Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 387(2): 167-78, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463139

RESUMO

Avian feathers have robust growth and regeneration capability. To evaluate the contribution of signaling molecules and pathways in these processes, we profiled gene expression in the feather follicle using an absolute quantification approach. We identified hundreds of genes that mark specific components of the feather follicle: the dermal papillae (DP) which controls feather regeneration and axis formation, the pulp mesenchyme (Pp) which is derived from DP cells and nourishes the feather follicle, and the ramogenic zone epithelium (Erz) where a feather starts to branch. The feather DP is enriched in BMP/TGF-ß signaling molecules and inhibitors for Wnt signaling including Dkk2/Frzb. Wnt ligands are mainly expressed in the feather epithelium and pulp. We find that while Wnt signaling is required for the maintenance of DP marker gene expression and feather regeneration, excessive Wnt signaling delays regeneration and reduces pulp formation. Manipulating Dkk2/Frzb expression by lentiviral-mediated overexpression, shRNA-knockdown, or by antibody neutralization resulted in dual feather axes formation. Our results suggest that the Wnt signaling in the proximal feather follicle is fine-tuned to accommodate feather regeneration and axis formation.


Assuntos
Plumas/fisiologia , Glicoproteínas/metabolismo , Regeneração/genética , Animais , Anticorpos Neutralizantes/imunologia , Padronização Corporal/genética , Padronização Corporal/imunologia , Galinhas , Epitélio/metabolismo , Perfilação da Expressão Gênica , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Mesoderma/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Pele/embriologia , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo , Xenopus laevis
2.
J Immunol ; 186(2): 649-56, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21209287

RESUMO

The identification of the Drosophila melanogaster Toll pathway cascade and the subsequent characterization of TLRs have reshaped our understanding of the immune system. Ever since, Drosophila NF-κB signaling has been actively studied. In flies, the Toll receptors are essential for embryonic development and immunity. In total, nine Toll receptors are encoded in the Drosophila genome, including the Toll pathway receptor Toll. The induction of the Toll pathway by gram-positive bacteria or fungi leads to the activation of cellular immunity as well as the systemic production of certain antimicrobial peptides. The Toll receptor is activated when the proteolytically cleaved ligand Spatzle binds to the receptor, eventually leading to the activation of the NF-κB factors Dorsal-related immunity factor or Dorsal. In this study, we review the current literature on the Toll pathway and compare the Drosophila and mammalian NF-κB pathways.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/metabolismo , Transdução de Sinais/imunologia , Receptores Toll-Like/fisiologia , Animais , Padronização Corporal/genética , Padronização Corporal/imunologia , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/imunologia , Embrião não Mamífero/metabolismo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/fisiologia , Ligação Proteica/genética , Ligação Proteica/imunologia , Transdução de Sinais/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
3.
Int J Dev Biol ; 52(8): 1123-33, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18956346

RESUMO

The complement system is the central component of innate immunity and an important player in the adaptive immunity of vertebrates. We analyzed the expression patterns of several key members of the complement cascade during Xenopus development. We found extensive expression of these molecules already during gastrula/early neurula stage. Remarkably, several genes also showed an organ-specific expression pattern during early organogenesis. Early expression is notable for two different expression patterns in the neuroectoderm. In one group, there is early strong neural plate and neural precursor expression. This is the case of properdin, C1qA, C3 and C9. The second pattern, seen with C1qR and C6, is noteworthy for its expression at the periphery of the neural plate, in the presumptive neural crest. Two genes stand out for their predominantly mesodermal expression. C3aR, the message for the cognate receptor for C3 in the complement cascade, is expressed at the same time as C3, but in a complementary, reciprocal pattern in the mesoderm. C1qA expression also predominates in somites, pronephros, visceral mesoderm and ventral blood islands. Finally, several genes are characterized by later expression in developing organs. C1qR displays a reticular pattern consistent with expression in the developing vasculature. The late expression of C1qA and C3bC4b is strongest in the pronephros. Finally, the expression of properdin in the hindbrain and in the developing lens are novel findings. The expression patterns of these molecules suggest that these components of the complement system may have in Xenopus a so far undefined developmental role.


Assuntos
Padronização Corporal/genética , Padronização Corporal/imunologia , Proteínas do Sistema Complemento/genética , Xenopus laevis/embriologia , Xenopus laevis/imunologia , Animais , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/imunologia , Complemento C1q/genética , Complemento C3/genética , Complemento C9/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Cristalino/embriologia , Cristalino/imunologia , Mesoderma/embriologia , Mesoderma/imunologia , Tubo Neural/embriologia , Tubo Neural/imunologia , Organogênese/genética , Organogênese/imunologia , Properdina/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/imunologia , Xenopus laevis/genética
4.
Dev Biol ; 224(2): 250-62, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10926764

RESUMO

The dorsal-ventral axis of amphibian embryos is specified by the "cortical rotation," a translocation of the egg cortex relative to the vegetal yolk mass. The mechanism of cortical rotation is not understood but is thought to involve an array of aligned, commonly oriented microtubules. We have demonstrated an essential requirement for kinesin-related proteins (KRPs) in the cortical rotation by microinjection beneath the vegetal cortex of an antipeptide antibody recognising multiple Xenopus egg KRPs. Time-lapse videomicroscopy revealed a striking local inhibition of the cortical rotation around the injection site, indicating that KRP-mediated translocation of the cortex is generated by forces acting across the vegetal subcortical region. Anti-tubulin immunofluorescence showed that the antibody disrupted both formation and maintenance of the aligned microtubule array. Direct examination of rhodamine-labelled microtubules by confocal microscopy showed that the anti-KRP antibody provoked striking three-dimensional flailing movement of the subcortical microtubules. In contrast, microtubules in antibody-free regions undulated only within the plane of the cortex, a significant population exhibiting little or no net movement. These findings suggest that KRPs have a critical role during cortical rotation in tethering microtubules to the cortex and that they may not contribute significantly to the translocation force as previously thought.


Assuntos
Anticorpos Monoclonais/imunologia , Padronização Corporal/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Proteínas Musculares/imunologia , Animais , Feminino , Cinesinas , Xenopus/embriologia , Proteínas de Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA