Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(22): 11921-11930, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31724696

RESUMO

DNA can form many structures beyond the canonical Watson-Crick double helix. It is now clear that noncanonical structures are present in genomic DNA and have biological functions. G-rich G-quadruplexes and C-rich i-motifs are the most well-characterized noncanonical DNA motifs that have been detected in vivo with either proscribed or postulated biological roles. Because of their independent sequence requirements, these structures have largely been considered distinct types of quadruplexes. Here, we describe the crystal structure of the DNA oligonucleotide, d(CCAGGCTGCAA), that self-associates to form a quadruplex structure containing two central antiparallel G-tetrads and six i-motif C-C+ base pairs. Solution studies suggest a robust structural motif capable of assembling as a tetramer of individual strands or as a dimer when composed of tandem repeats. This hybrid structure highlights the growing structural diversity of DNA and suggests that biological systems may harbor many functionally important non-duplex structures.


Assuntos
Pareamento de Bases/fisiologia , DNA/química , Quadruplex G , Motivos de Nucleotídeos/fisiologia , Bário/química , Bário/farmacologia , Pareamento de Bases/efeitos dos fármacos , Cristalografia por Raios X , Estabilidade de Medicamentos , Quadruplex G/efeitos dos fármacos , Ligação de Hidrogênio/efeitos dos fármacos , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Motivos de Nucleotídeos/efeitos dos fármacos , Oligonucleotídeos/química
2.
Biochemistry ; 59(35): 3225-3234, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32786414

RESUMO

RNA helices are often punctuated with non-Watson-Crick features that may be targeted by chemical compounds, but progress toward identifying such compounds has been slow. We embedded a tandem UU:GA mismatch motif (5'-UG-3':5'-AU-3') within an RNA hairpin stem to identify compounds that bind the motif specifically. The three-dimensional structure of the RNA hairpin and its interaction with a small molecule identified through virtual screening are presented. The G-A mismatch forms a sheared pair upon which the U-U base pair stacks. The hydrogen bond configuration of the U-U pair involves O2 of the U adjacent to the G and O4 of the U adjacent to the A. The G-A and U-U pairs are flanked by A-U and G-C base pairs, respectively, and the stability of the mismatch is greater than when the motif is within the context of other flanking base pairs or when the 5'-3' orientation of the G-A and U-U pairs is swapped. Residual dipolar coupling constants were used to generate an ensemble of structures against which a virtual screen of 64480 small molecules was performed. The tandem mismatch was found to be specific for one compound, 2-amino-1,3-benzothiazole-6-carboxamide, which binds with moderate affinity but extends the motif to include the flanking A-U and G-C base pairs. The finding that the affinity for the UU:GA mismatch is dependent on flanking sequence emphasizes the importance of the motif context and potentially increases the number of small noncanonical features within RNA that can be specifically targeted by small molecules.


Assuntos
Pareamento Incorreto de Bases , Benzotiazóis/farmacocinética , RNA/química , RNA/metabolismo , Amidas/farmacocinética , Pareamento Incorreto de Bases/efeitos dos fármacos , Pareamento de Bases/efeitos dos fármacos , Sequência de Bases/fisiologia , Fenômenos Biofísicos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/efeitos dos fármacos , RNA não Traduzido/química , RNA não Traduzido/efeitos dos fármacos , RNA não Traduzido/metabolismo , Especificidade por Substrato , Termodinâmica
3.
J Mol Recognit ; 33(1): e2812, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531903

RESUMO

Polyphenols are secondary plant metabolites, which have received much attention because of their potential health benefits. Silibinin (SIL) is a well-known naturally occurring flavonolignan, which is extensively used in treating a wide variety of diseases as a dietary supplement as well as a prescribed drug. The mechanism of binding of SIL to calf thymus DNA (ctDNA) was investigated by employing multispectroscopic techniques, viz., absorption, fluorescence, and circular dichroism besides viscosity measurements and docking studies. Analysis of fluorescence results indicated that SIL has interacted with ctDNA and quenched its intensity through static quenching mechanism. The binding constant at room temperature was found to be 2.48×104 mol-1 , suggesting moderate binding affinity between SIL and ctDNA. The hypochromicity observed in the absorption spectra of ctDNA in the presence of SIL revealed the intercalation of SIL into ctDNA base pairs. Further, the intercalative mode of binding between SIL and ctDNA was confirmed by viscosity measurements and molecular docking studies. The outcome of present study helps to decipher the interaction mechanism between SIL and DNA at physiological pH, which further assists in the design of a new analogue for better therapeutic effects.


Assuntos
Pareamento de Bases/efeitos dos fármacos , DNA/metabolismo , Flavonoides/metabolismo , Substâncias Intercalantes/metabolismo , Silibina/metabolismo , Dicroísmo Circular , Ligação de Hidrogênio , Simulação de Acoplamento Molecular/métodos , Viscosidade/efeitos dos fármacos
4.
Nucleic Acids Res ; 46(18): e108, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29931115

RESUMO

Fluorophore-linked, sequence-specific DNA binding reagents can visualize sequence information on a large DNA molecule. In this paper, we synthesized newly designed TAMRA-linked polypyrrole to visualize adenine and thymine base pairs. A fluorescent image of the stained DNA molecule generates an intensity profile based on A/T frequency, revealing a characteristic sequence composition pattern. Computer-aided comparison of this intensity pattern with the genome sequence allowed us to determine the DNA sequence on a visualized DNA molecule from possible intensity profile pattern candidates for a given genome. Moreover, TAMRA-polypyrrole offers robust advantages for single DNA molecule detection: no fluorophore-mediated photocleavage and no structural deformation, since it exhibits a sequence-specific pattern alone without the use of intercalating dyes such as YOYO-1. Accordingly, we were able to identify genomic DNA fragments from Escherichia coli cells by aligning them to the genomic A/T frequency map based on TAMRA-polypyrrole-generated intensity profiles. Furthermore, we showed band and interband patterns of polytene chromosomal DNA stained with TAMRA-polypyrrole because it prefers to bind AT base pairs.


Assuntos
Pareamento de Bases , DNA/química , Substâncias Intercalantes , Polímeros/química , Pirróis/química , Rodaminas/química , Coloração e Rotulagem/métodos , Adenina/química , Adenina/metabolismo , Pareamento de Bases/efeitos dos fármacos , Sequência de Bases , Benzoxazóis/química , Benzoxazóis/farmacologia , DNA/efeitos dos fármacos , Escherichia coli/genética , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Polímeros/farmacologia , Pirróis/farmacologia , Compostos de Quinolínio/química , Compostos de Quinolínio/farmacologia , Rodaminas/farmacologia , Imagem Individual de Molécula/métodos , Timina/química , Timina/metabolismo
5.
J Am Chem Soc ; 141(34): 13281-13285, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31394899

RESUMO

Studies on DNA-ligand interactions in the cellular environment are problematic due to the lack of suitable biophysical tools. To address this need, we developed an in-cell NMR-based approach for monitoring DNA-ligand interactions inside the nuclei of living human cells. Our method relies on the acquisition of NMR data from cells electroporated with preformed DNA-ligand complexes. The impact of the intracellular environment on the integrity of the complexes is assessed based on in-cell NMR signals from unbound and ligand-bound forms of a given DNA target. This technique was tested on complexes of two model DNA fragments and four ligands, namely, a representative DNA minor-groove binder (netropsin) and ligands binding DNA base-pairing defects (naphthalenophanes). In the latter case, we demonstrate that two of the three in vitro-validated ligands retain their ability to form stable interactions with their model target DNA in cellulo, whereas the third one loses this ability due to off-target interactions with genomic DNA and cellular metabolites. Collectively, our data suggest that direct evaluation of the behavior of drug-like molecules in the intracellular environment provides important insights into the development of DNA-binding ligands with desirable biological activity and minimal side effects resulting from off-target binding.


Assuntos
Anti-Infecciosos/farmacologia , DNA/metabolismo , Naftalenos/farmacologia , Netropsina/farmacologia , Anti-Infecciosos/química , Pareamento de Bases/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA/química , Descoberta de Drogas , Humanos , Ligantes , Naftalenos/química , Netropsina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação de Ácido Nucleico/efeitos dos fármacos
6.
Chembiochem ; 20(17): 2262-2270, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30983115

RESUMO

The impact of 7-deaza-8-azaguanine (DAG) and 7-deaza-8-azaisoguanine (DAiG) modifications on the geometry and stability of the G:C Watson-Crick (cWW) base pair and the G:iC and iG:C reverse Watson-Crick (tWW) base pairs has been characterized theoretically. In addition, the effect on the same base pairs of seven C7-substituted DAG and DAiG derivatives, some of which have been previously experimentally characterized, has been investigated. Calculations indicate that all of these modifications have a negligible impact on the geometry of the above base pairs, and that modification of the heterocycle skeleton has a small impact on the base-pair interaction energies. Instead, base-pair interaction energies are dependent on the nature of the C7 substituent. For the 7-substituted DAG-C cWW systems, a linear correlation between the base-pair interaction energy and the Hammett constant of the 7-substituent is found, with higher interaction energies corresponding to more electron-withdrawing substituents. Therefore, the explored modifications are expected to be accommodated in both parallel and antiparallel nucleic acid duplexes without perturbing their geometry, while the strength of a base pair (and duplex) featuring a DAG modification can, in principle, be tuned by incorporating different substituents at the C7 position.


Assuntos
Azaguanina/farmacologia , Pareamento de Bases/efeitos dos fármacos , Citosina/análogos & derivados , Citosina/química , Ligação de Hidrogênio/efeitos dos fármacos , Azaguanina/análogos & derivados , Azaguanina/química , Estrutura Molecular , Termodinâmica
7.
Bioconjug Chem ; 30(8): 2183-2190, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31246432

RESUMO

A 3-fluoro-6-methylaniline nucleoside was synthesized and incorporated into an oligonucleotide, and its ability to form mercury-mediated base pairs was studied. UV melting experiments revealed increased duplex stability with thymine, guanine, and cytosine opposite to the probe and a clear nucleobase-specific binding preference (T > G > C > A). Moreover, the 3-fluoro group was utilized as a spin label that showed distinct 19F NMR resonance shifts depending on the complementary nucleobase, providing more detailed information on Hg(II)-mediated base pairing.


Assuntos
Compostos de Anilina/química , Pareamento de Bases/efeitos dos fármacos , Sondas de DNA/química , Nucleotídeos/química , Sítios de Ligação , Imagem por Ressonância Magnética de Flúor-19 , Mercúrio/farmacologia
8.
J Chem Inf Model ; 59(9): 3989-3995, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31419117

RESUMO

Phenanthroline derivatives intercalate between base pairs of DNA and produce cytotoxic effects against tumoral cells. Nevertheless, modulation of their efficiency by substitution remains unclear in bibliography. In this work, the effects of methylation of phenanthroline, in number and position, when it intercalates between guanine-cytosine base pairs (GC/CG), were studied with PM6-DH2 and DFT-D methods including dispersion corrections. An analysis of the geometries, electronic structure, and energetics in the interaction was carried out for the studied systems. Our results were compared to experimental works to gain insight on the relation structure-interaction for the intercalated system with cytotoxicity. The trends are explained including not only intrinsic contributions to energy, ΔEPauli, ΔEdisp, ΔEorb, and ΔEelstat, but also the solvation energy, ΔESolv. A subtle balance between the number of stabilizing weak interactions (CH/π, CH/n, etc.) and steric hindrance seems to be related to the efficiency of such drugs.


Assuntos
Pareamento de Bases/efeitos dos fármacos , DNA/química , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Simulação de Dinâmica Molecular , Fenantrolinas/química , Fenantrolinas/farmacologia , Metilação
9.
Chembiochem ; 19(21): 2268-2272, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30160816

RESUMO

The interaction of a macrocyclic tetraoxazole compound, L2H2-4OTD (1), with two aminoalkyl side chains and telomeric i-motif, was investigated by means of electrophoretic mobility shift assay, circular dichroism spectroscopy, mass spectrometry and NMR spectroscopy analyses. The results indicate that 1 interacts with the i-motif structure at two preferred binding sites.


Assuntos
Motivos de Nucleotídeos/efeitos dos fármacos , Oxazóis/química , Oxazóis/farmacologia , Telômero/química , Pareamento de Bases/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Quadruplex G/efeitos dos fármacos , Ligantes , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular
10.
Bioorg Med Chem Lett ; 27(8): 1780-1783, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274634

RESUMO

We report the synthesis of two new artificial nucleobase scaffolds, 1 and 2, featuring adequate hydrogen bonding donors and acceptors for the molecular recognition of U:A and C:G base pairs, respectively. The tethering of these structures to various amino acids and the assessment of these artificial nucleobase-amino acid conjugates as RNA ligands against a model of HCV IRES IIId domain are also reported. Compound 1e displayed the highest affinity (Kd twice lower than neomycin - control). Moreover, it appears that this interaction is enthalpically and entropically favored.


Assuntos
Regiões 5' não Traduzidas/efeitos dos fármacos , Aminoácidos/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Purinas/farmacologia , Pirimidinas/farmacologia , RNA Viral/metabolismo , Aminoácidos/química , Antivirais/química , Pareamento de Bases/efeitos dos fármacos , Sequência de Bases , Hepacivirus/química , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Ligantes , Conformação de Ácido Nucleico , Purinas/química , Pirimidinas/química , RNA Viral/química
11.
Nature ; 478(7367): 132-5, 2011 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-21927003

RESUMO

Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. Bacteriophage T7 gene product 4 is a model hexameric helicase that has been observed to use dTTP, but not ATP, to unwind double-stranded (ds)DNA as it translocates from 5' to 3' along single-stranded (ss)DNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found that T7 helicase binds and hydrolyses ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective maximum rates V(max), Michaelis constants K(M) and concentrations. In contrast, processivity does not follow a simple competitive behaviour and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus they interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.


Assuntos
Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Bacteriófago T7/enzimologia , Biocatálise/efeitos dos fármacos , DNA Helicases/química , DNA Helicases/metabolismo , Subunidades Proteicas/metabolismo , Pareamento de Bases/efeitos dos fármacos , Ligação Competitiva , DNA/química , DNA/metabolismo , DNA Primase/química , DNA Primase/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Hidrólise/efeitos dos fármacos , Cinética , Modelos Biológicos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Subunidades Proteicas/química , Termodinâmica , Nucleotídeos de Timina/metabolismo , Nucleotídeos de Timina/farmacologia
12.
J Bacteriol ; 198(20): 2776-83, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27457718

RESUMO

UNLABELLED: We tested pairwise combinations of classical base analog mutagens in Escherichia coli to study possible mutagen synergies. We examined the cytidine analogs zebularine (ZEB) and 5-azacytidine (5AZ), the adenine analog 2-aminopurine (2AP), and the uridine/thymidine analog 5-bromodeoxyuridine (5BrdU). We detected a striking synergy with the 2AP plus ZEB combination, resulting in hypermutability, a 35-fold increase in mutation frequency (to 53,000 × 10(-8)) in the rpoB gene over that with either mutagen alone. A weak synergy was also detected with 2AP plus 5AZ and with 5BrdU plus ZEB. The pairing of 2AP and 5BrdU resulted in suppression, lowering the mutation frequency of 5BrdU alone by 6.5-fold. Sequencing the mutations from the 2AP plus ZEB combination showed the predominance of two new hot spots for A·T→G·C transitions that are not well represented in either single mutagen spectrum, and one of which is not found even in the spectrum of a mismatch repair-deficient strain. The strong synergy between 2AP and ZEB could be explained by changes in the dinucleoside triphosphate (dNTP) pools. IMPORTANCE: Although mutagens have been widely studied, the mutagenic effects of combinations of mutagens have not been fully researched. Here, we show that certain pairwise combinations of base analog mutagens display synergy or suppression. In particular, the combination of 2-aminopurine and zebularine, analogs of adenine and cytidine, respectively, shows a 35-fold increased mutation frequency compared with that of either mutagen alone. Understanding the mechanism of synergy can lead to increased understanding of mutagenic processes. As combinations of base analogs are used in certain chemotherapy regimens, including those involving ZEB and 5AZ, these results indicate that testing the mutagenicity of all drug combinations is prudent.


Assuntos
Azacitidina/toxicidade , Pareamento de Bases/efeitos dos fármacos , Bromodesoxiuridina/toxicidade , Citidina/análogos & derivados , Escherichia coli/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Azacitidina/química , Bromodesoxiuridina/química , Citidina/química , Citidina/toxicidade , Sinergismo Farmacológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagênicos/química
13.
Top Curr Chem ; 356: 165-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24577608

RESUMO

DNA site-specifically modified with a photosensitizer (Sens) was synthesized and the charge-separation and charge-recombination dynamics in DNA were studied. We specifically focused on the formation of the long-lived charge-separated state whose lifetime (τ) is longer than 0.1 µs. The quantum yields of the formation of the charge-separated states (Φ) upon the photoexcitation of the Sens, and the τ were measured using the laser flash photolysis technique. We utilized naphthalimide (NI), naphthaldiimide (ND), and anthraquinone (AQ) as a Sens to investigate the mechanism of the formation of the charge-separated state in DNA via rapid positive charge (hole) transfer between adenine and thymine (A-T) base-pairs. By replacing some T bases in the A-T stretch with 5-bromouracil ((br)U), the charge-separation was shown to occur via the photoinduced charge-injection into the second and further neighboring As to the Sens. On the other hand, the generation of a hole on A nearest to Sens ends up with the rapid charge-recombination within a contact ion pair. A long-lived charge-separated state was also generated in DNA when a commonly used fluorophore such asTAMRA, Alexa 532, and ATTO 655, which can only oxidize guanine-cytosine (G-C) base-pair, but not A-T, was used as a Sens. These results suggested that the charge-separation in DNA is a general phenonmenon for fluorescent dyes which fluorescence is quenched only by G-C.


Assuntos
Pareamento de Bases , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Antraquinonas/química , Antraquinonas/farmacologia , Pareamento de Bases/efeitos dos fármacos , Pareamento de Bases/efeitos da radiação , Sequência de Bases , DNA/química , Transporte de Elétrons , Cinética , Dados de Sequência Molecular , Naftalimidas/química , Naftalimidas/farmacologia , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Espectrometria de Fluorescência
14.
J Chem Phys ; 141(3): 035102, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25053341

RESUMO

A recently published coarse-grained DNA model [D. M. Hinckley, G. S. Freeman, J. K. Whitmer, and J. J. de Pablo, J. Chem. Phys. 139, 144903 (2013)] is used to study the hybridization mechanism of DNA oligomers. Forward flux sampling is used to construct ensembles of reactive trajectories from which the effects of sequence, length, and ionic strength are revealed. Heterogeneous sequences are observed to hybridize via the canonical zippering mechanism. In contrast, homogeneous sequences hybridize through a slithering mechanism, while more complex base pair displacement processes are observed for repetitive sequences. In all cases, the formation of non-native base pairs leads to an increase in the observed hybridization rate constants beyond those observed in sequences where only native base pairs are permitted. The scaling of rate constants with length is captured by extending existing hybridization theories to account for the formation of non-native base pairs. Furthermore, that scaling is found to be similar for oligomeric and polymeric systems, suggesting that similar physics is involved.


Assuntos
Pareamento de Bases/efeitos dos fármacos , DNA/química , DNA/genética , Modelos Moleculares , Cloreto de Sódio/farmacologia , Sequência de Bases , Cinética , Hibridização de Ácido Nucleico , Concentração Osmolar , Polimerização/efeitos dos fármacos , Termodinâmica , Água/farmacologia
15.
Biochemistry ; 51(1): 43-51, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22124209

RESUMO

Topoisomerase IB controls DNA topology by cleaving DNA transiently. This property is used by inhibitors, such as camptothecin, that stabilize, by inhibiting the religation step, the cleavage complex, in which the enzyme is covalently attached to the 3'-phosphate of the cleaved DNA strand. These drugs are used in clinics as antitumor agents. Because three-dimensional structural studies have shown that camptothecin derivatives act as base pair mimics and intercalate between two base pairs in the ternary DNA-topoisomerase-inhibitor complex, we hypothesized that base pairs mimics could act like campthotecin and inhibit the religation reaction after the formation of the topoisomerase I-DNA cleavage complex. We show here that three base pair mimics, nucleobases analogues of the aminophenyl-thiazole family, once targeted specifically to a DNA sequence were potent topoisomerase IB inhibitors. The targeting was achieved through covalent linkage to a sequence-specific DNA ligand, a triplex-forming oligonucleotide, and was necessary to position and keep the nucleobase analogue in the cleavage complex. In the absence of triplex formation, only a weak binding to the DNA and topoisomerase I-mediated DNA cleavage was observed. The three compounds were equally active once conjugated, implying that the intercalation of the nucleobase upon triplex formation is the essential feature for the inhibition activity.


Assuntos
DNA Topoisomerases Tipo I/metabolismo , DNA/farmacologia , Marcação de Genes , Mimetismo Molecular , Ácidos Nucleicos Heteroduplexes/farmacologia , Inibidores da Topoisomerase I/farmacologia , Pareamento de Bases/efeitos dos fármacos , Pareamento de Bases/genética , Sequência de Bases , DNA/síntese química , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Pegada de DNA/métodos , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/genética , Marcação de Genes/métodos , Mimetismo Molecular/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico/efeitos dos fármacos , Ácidos Nucleicos Heteroduplexes/síntese química , Inibidores da Topoisomerase I/síntese química
16.
Biophys J ; 100(11): 2745-53, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21641320

RESUMO

Secondary structure formation of nucleic acids strongly depends on salt concentration and temperature. We develop a theory for RNA folding that correctly accounts for sequence effects, the entropic contributions associated with loop formation, and salt effects. Using an iterative expression for the partition function that neglects pseudoknots, we calculate folding free energies and minimum free energy configurations based on the experimentally derived basepairing free energies. The configurational entropy of loop formation is modeled by the asymptotic expression -clnm, where m is the length of the loop and c the loop exponent, which is an adjustable constant. Salt effects enter in two ways: first, we derive salt-induced modifications of the free energy parameters for describing basepairing, and second, we include the electrostatic free energy for loop formation. Both effects are modeled on the Debye-Hückel level including counterion condensation. We validate our theory for two different RNA sequences. For tRNA-phe, the resultant heat capacity curves for thermal denaturation at various salt concentrations accurately reproduce experimental results. For the P5ab RNA hairpin, we derive the global phase diagram in the three-dimensional space spanned by temperature, stretching force, and salt concentration and obtain good agreement with the experimentally determined critical unfolding force. We show that for a proper description of RNA melting and stretching, both salt and loop entropy effects are needed.


Assuntos
Sequências Repetidas Invertidas , Fenômenos Mecânicos , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/química , RNA/genética , Sais/farmacologia , Pareamento de Bases/efeitos dos fármacos , Fenômenos Biomecânicos , Entropia , Desnaturação de Ácido Nucleico/efeitos dos fármacos , RNA/metabolismo
17.
Biophys J ; 101(4): 875-84, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21843478

RESUMO

Homologous pairing and braiding (supercoiling) have crucial effects on genome organization, maintenance, and evolution. Generally, the pairing and braiding processes are discussed in different contexts, independently of each other. However, analysis of electrostatic interactions between DNA double helices suggests that in some situations these processes may be related. Here we present a theory of DNA braiding that accounts for the elastic energy of DNA double helices as well as for the chiral nature of the discrete helical patterns of DNA charges. This theory shows that DNA braiding may be affected, stabilized, or even driven by chiral electrostatic interactions. For example, electrostatically driven braiding may explain the surprising recent observation of stable pairing of homologous double-stranded DNA in solutions containing only monovalent salt. Electrostatic stabilization of left-handed braids may stand behind the chiral selectivity of type II topoisomerases and positive plasmid supercoiling in hyperthermophilic bacteria and archea.


Assuntos
DNA/química , Recombinação Homóloga , Conformação de Ácido Nucleico , Eletricidade Estática , Pareamento de Bases/efeitos dos fármacos , Sequência de Bases , Eletrólitos/farmacologia , Recombinação Homóloga/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , Concentração Osmolar , Homologia de Sequência do Ácido Nucleico , Cloreto de Sódio/farmacologia , Termodinâmica
18.
Bioorg Med Chem ; 19(19): 5896-902, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21903400

RESUMO

To investigate the effect of elongating base-pair (bp) recognition sequences, we synthesized N-methylpyrrole-N-methylimidazole (PI) polyamide conjugates with eight-bp recognition (3-5). The DNA alkylating activities of conjugates 3-5 were evaluated by high-resolution denaturing polyacrylamide gel electrophoresis with a 208-bp DNA fragment. Conjugates 3-5 showed high alkylating activities at nanomolar concentrations. We then addressed the following issue about PI conjugates. Generally, PI polyamide conjugates hardly dissolve in aqueous solution. To improve the aqueous solubility, by the introduction of hydrophilic groups, we synthesized PI polyamide conjugates that were modified with a seco-CBI moiety (6-11). Conjugates 9-11 that were modified by methoxypolyethylene glycol (PEG) 750 acquired moderate solubility and stability in aqueous solution. In addition, conjugates 10 and 11 had high cytotoxicity against A549 and DU145.


Assuntos
Antineoplásicos Alquilantes/química , Nylons/química , Polietilenoglicóis/química , Antineoplásicos Alquilantes/síntese química , Antineoplásicos Alquilantes/toxicidade , Pareamento de Bases/efeitos dos fármacos , Linhagem Celular Tumoral , Desenho de Fármacos , Eletroforese em Gel de Poliacrilamida , Humanos , Imidazóis/química , Nylons/síntese química , Nylons/toxicidade , Pirróis/química , Solubilidade , Água/química
19.
Mol Biol Rep ; 38(6): 3635-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21104133

RESUMO

Aging has been associated with mitochondrial DNA (mtDNA) common deletion (CD). Age changes in the central auditory system are well known to affect speech perception. Base excision repair (BER) is the major type of DNA repair in mitochondria. The current study was designed to investigate potential causative mechanisms of central presbycusis by using a rat mimetic aging model induced by subcutaneous administration of D-galactose (D-gal). Quantitative real-time PCR and Western blotting analyses were performed to identify the mtDNA 4834 bp deletion and selected mitochondrial DNA repair enzymes, DNA polymerase γ (pol γ) and 8-oxoguanine DNA glycosylase (OGG1). Cell apoptosis in the auditory cortex was detected using terminal deoxynucleotidyltransferase mediated UTP nick-end labeling (TUNEL). Our data showed that mtDNA 4834 bp deletion and TUNEL-positive cells were significantly increased and the expression of pol γ and OGG1 were remarkably down-regulated in the auditory cortex in D-gal-treated rats compared to control rats. During aging, increased mtDNA damage likely results from decreased DNA repair capacity in the auditory cortex. DNA repair enzymes such as pol γ and OGG1 may provide novel pharmacological targets to promote DNA repair and rescue the central auditory system in patients with degenerative diseases.


Assuntos
Envelhecimento/efeitos dos fármacos , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Galactose/farmacologia , Envelhecimento/metabolismo , Animais , Apoptose/efeitos dos fármacos , Córtex Auditivo/patologia , Pareamento de Bases/efeitos dos fármacos , Western Blotting , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA Mitocondrial/efeitos dos fármacos , Densitometria , Galactose/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Marcação In Situ das Extremidades Cortadas , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Deleção de Sequência/genética
20.
Nature ; 437(7056): 231-4, 2005 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-16148928

RESUMO

Atomic force microscopes and optical tweezers are widely used to probe the mechanical properties of individual molecules and molecular interactions, by exerting mechanical forces that induce transitions such as unfolding or dissociation. These transitions often occur under nonequilibrium conditions and are associated with hysteresis effects-features usually taken to preclude the extraction of equilibrium information from the experimental data. But fluctuation theorems allow us to relate the work along nonequilibrium trajectories to thermodynamic free-energy differences. They have been shown to be applicable to single-molecule force measurements and have already provided information on the folding free energy of a RNA hairpin. Here we show that the Crooks fluctuation theorem can be used to determine folding free energies for folding and unfolding processes occurring in weak as well as strong nonequilibrium regimes, thereby providing a test of its validity under such conditions. We use optical tweezers to measure repeatedly the mechanical work associated with the unfolding and refolding of a small RNA hairpin and an RNA three-helix junction. The resultant work distributions are then analysed according to the theorem and allow us to determine the difference in folding free energy between an RNA molecule and a mutant differing only by one base pair, and the thermodynamic stabilizing effect of magnesium ions on the RNA structure.


Assuntos
Modelos Químicos , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA/química , RNA/metabolismo , Termodinâmica , Pareamento de Bases/efeitos dos fármacos , Magnésio/farmacologia , Conformação de Ácido Nucleico/efeitos dos fármacos , Probabilidade , RNA/genética , Estabilidade de RNA/efeitos dos fármacos , Reprodutibilidade dos Testes , Distribuições Estatísticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA