism of miR-625-3p released by CAFs in CRC cells. Exosomes were extracted and purified from CAFs conditioned medium by ultracentrifugation. Western blot, immunohistochemistry, CCK-8, transwell assay, H&E staining, Tunnel, real-time PCR, double luciferase assay, RNA-binding protein immunoprecipitation (RIP), and immunofluorescence double staining experiments were used to investigate the effects of CAFs-Exo and miR-625-3p on CRC cell invasion, migration, proliferation, EMT, chemotherapeutic resistance, and molecular mechanisms. The current results indicated that CAFs-Exo was directly internalized by CRC cells, and exosomal miR-625-3p derived from CAFs might promote migration, invasion, EMT and chemotherapeutic resistance in CRC cells by inhibiting the CELF2/WWOX pathway, providing a potential candidate for CRC prediction and treatment.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , MicroRNAs , Humanos , Fibroblastos Associados a Câncer/patologia , Transição Epitelial-Mesenquimal , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Proteínas CELF/genética , Proteínas CELF/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/metabolismo , Proteínas Supressoras de Tumor/genética
9.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35409089

RESUMO

Wwox-deficient human cells show elevated homologous recombination, leading to resistance to killing by double-strand break-inducing agents. Human Wwox binds to the Brca1 981-PPLF-984 Wwox-binding motif, likely blocking the pChk2 phosphorylation site at Brca1-S988. This phosphorylation site is conserved across mammalian species; the PPLF motif is conserved in primates but not in rodents. We now show that murine Wwox does not bind Brca1 near the conserved mouse Brca1 phospho-S971 site, leaving it open for Chk2 phosphorylation and Brca1 activation. Instead, murine Wwox binds to Brca1 through its BRCT domain, where pAbraxas, pBrip1, and pCtIP, of the A, B, and C binding complexes, interact to regulate double-strand break repair pathway response. In Wwox-deficient mouse cells, the Brca1-BRCT domain is thus accessible for immediate binding of these phospho-proteins. We confirm elevated homologous recombination in Wwox-silenced murine cells, as in human cells. Wwox-deficient murine cells showed increased ionizing radiation-induced Abraxas, Brca1, and CtIP foci and long resected single-strand DNA, early after ionizing radiation. Wwox deletion increased the basal level of Brca1-CtIP interaction and the expression level of the MRN-CtIP protein complex, key players in end-resection, and facilitated Brca1 release from foci. Inhibition of phospho-Chk2 phosphorylation of Brca1-S971 delays the end-resection; the delay of premature end-resection by combining Chk2 inhibition with ionizing radiation or carboplatin treatment restored ionizing radiation and platinum sensitivity in Wwox-deficient murine cells, as in human cells, supporting the use of murine in vitro and in vivo models in preclinical cancer treatment research.


Assuntos
Proteína BRCA1 , Quebras de DNA de Cadeia Dupla , Oxidorredutase com Domínios WW/metabolismo , Animais , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA , DNA Helicases/metabolismo , Reparo do DNA , Endodesoxirribonucleases/metabolismo , Recombinação Homóloga , Mamíferos/metabolismo , Camundongos
10.
Am J Respir Cell Mol Biol ; 64(1): 89-99, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058734

RESUMO

A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.


Assuntos
Fumar Cigarros/efeitos adversos , Regulação para Baixo/efeitos dos fármacos , Vapor do Cigarro Eletrônico/efeitos adversos , Pulmão/efeitos dos fármacos , Nicotina/efeitos adversos , Síndrome do Desconforto Respiratório/induzido quimicamente , Oxidorredutase com Domínios WW/metabolismo , Animais , Humanos , Pulmão/metabolismo , Masculino , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Camundongos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/metabolismo , Infecções Estafilocócicas/metabolismo , Nicotiana/efeitos adversos , Produtos do Tabaco/efeitos adversos
11.
Phytother Res ; 35(8): 4567-4578, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34058790

RESUMO

Regorafenib (RGF), a second-line multi-kinase inhibitor in the treatment of HCC (hepatocellular carcinoma) after sorafenib failure, exposes to the risk of drug resistance and subsequent progression of HCC patients. Toosendanin (TSN), a triterpenoid has presented excellent inhibition on several tumors. The purpose of this study is to investigate the inhibitory effect of the combination of TSN and RGF on HCC cells. We identified that TSN and RGF combination (TRC) synergistically inhibited the proliferation and migration of MHCC-97L cells. The upregulation of WWOX (WW-domain containing oxidoreductase) played a vital role in the HCC cell growth treated with TRC. TRC suppressed the phosphorylation of Stat3 and expression of DVL2, negatively regulated the activity of ß-catenin by promoting the phosphorylation of GSK3ß. In addition, the intranuclear proteins, including MMP2, MMP9, and C-MYC were significantly inhibited by TRC. The in vivo xenograft models confirmed that TRC effectually prevented the tumor growth through upregulating WWOX. Therefore, the treatment of TRC may be a potential solution of RGF resistance and promising therapeutic method in malignant HCC.


Assuntos
Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Hepáticas , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Animais , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Quinase 3 da Glicogênio Sintase , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Chembiochem ; 21(13): 1843-1851, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32185845

RESUMO

We describe a molecular characterization of the interaction between the cancer-related proteins WWOX and p73. This interaction is mediated by the first of two WW domains (WW1) of WWOX and a PPXY-motif-containing region in p73. While phosphorylation of Tyr33 of WWOX and association with p73 are known to affect apoptotic activity, the quantitative effect of phosphorylation on this specific interaction is determined here for the first time. Using ITC and fluorescence anisotropy, we measured the binding affinity between WWOX domains and a p73 derived peptide, and showed that this interaction is regulated by Tyr phosphorylation of WW1. Chemical synthesis of the phosphorylated domains of WWOX revealed that the binding affinity of WWOX to p73 is decreased when WWOX is phosphorylated. This result suggests a fine-tuning of binding affinity in a differential, ligand-specific manner: the decrease in binding affinity of WWOX to p73 can free both partners to form new interactions.


Assuntos
Proteína Tumoral p73/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Motivos de Aminoácidos , Calorimetria , Polarização de Fluorescência , Humanos , Modelos Moleculares , Fosforilação , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteína Tumoral p73/química , Oxidorredutase com Domínios WW/química , Oxidorredutase com Domínios WW/genética
13.
BMC Vet Res ; 16(1): 415, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33129329

RESUMO

BACKGROUND: The WW domain-containing oxidoreductase (WWOX) tumor suppressor gene is frequently lost in a variety of solid and hematopoietic malignancies in humans. Dysregulation of WWOX has been implicated as playing a key role in tumor cell survival, DNA damage repair, and genomic stability. The purpose of this study was to characterize WWOX expression in spontaneous canine mast cell tumors (MCTs) and malignant cell lines and investigate the potential contribution of WWOX loss on malignant mast cell behavior. METHODS/RESULTS: WWOX expression is decreased in primary canine MCTs and malignant mast cell lines compared to normal canine bone marrow-cultured mast cells. In transformed canine mastocytoma cell lines, overexpression of WWOX or WWOX knockdown had no effect on mast cell viability. Inhibition of WWOX enhanced clonogenic survival following treatment with ionizing radiation in the C2 mast cell line. Lastly, immunohistochemistry for WWOX was performed using a canine MCT tissue microarray, demonstrating that WWOX staining intensity and percent of cells staining for WWOX is decreased in high-grade MCTs compared to low-grade MCTs. CONCLUSIONS: These data suggest that WWOX expression is attenuated or lost in primary canine MCTs and malignant mast cell lines. Given the observed increase in clonogenic survival in WWOX-deficient C2 mast cells treated with ionizing radiation, further investigation of WWOX and its role in mediating the DNA damage response in malignant mast cells is warranted.


Assuntos
Mastócitos/patologia , Mastocitoma/veterinária , Neoplasias Cutâneas/veterinária , Oxidorredutase com Domínios WW/genética , Animais , Linhagem Celular Tumoral , Cães , Regulação Neoplásica da Expressão Gênica , Mastócitos/metabolismo , Mastócitos/efeitos da radiação , Mastocitoma/metabolismo , Neoplasias Cutâneas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo
14.
Neurobiol Dis ; 121: 163-176, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30290271

RESUMO

The association of WW domain-containing oxidoreductase WWOX gene loss of function with central nervous system (CNS) related pathologies is well documented. These include spinocerebellar ataxia, epilepsy and mental retardation (SCAR12, OMIM: 614322) and early infantile epileptic encephalopathy (EIEE28, OMIM: 616211) syndromes. However, there is complete lack of understanding of the pathophysiological mechanisms at play. In this study, using a Wwox knockout (Wwox KO) mouse model (2 weeks old, both sexes) and stereological studies we observe that Wwox deletion leads to a significant reduction in the number of hippocampal GABA-ergic (γ-aminobutyric acid) interneurons. Wwox KO mice displayed significantly reduced numbers of calcium-binding protein parvalbumin (PV) and neuropeptide Y (NPY) expressing interneurons in different subfields of the hippocampus in comparison to Wwox wild-type (WT) mice. We also detected decreased levels of Glutamic Acid Decarboxylase protein isoforms GAD65/67 expression in Wwox null hippocampi suggesting lower levels of GABA synthesis. In addition, Wwox deficiency was associated with signs of neuroinflammation such as evidence of activated microglia, astrogliosis, and overexpression of inflammatory cytokines Tnf-a and Il6. We also performed comparative transcriptome-wide expression analyses of neural stem cells grown as neurospheres from hippocampi of Wwox KO and WT mice thus identifying 283 genes significantly dysregulated in their expression. Functional annotation of transcriptome profiling differences identified 'neurological disease' and 'CNS development related functions' to be significantly enriched. Several epilepsy-related genes were found differentially expressed in Wwox KO neurospheres. This study provides the first genotype-phenotype observations as well as potential mechanistic clues associated with Wwox loss of function in the brain.


Assuntos
Astrócitos/metabolismo , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Microglia/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Animais , Encefalite/genética , Feminino , Gliose/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Transcriptoma , Oxidorredutase com Domínios WW/genética
15.
Biochem Biophys Res Commun ; 516(2): 526-532, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31230746

RESUMO

The hepatocellular carcinoma (HCC) is a common and highly aggressive malignancy especially in China. Accumulating data have shown a critical role of long non-coding RNAs (lncRNAs) during cancer progression. However, the function of lncRNA TSLD8 remains elusive. By lncRNA profiling, we identify a novel lncRNA termed TSLD8 in HCC. TSLD8 expression is significantly lowered in HCC tissues and cell lines. TSLD8 facilitates migration and viability in SMMC-7721 and HepG2 cells. Furthermore, TSLD8 can interact with WWOX and protect WWOX from proteasome-mediated degradation. Using PuPGEA-based nanocomplex for gene delivery, we found that co-delivery of TSLD8 and WWOX may exhibit synergistic and additive effects to inhibit HCC progression. PuPGEA-based nanocomplex delivery does not substantially alter the blood chemistries (e.g. alkaline phosphatase, blood urea nitrogen, aspartate aminotransferase, alanine aminotransferase) or initiate immune responses implying a safe strategy. Collectively, our current study has identified a novel tumor suppressive lncRNA TSLD8 which exerts its tumor suppressive function by stabilizing WWOX. Co-delivery of TSLD8 and WWOX via PuPGEA-based nanocomplexes might provide promising therapeutics for eradicating HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , RNA Longo não Codificante/genética , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Glucanos/química , Humanos , Neoplasias Hepáticas/patologia , Nanopartículas/química , Ácidos Polimetacrílicos/química , Estabilidade Proteica , RNA Longo não Codificante/metabolismo , Resultado do Tratamento
16.
Genet Med ; 21(6): 1308-1318, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30356099

RESUMO

PURPOSE: Germline WWOX pathogenic variants have been associated with disorder of sex differentiation (DSD), spinocerebellar ataxia (SCA), and WWOX-related epileptic encephalopathy (WOREE syndrome). We review clinical and molecular data on WWOX-related disorders, further describing WOREE syndrome and phenotype/genotype correlations. METHODS: We report clinical and molecular findings in 20 additional patients from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants in the WWOX gene. Different molecular screening approaches were used (quantitative polymerase chain reaction/multiplex ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome sequencing), genome sequencing. RESULTS: Two copy-number variations (CNVs) or two single-nucleotide variations (SNVs) were found respectively in four and nine families, with compound heterozygosity for one SNV and one CNV in five families. Eight novel missense pathogenic variants have been described. By aggregating our patients with all cases reported in the literature, 37 patients from 27 families with WOREE syndrome are known. This review suggests WOREE syndrome is a very severe epileptic encephalopathy characterized by absence of language development and acquisition of walking, early-onset drug-resistant seizures, ophthalmological involvement, and a high likelihood of premature death. The most severe clinical presentation seems to be associated with null genotypes. CONCLUSION: Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic encephalopathy. We report here the largest cohort of individuals with WOREE syndrome.


Assuntos
Síndromes Epilépticas/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Oxidorredutase com Domínios WW/genética , Oxidorredutase com Domínios WW/fisiologia , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Epilepsia/genética , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Masculino , Mutação/genética , Mutação de Sentido Incorreto/genética , Síndrome , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo
17.
Behav Genet ; 49(4): 399-414, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30949922

RESUMO

Recent studies of autism spectrum disorder (ASD) and childhood apraxia of speech (CAS) have resulted in conflicting conclusions regarding the comorbidity of these disorders on phenotypic grounds. In a nuclear family with two dually affected and one unaffected offspring, whole-exome sequences were evaluated for single nucleotide and indel variants and CNVs. The affected siblings but not the unaffected sibling share a rare deleterious compound heterozygous mutation in WWOX, implicated both in ASD and motor control. In addition, one of the affected children carries a rare deleterious de novo mutation in the ASD candidate gene RIMS1. The two affected children but not their unaffected sibling inherited deleterious variants with relevance for ASD and/or CAS. WWOX, RIMS1, and several of the genes harboring the inherited variants are expressed in the brain during prenatal and early postnatal development. Results suggest compound heterozygosity as a cause of ASD and CAS, pleiotropic gene effects, and potentially additional, complex genetic effects.


Assuntos
Transtorno do Espectro Autista/genética , Transtorno Fonológico/genética , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW/genética , Adolescente , Adulto , Transtorno do Espectro Autista/etiologia , Criança , Variações do Número de Cópias de DNA/genética , Exoma/genética , Família , Feminino , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Pleiotropia Genética/genética , Predisposição Genética para Doença/genética , Humanos , Masculino , Herança Multifatorial/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Irmãos , Transtorno Fonológico/etiologia , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Sequenciamento do Exoma/métodos
18.
Cell Commun Signal ; 17(1): 76, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315632

RESUMO

BACKGROUND: Tumor suppressor WWOX physically binds p53 and TIAF1 and together induces apoptosis and tumor suppression. To understand the molecular action, here we investigated the formation of WWOX/TIAF1/p53 triad and its regulation of cancer cell migration, anchorage-independent growth, SMAD promoter activation, apoptosis, and potential role in neurodegeneration. METHODS: Time-lapse microscopy was used to measure the extent of cell migration. Protein/protein interactions were determined by co-immunoprecipitation, FRET microscopy, and yeast two-hybrid analysis. The WWOX/TIAF1/p53 triad-mediated cancer suppression was determined by measuring the extent of cell migration, anchorage-independent growth, SMAD promoter activation, and apoptosis. p53-deficient lung cancer cell growth in nude mice was carried out to assess the tumor suppressor function of ectopic p53 and/or WWOX. RESULTS: Wwox-deficient MEF cells exhibited constitutive Smad3 and p38 activation and migrated individually and much faster than wild type cells. TGF-ß increased the migration of wild type MEF cells, but significantly suppressed Wwox knockout cell migration. While each of the triad proteins is responsive to TGF-ß stimulation, ectopically expressed triad proteins suppressed cancer cell migration, anchorage-independent growth, and SMAD promoter activation, as well as caused apoptosis. The effects are due in part to TIAF1 polymerization and its retention of p53 and WWOX in the cytoplasm. p53 and TIAF1 were effective in suppressing anchorage-independent growth, and WWOX ineffective. p53 and TIAF1 blocked WWOX or Smad4-regulated SMAD promoter activation. WWOX suppressed lung cancer NCI-H1299 growth and inhibited splenomegaly by inflammatory immune response, and p53 blocked the event in nude mice. The p53/WWOX-cancer mice exhibited BACE upregulation, APP degradation, tau tangle formation, and amyloid ß generation in the brain and lung. CONCLUSION: The WWOX/TIAF1/p53 triad is potent in cancer suppression by blocking cancer cell migration, anchorage-independent growth and SMAD promoter activation, and causing apoptosis. Yet, p53 may functionally antagonize with WWOX. p53 blocks WWOX inhibition of inflammatory immune response induced by cancer, and this leads to protein aggregation in the brain as seen in the Alzheimer's disease and other neurodegeneration.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/terapia , Neoplasias Pulmonares/terapia , Proteínas Nucleares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Knockout , Camundongos Nus , Proteínas Nucleares/antagonistas & inibidores , Agregados Proteicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/deficiência , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/deficiência , Oxidorredutase com Domínios WW/antagonistas & inibidores , Oxidorredutase com Domínios WW/deficiência
19.
Clin Lab ; 65(9)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532107

RESUMO

BACKGROUND: Although expression of WWOX was extensively studied in different tumors, WWOX gene expression in acute myeloid leukemia is not well-known or recognized. METHODS: Fifty control donors and fifty acute myeloid leukemia patients were enrolled in this research. The levels of WWOX gene in all participants were detected by RT-qPCR. RESULTS: Levels of WWOX gene in the AML group were significantly lower as compared to the control group (0.27205 ± 1.19812 vs. 10.501 ± 9.0338, respectively, p < 0.001**). CONCLUSIONS: Decreased expression of WWOX gene ran parallel with acute myeloid leukemia regression.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW/genética , Adulto , Intervalo Livre de Doença , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo
20.
Med Sci Monit ; 25: 6454-6461, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31456594

RESUMO

BACKGROUND Circular RNA circMTO1 has been reported to inhibit the progression of many types of cancers. However, the role of circMTO1 in the progression of glioblastoma remains unclear. The purpose of our study was to explore the potential involvement of circMTO1 in glioblastoma. MATERIAL AND METHODS The expression of circMTO1 in human glioblastoma tissues was determined via quantitative real-time polymerase chain reaction (qRT-PCR). The effect of circMTO1 on proliferation of human glioblastoma cell line U251 was assessed through the Cell Counting Kit-8 (CCK-8) and colony formation assay. The regulatory interaction between circMTO1 and miR-92 was explored by bioinformatics prediction and luciferase reporter assay. RESULTS We showed that circMTO1 was markedly downregulated in glioblastoma tissues compared with adjacent normal tissues. Lower circMTO1 level was significantly associated with shorter overall survival among patients with glioblastoma. In addition, circMTO1 inhibited proliferation of cell U251 cells. Mechanistically, circMTO1 upregulates the expression of WWOX in U251 cells, and WWOX mediates circMTO1-induced inhibition of proliferation of U251 cells. In addition, miR-92 downregulates the expression of WWOX by the targeting its mRNA 3' UTR. More importantly, circMTO1 directly interact with miR-92, and subsequently serves as a miRNA sponge to upregulate WWOX expression. CONCLUSIONS Our results demonstrate that circMTO1 inhibits the proliferation of glioblastoma cells via the miR-92/WWOX signaling pathway.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , MicroRNAs/metabolismo , RNA Circular/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Oxidorredutase com Domínios WW/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Prognóstico , RNA Circular/genética , Proteínas Supressoras de Tumor/genética , Oxidorredutase com Domínios WW/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA