Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 83: 641-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905788

RESUMO

The importance of PTEN in cellular function is underscored by the frequency of its deregulation in cancer. PTEN tumor-suppressor activity depends largely on its lipid phosphatase activity, which opposes PI3K/AKT activation. As such, PTEN regulates many cellular processes, including proliferation, survival, energy metabolism, cellular architecture, and motility. More than a decade of research has expanded our knowledge about how PTEN is controlled at the transcriptional level as well as by numerous posttranscriptional modifications that regulate its enzymatic activity, protein stability, and cellular location. Although the role of PTEN in cancers has long been appreciated, it is also emerging as an important factor in other diseases, such as diabetes and autism spectrum disorders. Our understanding of PTEN function and regulation will hopefully translate into improved prognosis and treatment for patients suffering from these ailments.


Assuntos
Regulação Enzimológica da Expressão Gênica , PTEN Fosfo-Hidrolase/fisiologia , Animais , Ciclo Celular , Movimento Celular , Núcleo Celular/metabolismo , Polaridade Celular , Proliferação de Células , Sobrevivência Celular , Ativação Enzimática , Humanos , Lipídeos/química , Neoplasias/metabolismo , Oxigênio/química , PTEN Fosfo-Hidrolase/química , Fosforilação , Prognóstico , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Especificidade por Substrato , Ubiquitina/química
2.
Biochem Soc Trans ; 52(4): 1849-1860, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39023851

RESUMO

Rho GTPases are a family of highly conserved G proteins that regulate numerous cellular processes, including cytoskeleton organisation, migration, and proliferation. The 20 canonical Rho GTPases are regulated by ∼85 guanine nucleotide exchange factors (GEFs), with the largest family being the 71 Diffuse B-cell Lymphoma (Dbl) GEFs. Dbl GEFs promote GTPase activity through the highly conserved Dbl homology domain. The specificity of GEF activity, and consequently GTPase activity, lies in the regulation and structures of the GEFs themselves. Dbl GEFs contain various accessory domains that regulate GEF activity by controlling subcellular localisation, protein interactions, and often autoinhibition. This review focuses on the two phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3)-dependent Rac exchangers (P-Rex), particularly the structural basis of P-Rex1 autoinhibition and synergistic activation. First, we discuss structures that highlight the conservation of P-Rex catalytic and phosphoinositide binding activities. We then explore recent breakthroughs in uncovering the structural basis for P-Rex1 autoinhibition and detail the proposed minimal two-step model of how PI(3,4,5)P3 and Gßγ synergistically activate P-Rex1 at the membrane. Additionally, we discuss the further layers of P-Rex regulation provided by phosphorylation and P-Rex2-PTEN coinhibitory complex formation, although these mechanisms remain incompletely understood. Finally, we leverage the available data to infer how cancer-associated mutations in P-Rex2 destabilise autoinhibition and evade PTEN coinhibitory complex formation, leading to increased P-Rex2 GEF activity and driving cancer progression and metastasis.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Animais , Ligação Proteica , Fosfatos de Fosfatidilinositol/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/química , Proteínas rho de Ligação ao GTP/metabolismo
3.
J Am Chem Soc ; 145(11): 6039-6044, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36897111

RESUMO

Phosphatase and tensin homologue (PTEN) tumor suppressor protein is a PIP3 lipid phosphatase that is subject to multifaceted post-translational modifications. One such modification is the monoubiquitination of Lys13 that may alter its cellular localization but is also positioned in a manner that could influence several of its cellular functions. To explore the regulatory influence of ubiquitin on PTEN's biochemical properties and its interaction with ubiquitin ligases and a deubiquitinase, the generation of a site-specifically and stoichiometrically ubiquitinated protein could be beneficial. Here, we describe a semisynthetic method that relies upon sequential expressed protein ligation steps to install ubiquitin at a Lys13 mimic in near full-length PTEN. This approach permits the concurrent installation of C-terminal modifications in PTEN, thereby facilitating an analysis of the interplay between N-terminal ubiquitination and C-terminal phosphorylation. We find that the N-terminal ubiquitination of PTEN inhibits its enzymatic function, reduces its binding to lipid vesicles, modulates its processing by NEDD4-1 E3 ligase, and is efficiently cleaved by the deubiquitinase, USP7. Our ligation approach should motivate related efforts for uncovering the effects of ubiquitination of complex proteins.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina/química , PTEN Fosfo-Hidrolase/química , Enzimas Desubiquitinantes/metabolismo , Lipídeos
4.
Am J Hum Genet ; 106(6): 818-829, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442409

RESUMO

Germline variation in PTEN results in variable clinical presentations, including benign and malignant neoplasia and neurodevelopmental disorders. Despite decades of research, it remains unclear how the PTEN genotype is related to clinical outcomes. In this study, we combined two recent deep mutational scanning (DMS) datasets probing the effects of single amino acid variation on enzyme activity and steady-state cellular abundance with a large, well-curated clinical cohort of PTEN-variant carriers. We sought to connect variant-specific molecular phenotypes to the clinical outcomes of individuals with PTEN variants. We found that DMS data partially explain quantitative clinical traits, including head circumference and Cleveland Clinic (CC) score, which is a semiquantitative surrogate of disease burden. We built logistic regression models that use DMS and CADD scores to separate clinical PTEN variation from gnomAD control-only variation with high accuracy. By using a survival-like analysis, we identified molecular phenotype groups with differential risk of early cancer onset as well as lifetime risk of cancer. Finally, we identified classes of DMS-defined variants with significantly different risk levels for classical hamartoma-related features (odds ratio [OR] range of 4.1-102.9). In stark contrast, the risk for developing autism or developmental delay does not significantly change across variant classes (OR range of 5.4-12.4). Together, these findings highlight the potential impact of combining DMS datasets with rich clinical data and provide new insights that might guide personalized clinical decisions for PTEN-variant carriers.


Assuntos
Estudos de Associação Genética , Mutação de Sentido Incorreto , PTEN Fosfo-Hidrolase/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Conjuntos de Dados como Assunto , Feminino , Predisposição Genética para Doença , Hamartoma/genética , Humanos , Incidência , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , PTEN Fosfo-Hidrolase/química , Fenótipo , Prognóstico , Adulto Jovem
5.
Mol Cell ; 58(2): 255-68, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25866245

RESUMO

PTEN is proposed to function at the plasma membrane, where receptor tyrosine kinases are activated. However, the majority of PTEN is located throughout the cytoplasm. Here, we show that cytoplasmic PTEN is distributed along microtubules, tethered to vesicles via phosphatidylinositol 3-phosphate (PI(3)P), the signature lipid of endosomes. We demonstrate that the non-catalytic C2 domain of PTEN specifically binds PI(3)P through the CBR3 loop. Mutations render this loop incapable of PI(3)P binding and abrogate PTEN-mediated inhibition of PI 3-kinase/AKT signaling. This loss of function is rescued by fusion of the loop mutant PTEN to FYVE, the canonical PI(3)P binding domain, demonstrating the functional importance of targeting PTEN to endosomal membranes. Beyond revealing an upstream activation mechanism of PTEN, our data introduce the concept of PI 3-kinase signal activation on the vast plasma membrane that is contrasted by PTEN-mediated signal termination on the small, discrete surfaces of internalized vesicles.


Assuntos
PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Sítios de Ligação , Camundongos , Microtúbulos/enzimologia , Modelos Moleculares , Células NIH 3T3 , Estrutura Secundária de Proteína , Transdução de Sinais
6.
Proc Natl Acad Sci U S A ; 117(45): 28201-28211, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106425

RESUMO

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.


Assuntos
Mutação de Sentido Incorreto/genética , Proteínas/química , Proteínas/genética , Sequência de Aminoácidos , Proteína BRCA1/química , Proteína BRCA1/genética , Biologia Computacional/métodos , Humanos , Aprendizado de Máquina , Modelos Moleculares , Mutação de Sentido Incorreto/fisiologia , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Conformação Proteica , Proteínas/fisiologia
7.
Am J Hum Genet ; 104(5): 861-878, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31006514

RESUMO

Individuals with germline PTEN tumor-suppressor variants have PTEN hamartoma tumor syndrome (PHTS). Clinically, PHTS has variable presentations; there are distinct subsets of PHTS-affected individuals, such as those diagnosed with autism spectrum disorder (ASD) or cancer. It remains unclear why mutations in one gene can lead to such seemingly disparate phenotypes. Therefore, we sought to determine whether it is possible to predict a given PHTS-affected individual's a priori risk of ASD, cancer, or the co-occurrence of both phenotypes. By integrating network proximity analysis performed on the human interactome, molecular simulations, and residue-interaction networks, we demonstrate the role of conformational dynamics in the structural communication and long-range allosteric regulation of germline PTEN variants associated with ASD or cancer. We show that the PTEN interactome shares significant overlap with the ASD and cancer interactomes, providing network-based evidence that PTEN is a crucial player in the biology of both disorders. Importantly, this finding suggests that a germline PTEN variant might perturb the ASD or cancer networks differently, thus favoring one disease outcome at any one time. Furthermore, protein-dynamic structural-network analysis reveals small-world structural communication mediated by highly conserved functional residues and potential allosteric regulation of PTEN. We identified a salient structural-communication pathway that extends across the inter-domain interface for cancer-only mutations. In contrast, the structural-communication pathway is predominantly restricted to the phosphatase domain for ASD-only mutations. Our integrative approach supports the prediction and potential modulation of the relevant conformational states that influence structural communication and long-range perturbations associated with mutational effects that lead to PTEN-ASD or PTEN-cancer phenotypes.


Assuntos
Transtorno Autístico/genética , Redes Reguladoras de Genes , Mutação em Linhagem Germinativa , Simulação de Dinâmica Molecular , Neoplasias/genética , PTEN Fosfo-Hidrolase/química , Regulação Alostérica , Transtorno Autístico/patologia , Humanos , Neoplasias/patologia , PTEN Fosfo-Hidrolase/genética , Fenótipo , Conformação Proteica , Termodinâmica
8.
FASEB J ; 35(10): e21943, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34582065

RESUMO

Neural cells are continuously subjected to oxidative stress arising from electrochemical activity, and cellular protection systems can turn on the oxidative stress response to detect and alleviate adverse conditions. However, the function and mechanism of the protective systems are complicated and remain largely elusive. We report that PTENα, an isoform of the PTEN family, mediates defense signaling in response to oxidative stress during brain aging. We show that genetic ablation of Ptenα in mice increases oxidative stress and results in neuronal cell death, culminating in accelerated decline of cognition and motor coordination as age increases. PTENα maintains COX activity and promotes energy metabolism through abrogating NEDD4L-mediated degradation of COX4 in response to oxidative stress. In the presence of Parkinson's disease-associated mutation, PTENα loses the capability to protect COX4 and ameliorate defects caused by Ptenα deletion. Our study reveals an important role of PTENα in response to oxidative stress. We propose that dysregulation of PTENα signaling may accelerate the rate of brain aging and promote the development of neurodegenerative disorders.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Envelhecimento/genética , Animais , Encéfalo/citologia , Linhagem Celular , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Masculino , Camundongos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Neurônios/metabolismo , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética
9.
J Chem Inf Model ; 62(17): 4175-4190, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36001481

RESUMO

The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene encodes a tightly regulated dual-specificity phosphatase that serves as the master regulator of PI3K/AKT/mTOR signaling. The carboxy-terminal tail (CTT) is key to regulation and harbors multiple phosphorylation sites (Ser/Thr residues 380-385). CTT phosphorylation suppresses the phosphatase activity by inducing a stable, closed conformation. However, little is known about the mechanisms of phosphorylation-induced CTT-deactivation dynamics. Using explicit solvent microsecond molecular dynamics simulations, we show that CTT phosphorylation leads to a partially collapsed conformation, which alters the secondary structure of PTEN and induces long-range conformational rearrangements that encompass the active site. The active site rearrangements prevent localization of PTEN to the membrane, precluding lipid phosphatase activity. Notably, we have identified phosphorylation-induced allosteric coupling between the interdomain region and a hydrophobic site neighboring the active site in the phosphatase domain. Collectively, the results provide a mechanistic understanding of CTT phosphorylation dynamics and reveal potential druggable allosteric sites in a previously believed clinically undruggable protein.


Assuntos
PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases , Simulação de Dinâmica Molecular , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Transdução de Sinais
10.
Genomics ; 113(1 Pt 2): 999-1017, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152507

RESUMO

An extensively studied cancer and Autism Spectrum Disorders (ASD) gene like PTEN provided an exclusive opportunity to map its mutational-landscape, compare and establish plausible genotypic predictors of ASD-associated phenotypic outcomes. Our exhaustive in silico analysis on 4252 SNPs using >30 tools identified increased mutational-density in exon7. Phosphatase domain, although evolutionarily conserved, had the most nsSNPs localised within signature regions. The evolutionarily variable C-terminal side contained the highest truncating-SNPs outside signature regions of C2 domain and most PTMs within C-tail site which displayed maximum intolerance to polymorphisms, and permitted benign but destabilising nsSNPs that enhanced its intrinsically-disordered nature. ASD-associated SNPs localised within ATP-binding motifs and Nuclear-Localising-Sequences were the most potent triggers of ASD manifestation. These, along with variations within P, WPD and TI loops, M1 within phosphatase domain, M2 and MoRFs of C2 domain, caused severe long-range conformational fluctuations altering PTEN's dynamic stability- not observed in variations outside signature regions. 3'UTR-SNPs affected 44 strong miRNA brain-specific targets; several 5' UTR-SNPs targeted transcription-factor POLR2A and 10 pathogenic Splice-Affecting-Variants were identified.


Assuntos
Transtorno do Espectro Autista/genética , Mutação , PTEN Fosfo-Hidrolase/genética , Biologia Computacional , Sequência Conservada , Redes Reguladoras de Genes , Humanos , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Polimorfismo de Nucleotídeo Único , Domínios Proteicos
11.
Biochemistry ; 60(5): 357-364, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33470109

RESUMO

WWP1 is an E3 ubiquitin ligase that has been reported to target the tumor suppressor lipid phosphatase PTEN. K740N and N745S are recently identified germline variants of WWP1 that have been linked to PTEN-associated cancers [Lee, Y. R., et al. (2020) N. Engl. J. Med.]. These WWP1 variants have been suggested to release WWP1 from its native autoinhibited state, thereby promoting enhanced PTEN ubiquitination as a mechanism for driving cancer. Using purified proteins and in vitro enzymatic assays, we investigate the possibility that K740N and N745S WWP1 possess enhanced ubiquitin ligase activity and demonstrate that these variants are similar to the wild type (WT) in both autoubiquitination and PTEN ubiquitination. Furthermore, K740N and N745S WWP1 show dependencies similar to those of WT in terms of allosteric activation by an engineered ubiquitin variant, upstream E2 concentration, and substrate ubiquitin concentration. Transfected WWP1 WT and mutants demonstrate comparable effects on cellular PTEN levels. These findings challenge the idea that K740N and N745S WWP1 variants promote cancer by enhanced PTEN ubiquitination.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Células Germinativas/metabolismo , Humanos , Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/química , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Ubiquitinas/metabolismo
12.
J Biol Chem ; 295(2): 645-656, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31806702

RESUMO

Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive function mainly through the Rho-GTPase-activating protein (RhoGAP) domain. When activated, the domain promotes the hydrolysis of RhoA-GTP, leading to reduced cell migration. DLC1 is kept in an inactive state by an intramolecular interaction between its RhoGAP domain and the DLC1 sterile α motif (SAM) domain. We have shown previously that this autoinhibited state of DLC1 may be alleviated by tensin-3 (TNS3) or PTEN. We show here that the TNS3/PTEN-DLC1 interactions are mediated by the C2 domains of the former and the SAM domain of the latter. Intriguingly, the DLC1 SAM domain was capable of binding to specific peptide motifs within the C2 domains. Indeed, peptides containing the binding motifs were highly effective in blocking the C2-SAM domain-domain interaction. Importantly, when fused to the tat protein-transduction sequence and subsequently introduced into cells, the C2 peptides potently promoted the RhoGAP function in DLC1, leading to decreased RhoA activation and reduced tumor cell growth in soft agar and migration in response to growth factor stimulation. To facilitate the development of the C2 peptides as potential therapeutic agents, we created a cyclic version of the TNS3 C2 domain-derived peptide and showed that this peptide readily entered the MDA-MB-231 breast cancer cells and effectively inhibited their migration. Our work shows, for the first time, that the SAM domain is a peptide-binding module and establishes the framework on which to explore DLC1 SAM domain-binding peptides as potential therapeutic agents for cancer treatment.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Proteínas Ativadoras de GTPase/química , Células HEK293 , Humanos , Modelos Moleculares , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Motivo Estéril alfa , Tensinas/química , Tensinas/metabolismo , Proteínas Supressoras de Tumor/química , Proteína rhoA de Ligação ao GTP/química
13.
J Endocrinol Invest ; 44(10): 2165-2174, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33543443

RESUMO

PURPOSE: BGL3, a novel long non-coding RNA (lncRNA) that plays a crucial role in several human malignancies. However, the clinical significance and biological function of BGL3 in papillary thyroid carcinoma (PTC) have not been explored. Herein, we aimed to investigate the role of BGL3 in human PTC. METHODS: A total of 85 pairs of PTC and normal tissues were collected for clinicopathological analysis. Expression of BGL3 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The effects of BGL3 on PTC cells ware determined by CCK-8, colony formation, EdU and wound healing assays. The molecular mechanism underlying BGL3 was tested by ChIP, Co-IP, RNA pull-down and luciferase reporter assays. In vivo experiments were conducted using xenografts in nude mice. RESULTS: BGL3 was significantly decreased in PTC tissues compared to adjacent normal thyroid tissues, and it was transcriptionally repressed by oncogene Myc. Low BGL3 is positively related to larger tumor size, lymph node metastasis, later TNM stage and poor prognosis. Overexpression of BGL3 inhibited PTC cell proliferation and migration in vitro, and reduced tumor size and lung metastasis nodules in vivo. BGL3 was mainly located in the cytoplasm, in which interacted with PTEN and recruited OTUD3, enhancing the de-ubiquitination effect of OTUD3 on PTEN, resulting in increasing PTEN protein stability and inactivating carcinogenic PI3K/AKT signaling. CONCLUSIONS: Our data underscore the critical tumor-inhibiting role of BGL3 in PTC via post-translational regulation of PTEN protein stability, which may serve as a novel therapeutic target and prognostic biomarker in human PTC.


Assuntos
Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/metabolismo , RNA Longo não Codificante/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Proteases Específicas de Ubiquitina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Células Tumorais Cultivadas , Proteases Específicas de Ubiquitina/genética , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochemistry ; 59(41): 3993-4002, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32970423

RESUMO

While loop motifs frequently play a major role in protein function, our understanding of how to rationally engineer proteins with novel loop domains remains limited. In the absence of rational approaches, the incorporation of loop domains often destabilizes proteins, thereby requiring massive screening and selection to identify sites that can accommodate loop insertion. We developed a computational strategy for rapidly scanning the entire structure of a scaffold protein to determine the impact of loop insertion at all possible amino acid positions. This approach is based on the Rosetta kinematic loop modeling protocol and was demonstrated by identifying sites in lipase that were permissive to insertion of the LAP peptide. Interestingly, the identification of permissive sites was dependent on the contribution of the residues in the near-loop environment on the Rosetta score and did not correlate with conventional structural features (e.g., B-factors). As evidence of this, several insertion sites (e.g., following residues 17, 47-49, and 108), which were predicted and confirmed to be permissive, interrupted helices, while others (e.g., following residues 43, 67, 116, 119, and 121), which are situated in loop regions, were nonpermissive. This approach was further shown to be predictive for ß-glucosidase and human phosphatase and tensin homologue (PTEN), and to facilitate the engineering of insertion sites through in silico mutagenesis. By enabling the design of loop-containing protein libraries with high probabilities of soluble expression, this approach has broad implications in many areas of protein engineering, including antibody design, improving enzyme activity, and protein modification.


Assuntos
Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Humanos , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Engenharia de Proteínas/métodos , Estrutura Secundária de Proteína
15.
J Biol Chem ; 294(46): 17421-17436, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578285

RESUMO

NEDD4-1 E3 ubiquitin protein ligase (NEDD4-1) and WW domain-containing E3 ubiquitin ligase (WWP2) are HECT family ubiquitin E3 ligases. They catalyze Lys ubiquitination of themselves and other proteins and are important in cell growth and differentiation. Regulation of NEDD4-1 and WWP2 catalytic activities is important for controlling cellular protein homeostasis, and their dysregulation may lead to cancer and other diseases. Previous work has implicated noncatalytic regions, including the C2 domain and/or WW domain linkers in NEDD4-1 and WWP2, in contributing to autoinhibition of the catalytic HECT domains by intramolecular interactions. Here, we explored the molecular mechanisms of these NEDD4-1 and WWP2 regulatory regions and their interplay with allosteric binding proteins such as Nedd4 family-interacting protein (NDFIP1), engineered ubiquitin variants, and linker phosphomimics. We found that in addition to influencing catalytic activities, the WW domain linker regions in NEDD4-1 and WWP2 can impact product distribution, including the degree of polyubiquitination and Lys-48 versus Lys-63 linkages. We show that allosteric activation by NDFIP1 or engineered ubiquitin variants is largely mediated by relief of WW domain linker autoinhibition. WWP2-mediated ubiquitination of WW domain-binding protein 2 (WBP2), phosphatase and tensin homolog (PTEN), and p62 proteins by WWP2 suggests that substrate ubiquitination can also be influenced by WW linker autoinhibition, although to differing extents. Overall, our results provide a deeper understanding of the intricate and multifaceted set of regulatory mechanisms in the control of NEDD4-1-related ubiquitin ligases.


Assuntos
Proteínas de Transporte/genética , Proteínas de Membrana/genética , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Lisina/química , Proteínas de Membrana/química , Ubiquitina-Proteína Ligases Nedd4/química , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitinação/genética
16.
Biochem Genet ; 58(3): 399-411, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32020391

RESUMO

Phosphatase and the tensin homologue deleted on chromosome ten (PTEN) has pleiotropic effects on cell growth, organ development, glucose metabolism and insulin resistance in mammals. In the present study, we investigated the molecular characteristics, phylogeny and expression profile of the PTEN gene in different tissues of Jianzhou Daer goats. In this study, eight different tissues from E90, E135 and D90 female goats were collected to quantify the expression pattern of the PTEN gene using quantitative real-time PCR (qPCR), western blotting and FISH. In addition, the dynamic expression of PTEN was also determined during the differentiation of goat precursor adipose cells. A 1212-bp fragment (accession number MG923848), encoding a 403-amino acid protein with a putative molecular weight of 47.14 kDa, was identified in Jianzhou Daer goats by reverse-transcription polymerase chain reaction (RT-PCR). The phylogenetic tree showed that caprine PTEN had a relatively close relationship with ovine PTEN and bovine PTEN. qPCR revealed that PTEN was highly expressed in the liver, lung and spleen, while the lowest expression levels were observed in muscle tissues (P < 0.05). Moreover, the expression of the PTEN gene showed a decreasing trend during the differentiation of goat precursor adipose cells. RNA in situ hybridization yielded a consistent result with the qPCR data. Indeed, low protein expression was found in psoas major muscle and longissimus dorsi muscle, as well as in kidney and liver. However, PTEN protein was expressed at the highest level in the brain. The expression levels of PTEN mRNA and protein were inconsistent with each other, possibly because of post-transcriptional regulation. The findings obtained in our study lay a foundation for further investigations examining the caprine PTEN gene in embryo and organ development.


Assuntos
Cabras/genética , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Filogenia , Transcriptoma , Adipócitos/metabolismo , Animais , Encéfalo/metabolismo , Bovinos/genética , Diferenciação Celular/genética , Células Cultivadas , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cabras/embriologia , PTEN Fosfo-Hidrolase/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Ovinos/genética
17.
Hum Mutat ; 40(9): 1495-1506, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184403

RESUMO

Thermodynamic stability is a fundamental property shared by all proteins. Changes in stability due to mutation are a widespread molecular mechanism in genetic diseases. Methods for the prediction of mutation-induced stability change have typically been developed and evaluated on incomplete and/or biased data sets. As part of the Critical Assessment of Genome Interpretation, we explored the utility of high-throughput variant stability profiling (VSP) assay data as an alternative for the assessment of computational methods and evaluated state-of-the-art predictors against over 7,000 nonsynonymous variants from two proteins. We found that predictions were modestly correlated with actual experimental values. Predictors fared better when evaluated as classifiers of extreme stability effects. While different methods emerging as top performers depending on the metric, it is nontrivial to draw conclusions on their adoption or improvement. Our analyses revealed that only 16% of all variants in VSP assays could be confidently defined as stability-affecting. Furthermore, it is unclear as to what extent VSP abundance scores were reasonable proxies for the stability-related quantities that participating methods were designed to predict. Overall, our observations underscore the need for clearly defined objectives when developing and using both computational and experimental methods in the context of measuring variant impact.


Assuntos
Biologia Computacional/métodos , Metiltransferases/química , Mutação , PTEN Fosfo-Hidrolase/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metiltransferases/genética , PTEN Fosfo-Hidrolase/genética , Estabilidade Proteica
18.
J Cell Biochem ; 120(9): 15851-15866, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31074114

RESUMO

Genetic and epigenetic anomalies accountable for genetic dysregulation are the most common aberrations that determine the underlying heterogeneity of the tumor cells. Currently, phosphatase and tensin homolog (PTEN) incongruity has emerged as potent and persuasive malfunctioning in varied human malignancies. In this study, we have analysed the promoter hypermethylation and expression status of PTEN. We identified different mutations in the exonic region of PTEN. Functional consequences of these mutations were explored using in silico techniques. Promoter hypermethylation of PTEN was detected using methylation-specific polymerase chain reaction (MS-PCR), expression analysis was performed with immunohistochemistry (IHC) and mutation by direct sequencing in a total of 168 uterine cervix tumor cases. The findings were statistically correlated with the clinical parameters. In addition, the effect of nonsynonymous mutations was studied with molecular dynamics simulations. PTEN promoter hypermethylation (45.8%) was found to be significantly associated with the of PTEN loss (57.14%, P < 0.0001). Tumor stages, tumor size, lymph node (LN) were found to be significantly correlated with both PTEN promoter hypermethylation and PTEN loss. Histological grade, however, showed a significant association with only PTEN loss. In total, 11.76% of tumors exhibited mutations in exon 5 and 7, out of which E150K of exon 5 showed the highest deviations in the crystal structure of PTEN by in silico analysis. This study provides valuable insights into oncology and paves the path in the development of efficient biomarker and/or imperative therapeutic tool for cervical cancer treatment.


Assuntos
Metilação de DNA , Mutação , PTEN Fosfo-Hidrolase/genética , Neoplasias do Colo do Útero/genética , Adulto , Simulação por Computador , Cristalografia por Raios X , Epigênese Genética , Éxons , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Índia , Pessoa de Meia-Idade , Modelos Moleculares , Simulação de Dinâmica Molecular , Estadiamento de Neoplasias , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Regiões Promotoras Genéticas , Conformação Proteica , Análise de Sequência de DNA/métodos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
19.
Nat Methods ; 13(11): 925-927, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27669326

RESUMO

Expressed protein ligation is a valuable method for protein semisynthesis that involves the reaction of recombinant protein C-terminal thioesters with N-terminal cysteine (N-Cys)-containing peptides, but the requirement of a Cys residue at the ligation junction can limit the utility of this method. Here we employ subtiligase variants to efficiently ligate Cys-free peptides to protein thioesters. Using this method, we have more accurately determined the effect of C-terminal phosphorylation on the tumor suppressor protein PTEN.


Assuntos
PTEN Fosfo-Hidrolase/síntese química , Fragmentos de Peptídeos/síntese química , Peptídeo Sintases/química , Proteínas Recombinantes/síntese química , Subtilisinas/química , Animais , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Western Blotting , Domínio Catalítico , Células Cultivadas , Cisteína/química , Escherichia coli/enzimologia , Escherichia coli/genética , Fibroblastos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Peptídeo Sintases/genética , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Subtilisinas/genética
20.
Mol Biol Rep ; 46(5): 5103-5112, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31290055

RESUMO

The therapeutic application of recombinant proteins is limited due to their inherent structural complexity. Additionally, screening of therapeutic potential of protein products requires an appropriate testing platform to achieve biological relevance. Fabrication of three dimensional cultures bridges the gap between in vitro based monolayer cultures and clinical applications. In this perspective, glioblastoma U-87 MG and breast cancer MCF7 spheroids were generated to assess the therapeutic prospect of recombinant PTEN protein. PTEN bound to silver nanoclusters was encapsulated within PEG coating, which resulted in fabrication of spherical nanocarriers named as PTEN-nanocomposites. Internalization of PTEN-nanocomposites in the spheroids was confirmed by confocal microscopy. Upon uptake, PTEN-nanocomposites led to modulation of cyclins and apoptosis gene regulators culminating in cell cycle arrest and reduced cell viability as confirmed by calcein-AM/PI dual staining and alamar blue assay. Further, combination of tamoxifen and PTEN-nanocomposites on U-87 MG spheroids resulted in two-fold reduction of drug dosage. The study revealed that the monolayer culture results translated to the 3D culture as well, however higher dose of the recombinant PTEN was required for the spheroid system. The anti-proliferative role of PTEN-nanocomposites in a complex 3D environment augments its biological implication and paves the way for recombinant PTEN based therapeutic applications.


Assuntos
PTEN Fosfo-Hidrolase/farmacologia , Polietilenoglicóis/química , Esferoides Celulares/citologia , Tamoxifeno/farmacologia , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Nanopartículas Metálicas , Microscopia Confocal , Nanocompostos , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA