RESUMO
Excessive corticosterone (CORT), resulting from a dysregulated hypothalamic-pituitary-adrenal (HPA) axis, is associated with cognitive impairment and behavioral changes, including depression. In Korean oriental medicine, Pedicularis resupinata is used for the treatment of inflammatory diseases such as rheumatoid arthritis. However, the antidepressant properties of P. resupinata have not been well characterized. Here, the antidepressant-like effects of P. resupinata extract (PRE) were evaluated in terms of CORT-induced depression using in vivo models. HPLC confirmed that acteoside, a phenylethanoid glycoside, was the main compound from PRE. Male ICR mice (8 weeks old) were injected with CORT (40 mg/kg, i.p.) and orally administered PRE daily (30, 100, and 300 mg/kg) for 21 consecutive days. Depressive-like behaviors were evaluated using the open-field test, sucrose preference test, passive avoidance test, tail suspension test, and forced swim test. Treatment with a high dose of PRE significantly alleviated CORT-induced, depressive-like behaviors in mice. Additionally, repeated CORT injection markedly reduced brain-derived neurotrophic factor levels, whereas total glucocorticoid receptor (GR) and GR phosphorylation at serine 211 were significantly increased in the mice hippocampus but improved by PRE treatment. Thus, our findings suggest that PRE has potential antidepressant-like effects in CORT-induced, depressive-like behavior in mice.
Assuntos
Corticosterona , Pedicularis , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Corticosterona/efeitos adversos , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/psicologia , Modelos Animais de Doenças , Hipocampo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Sistema Hipófise-Suprarrenal , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Receptores de GlucocorticoidesRESUMO
The plastid genome (plastome) is highly conserved in both gene order and content and has a lower mutation rate than the nuclear genome. However, the plastome is more variable in heterotrophic plants. To date, most such studies have investigated just a few species or only holoheterotrophic groups, and few have examined plastome evolution in recently derived lineages at an early stage of transition from autotrophy to heterotrophy. In this study, we investigated the evolutionary dynamics of plastomes in the monophyletic and recently derived Pedicularis sect. Cyathophora (Orobanchaceae). We obtained 22 new plastomes, 13 from the six recognized species of section Cyathophora, six from hemiparasitic relatives and three from autotrophic relatives. Comparative analyses of gene content, plastome structure and selection pressure showed dramatic differences among species in section Cyathophora and in Pedicularis as a whole. In comparison with autotrophic relatives and other Pedicularis spp., we found that the inverted repeat (IR) region in section Cyathophora had expansions to the small single-copy region, with a large expansion event and two independent contraction events. Moreover, NA(D)H dehydrogenase, accD and ccsA have lost function multiple times, with the function of accD being replaced by nuclear copies of an accD-like gene in Pedicularis spp. The ccsA and ndhG genes may have evolved under selection in association with IR expansion/contraction events. This study is the first to report high plastome variation in a recently derived lineage of hemiparasitic plants and therefore provides evidence for plastome evolution in the transition from autotrophy to heterotrophy.
Assuntos
Genomas de Plastídeos , Pedicularis/genética , Filogenia , Plastídeos/genética , Evolução Molecular , Genes de Plantas , NADH Desidrogenase/genética , PseudogenesRESUMO
Pleistocene climate fluctuations had profound influence on the biogeographical history of many biota. As large areas in high mountain ranges were covered by glaciers, biota were forced either to peripheral refugia (and possibly beyond to lowland refugia) or to interior refugia (nunataks). However, nunatak survival remains controversial as it relies solely on correlative genetic evidence. Here, we test hypotheses of glacial survival using two high alpine plant species (the insect-pollinated Pedicularis asplenifolia and wind-pollinated Carex fuliginosa) in the European Alps. Employing the iDDC (integrative Distributional, Demographic and Coalescent) approach, which couples species distribution modelling, spatial and temporal demographic simulation and Approximate Bayesian Computation, we explicitly test three hypotheses of glacial survival: (a) peripheral survival only, (b) nunatak survival only and (c) peripheral plus nunatak survival. In P. asplenifolia the peripheral plus nunatak survival hypothesis was supported by Bayes factors (BF> 100), whereas in C. fuliginosa the peripheral survival only hypothesis, although best supported, could not be unambiguously distinguished from the peripheral plus nunatak survival hypothesis (BF = 5.58). These results are consistent with current habitat preferences (P. asplenifolia extends to higher elevations) and the potential for genetic swamping (i.e., replacement of local genotypes via hybridization with immigrating genotypes [expected to be higher in the wind-pollinated C. fuliginosa]). Although the persistence of plants on nunataks during glacial periods has been debated and studied over decades, this is one of the first studies to explicitly test the hypothesis instead of solely using correlative evidence.
Assuntos
Carex (Planta)/genética , Pedicularis/genética , Teorema de Bayes , Carex (Planta)/fisiologia , Clima , Demografia , Ecologia , Ecossistema , Genótipo , Camada de Gelo , Pedicularis/fisiologia , Refúgio de Vida SelvagemRESUMO
Despite their ubiquitous distribution and significant ecological roles, soil microorganisms have long been neglected in investigations addressing parasitic plant-host interactions. Because nutrient deprivation is a primary cause of host damage by parasitic plants, we hypothesized that beneficial soil microorganisms conferring nutrient benefits to parasitized hosts may play important roles in alleviating damage. We conducted a pot cultivation experiment to test the inoculation effect of an arbuscular mycorrhizal fungus (Glomus mosseae), a rhizobium (Rhizobium leguminosarum) and their interactive effects, on alleviation of damage to a legume host (Trifolium repens) by two root hemiparasitic plants with different nutrient requirements (N-demanding Pedicularis rex and P-demanding P. tricolor). Strong interactive effects between inoculation regimes and hemiparasite identity were observed. The relative benefits of microbial inoculation were related to hemiparasite nutrient requirements. Dual inoculation with the rhizobium strongly enhanced promotional arbuscular mycorrhizal effects on hosts parasitized by P. rex, but reduced the arbuscular mycorrhizal promotion on hosts parasitized by P. tricolor. Our results demonstrate substantial contribution of arbuscular mycorrhizal and rhizobial symbioses to alleviating damage to the legume host by root hemiparasites, and suggest that soil microorganisms are critical factors regulating host-parasite interactions and should be taken into account in future studies.
Assuntos
Interações Hospedeiro-Parasita/fisiologia , Micorrizas/fisiologia , Pedicularis/fisiologia , Rhizobium leguminosarum/fisiologia , Trifolium/microbiologia , Trifolium/parasitologia , Inoculantes Agrícolas , Glomeromycota/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Nodulação/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Brotos de Planta/química , Brotos de Planta/metabolismo , Simbiose/fisiologia , Trifolium/fisiologiaRESUMO
Backgrounds and Aims: Gain or loss of floral nectar, an innovation in floral traits, has occurred in diverse lineages of flowering plants, but the causes of reverse transitions (gain of nectar) remain unclear. Phylogenetic studies show multiple gains and losses of floral nectar in the species-rich genus Pedicularis. Here we explore how experimental addition of nectar to a supposedly nectarless species, P. dichotoma, influences pollinator foraging behaviour. Methods: The liquid (nectar) at the base of the corolla tube in P. dichotoma was investigated during anthesis. Sugar components were measured by high-performance liquid chromatography. To understand evolutionary transitions of nectar, artificial nectar was added to corolla tubes and the reactions of bumble-bee pollinators to extra nectar were examined. Key Results: A quarter of unmanipulated P. dichotoma plants contained measurable nectar, with 0.01-0.49 µL per flower and sugar concentrations ranging from 4 to 39 %. The liquid surrounding the ovaries in the corolla tubes was sucrose-dominant nectar, as in two sympatric nectariferous Pedicularis species. Bumble-bees collected only pollen from control (unmanipulated) flowers of P. dichotoma, adopting a sternotribic pollination mode, but switched to foraging for nectar in manipulated (nectar-supplemented) flowers, adopting a nototribic pollination mode as in nectariferous species. This altered foraging behaviour did not place pollen on the ventral side of the bees, and sternotribic pollination also decreased. Conclusion: Our study is the first to quantify variation in nectar production in a supposedly 'nectarless' Pedicularis species. Flower manipulations by adding nectar suggested that gain (or loss) of nectar would quickly result in an adaptive behavioural shift in the pollinator, producing a new location for pollen deposition and stigma contact without a shift to other pollinators. Frequent gains of nectar in Pedicularis species would be beneficial by enhancing pollinator attraction in unpredictable pollination environments.
Assuntos
Abelhas , Evolução Biológica , Pedicularis/genética , Néctar de Plantas , Polinização , AnimaisRESUMO
Root hemiparasites acquire resources from neighboring plants' vascular systems and can limit host growth, depress community productivity, and exert keystone effects. The strength of these effects is posited to be greater where hosts are nutrient-stressed but studies of annual hemiparasites show effects to be short-lived and variable. We conducted a 10-year experiment testing whether fertilizer addition alters the impact of the clonal, perennial hemiparasite Pedicularis canadensis on a prairie community and examine whether short-term trends reflect longer-term effects on community dynamics. Hemiparasite removal in 1-m2 plots increased productivity over the first three field seasons, but later the difference between removal and non-removal plots diminished as P. canadensis disappeared from 24 of the 48 non-removal plots. Effects of hemiparasite removal were context independent relative to fertilizer and shade treatments, but fertilizer initially increased, and then subsequently suppressed P. canadensis biomass. In non-removal plots, hemiparasite biomass was negatively associated with total community dry mass, which was greater in fertilized plots. Initially, fertilizer promoted graminoids, but after seven more field seasons, non-legume forbs responded most strongly. Measures of biodiversity tended to increase with hemiparasite cover. Demographic data collected at two different times for P. canadensis show high survivorship of established plants, high seed input, with seedling survival greater in taller vegetation. Unlike annual hemiparasite populations, well-established P. canadensis buffer populations against large demographic swings. At the scale of a few square meters, this keystone species produces significant heterogeneity in a prairie, but its presence at that scale is transient over approximately one decade.
Assuntos
Pradaria , Pedicularis , Biodiversidade , Biomassa , PlantasRESUMO
Three new iridoids, rel-(4aR,7S,7aS)-7-hydroxy-7-methyl-1,4a,5,6,7,7a-hexahydrocyclopenta[c]pyran-4-carbaldehyde (1), 1-methoxy-7-methyl-1,3,5,6-tetrahydrocyclopenta[c]pyran-4-carbaldehyde (2), and rel-(1R,4S,4aS,7R,7aR)-7-methylhexahydro-1,4-(epoxymethano)cyclopenta[c]pyran-3(1H)-one (3), together with seven known analogues, were isolated from the 95 % EtOH extract of the whole plants of Pedicularis uliginosa Bunge. Their structures were elucidated via extensive NMR spectroscopy and mass spectral data. In terms of inhibitory effects on human tumor cells, compounds 1, 2, 6, 7, and 8 exhibited better inhibitory activities against ACHN cells than the positive control (vinblastine).
Assuntos
Iridoides/isolamento & purificação , Pedicularis/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Humanos , Iridoides/química , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-AtividadeRESUMO
Plant stigmas and bee pollinators are competitors for pollen. Pollen placed on a pollinator's body can be picked up by conspecific stigmas or it can be collected by the pollinator as food. Hypothetically, one solution is for pollen to be placed on 'safe sites' on the pollinator's body, sites where the pollinator cannot easily remove it, leaving the pollen for stigmas. We compared 14 sites on the bumblebee body in terms of the ability of the bee to groom off fluorescent power, a dust that may be thought of as analogous to pollen. The safest sites were along the midline of the dorsal thorax, the dorsal abdomen, and the ventral abdomen. Next, we counted how much pollen is borne on the 14 sites by bees visiting one nectariferous and three nectarless Pedicularis species. In the four species, only 7, 26, 28, and 30% of pollen found on the bees were on safe sites. Finally, we observed that the 14 sites were contacted by stigmas of the four Pedicularis species; none of the most contacted sites were safe sites. Across all four Pedicularis species, pollen is mainly positioned on sites of the bee body that were beneficial for both the plant and the bee, not on sites detrimental to either of them. Our analysis showed that the conflict of interest between flowers and bees can be solved by cooperation. Pedicularis pollen is placed where it strengthens the mutualism between plants and pollinators.
Assuntos
Pedicularis , Polinização , Animais , Abelhas , Conflito de Interesses , Flores , PólenRESUMO
Three new iridoids named as pediverticilatasin A - C (1 - 3, resp.), together with five known iridoids (4 - 8, resp.) were isolated from the whole plants of Pedicularis verticillata. The structures of three new compounds were identified as (1S,7R)-1-ethoxy-1,5,6,7-tetrahydro-7-hydroxy-7-methylcyclopenta[c]pyran-4(3H)-one (1), (1S,4aS,7R,7aS)-1-ethoxy-1,4a,5,6,7,7a-hexahydro-7-hydroxy-7-methylcyclopenta[c]pyran-4-carboxylic acid (2), (1S,4aS,7R,7aS)-1-ethoxy-1,4a,5,6,7,7a-hexahydro-7-hydroxy-7-methylcyclopenta[c]pyran-4-carbaldehyde (3). Their structures were elucidated on the basis of spectroscopic methods and compared with the NMR spectra data in the literature. All compounds were evaluated for their anti-complementary activity on the classical pathway of the complement system in vitro. Among which, compounds 1, 3, and 6 exhibited anti-complementary effects with CH50 values ranging from 0.43 to 1.72 mm, which are plausible candidates for developing potent anti-complementary agents.
Assuntos
Ativação do Complemento/efeitos dos fármacos , Iridoides/farmacologia , Pedicularis/química , Ativação do Complemento/imunologia , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Iridoides/química , Iridoides/isolamento & purificação , Conformação MolecularRESUMO
Phylogenomics has shown great potential in resolving evolutionary relationships at different taxonomical levels. However, it remains controversial whether all orthologous genes under different selective pressures can be concatenated for phylogenomic reconstruction. Here we used sect. Cyathophora of Pedicularis, one of the most species-rich genera of angiosperms in the alpine and arctic regions of the Northern Hemisphere, as a model to investigate the efficiency of RNA-seq in resolving relationships of closely related congeneric species. Flower transcriptomes were sequenced for all species of sect. Cyathophora and two outgroup species. Forty-one highly conserved single-/low-copy nuclear genes and 1553 orthologous groups (OGs) were identified and concatenated into five datasets based on gene copy numbers and Ka/Ks values to reconstruct the phylogeny of section Cyathophora. We also tested how many genes minimally can resolve the interspecific relationships, and reconstructed the evolutionary history of some floral characters in sect. Cyathophora. The results showed that the five different datasets consistently resolved the interspecific relationships of sect. Cyathophora, and the interspecific relationships can be robustly reconstructed with maximal support when ⩾20 single-/low-copy nuclear genes or 25 OGs are used. Our study suggests that all OGs under different selective pressures can be concatenated for phylogenomic reconstruction, and provides a successful and efficient use of RNA-seq in reconstructing interspecific relationships of a non-model plant group with recent radiations.
Assuntos
Pedicularis/classificação , Pedicularis/genética , Filogenia , Análise de Sequência de RNA/métodos , Regiões Árticas , Sequência de Bases , Núcleo Celular/genética , Bases de Dados Genéticas , Flores/genética , Dosagem de Genes , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genômica , Funções Verossimilhança , RNA de Plantas/genética , Especificidade da Espécie , Fatores de Tempo , Transcriptoma/genéticaRESUMO
It remains unclear how related co-flowering species with shared pollinators minimize reproductive interference, given that the degree of interspecific pollen flow and its consequences are little known in natural communities. Differences in pollen size in six Pedicularis species with different style lengths permit us to measure heterospecific pollen transfer (HPT) between species pairs in sympatry. The role of pollen-pistil interactions in mitigating the effects of HPT was examined. Field observations over 2 yr showed that bumblebee pollinators visiting one species rarely moved to another. Heterospecific pollen (HP) comprised < 10% of total stigmatic pollen loads for each species over 2 yr, and was not related to conspecific pollen deposition. Species with longer styles generally received more HP per stigma. The pollen tube study showed that pollen from short-styled species could not grow the full length of the style of long-styled species. Pollen from long-styled species could grow through the short style of P. densispica, but P. densispica rarely received HP in nature. Flower constancy is a key pre-pollination barrier to HPT between co-flowering Pedicularis species. Post-pollination pollen-pistil interactions may further mitigate the effects of HPT because HP transferred to long styles could generally be effectively filtered.
Assuntos
Flores/fisiologia , Pedicularis/fisiologia , Pólen/fisiologia , Polinização/fisiologia , Animais , Abelhas/fisiologia , Especificidade da EspécieRESUMO
BACKGROUNDS AND AIMS: Floral traits that attract pollinators may also attract seed predators, which, in turn, may generate conflicting natural selection on such traits. Although such selection trade-offs are expected to vary geographically, few studies have investigated selection mediated by pollinators and seed predators across a geographic mosaic of environments and floral variation. METHODS: Floral traits were investigated in 14 populations of the bumble-bee-pollinated herb, Pedicularis rex, in which tubular flowers are subtended by cupular bracts holding rain water. To study potentially conflicting selection on floral traits generated by pollinators and florivores, stigmatic pollen loads, initial seed set, pre-dispersal seed predation and final viable seed production were measured in 12-14 populations in the field. KEY RESULTS: Generalized Linear Model (GLM) analyses indicated that the pollen load on stigmas was positively related to the exsertion of the corolla beyond the cupular bracts and size of the lower corolla lip, but so too was the rate of seed predation, creating conflicting selection on both floral traits. A geographic mosaic of selection mediated by seed predators, but not pollinators, was indicated by significant variation in levels of seed predation and the inclusion of two-, three- and four-way interaction terms between population and seed predation in the best model [lowest corrected Akaike Information Criterion (AICc)] explaining final seed production. CONCLUSIONS: These results indicate opposing selection in operation: pollinators generated selection for greater floral exsertion beyond the bracts, but seed predators generated selection for reduced exsertion above the protective pools of water, although the strength of the latter varied across populations.
Assuntos
Abelhas/fisiologia , Flores/anatomia & histologia , Pedicularis/anatomia & histologia , Polinização , Seleção Genética , Animais , Meio Ambiente , Flores/genética , Flores/fisiologia , Geografia , Modelos Lineares , Pedicularis/genética , Pedicularis/fisiologia , Fenótipo , Pólen/anatomia & histologia , Pólen/genética , Pólen/fisiologia , Sementes/anatomia & histologia , Sementes/genética , Sementes/fisiologiaRESUMO
Floral nectar is thought to be one of the most important rewards that attract pollinators in Pedicularis; however, few studies have examined variation of nectary structure and/or nectar secretion in the genus, particularly among closely related species. Here we investigated nectary morphology, nectar quality, and nectar production dynamics in flowers of Pedicularis section Cyathophora. We found a conical floral nectary at the base of the ovary in species of the rex-thamnophila clade. Stomata were found on the surface of the nectary, and copious starch grains were detected in the nectary tissues. In contrast, a semi-annular nectary was found in flowers of the species of the superba clade. Only a few starch grains were observed in tissues of the semi-annular nectary, and the nectar sugar concentration in these flowers was much lower than that in the flowers of the rex-thamnophila clade. Our results indicate that the floral nectary has experienced considerable morphological, structural, and functional differentiation among closely related species of Pedicularis. This could have affected nectar production, leading to a shift of the pollination mode. Our results also imply that variation of the nectary morphology and nectar production may have played an important role in the speciation of sect. Cyathophora.
Assuntos
Flores/fisiologia , Pedicularis/fisiologia , Néctar de Plantas/biossíntese , Animais , Abelhas/fisiologia , Carboidratos/análise , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Pedicularis/anatomia & histologia , Pedicularis/crescimento & desenvolvimento , Pedicularis/ultraestrutura , Polinização , Isolamento Reprodutivo , Especificidade da EspécieRESUMO
The evolution of long corolla tubes has been hypothesized to be driven by long-tongued pollinators. Corolla tubes in Pedicularis species can be longer than 10 cm which may function as flower stalks to increase visual attractiveness to pollinators because these species provide no nectar and are pollinated by bumblebees. The corolla tube length was manipulated (shorter or longer) in two Pedicularis species in field to examine whether longer tubes are more attractive to pollinators and produce more seeds than short tubes. Our results did not support the pollinator attraction hypothesis, leaving the evolution of long tubes in Pedicularis remains mysterious.
Assuntos
Abelhas/fisiologia , Flores/anatomia & histologia , Flores/fisiologia , Pedicularis/anatomia & histologia , Pedicularis/fisiologia , Polinização/fisiologia , Animais , Sementes/fisiologiaRESUMO
Darwin proposed that pollen size should be positively correlated with stigma depth rather than style length among species given that pollen tubes first enter the stigma autotrophically, then grow through the style heterotrophically. However, studies often show a positive relationship between pollen size and style length. Five floral traits were observed to be correlated among 42 bumblebee-pollinated Pedicularis species (Orobanchaceae) in which stigmas are distinct from styles. The phylogenetic independent contrast analysis revealed that pollen grain volume was more strongly correlated with stigma depth than with style length, consistent with Darwin's functional hypothesis between pollen size and stigma depth.
Assuntos
Pedicularis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Pedicularis/classificação , Filogenia , Pólen/anatomia & histologia , Pólen/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimentoRESUMO
BACKGROUND: Striking interspecific variations in floral traits of the large temperate genus Pedicularis have given rise to controversies concerning infra-generic classifications. To date, phylogenetic relationships within the genus have not been well resolved. The main goal of this study is to construct a backbone phylogeny of Pedicularis, with extensive sampling of species from the Himalaya-Hengduan Mountains. Phylogenetic analyses included 257 species, representing all 13 informal groups and 104 out of 130 series in the classification system of Tsoong, using sequences of the nuclear ribosomal internal transcribed spacer (nrITS) and three plastid regions (matK, rbcL and trnL-F). Bayesian inference and maximum likelihood methods were applied in separate and combined analyses of these datasets. RESULTS: Thirteen major clades are resolved with strong support, although the backbone of the tree is poorly resolved. There is little consensus between the phylogenetic tree and Tsoong's classification of Pedicularis. Only two of the 13 groups (15.4 %), and 19 of the 56 series (33.9 %) with more than one sampled species were found to be strictly monophyletic. Most opposite-/whorled-leaved species fall into a single clade, i.e. clade 1, while alternate leaves species occur in the remaining 12 clades. Excluding the widespread P. verticillata in clade 1, species from Europe and North America fall into clades 6-8. CONCLUSIONS: Our results suggest that combinations of morphological and geographic characters associated with strongly supported clades are needed to elucidate a comprehensive global phylogeny of Pedicularis. Alternate leaves are inferred to be plesiomorphic in Pedicularis, with multiple transitions to opposite/whorled phyllotaxy. Alternate-leaved species show high diversity in plant habit and floral forms. In the Himalaya-Hengduan Mountains, geographical barriers may have facilitated diversification of species with long corolla tubes, and the reproductive advantages of beakless galeas in opposite-/whorled-leaved species may boost speciation at high altitude.
Assuntos
Pedicularis/classificação , Pedicularis/genética , Filogenia , Proteínas de Plantas/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , China , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Pedicularis/anatomia & histologia , Pedicularis/metabolismo , Proteínas de Plantas/metabolismoRESUMO
Root hemiparasitic plants show optimal growth when attached to a suitable host by abstracting water and nutrients. Despite the fact that damage to host plants in the wild occurs frequently in various forms (e.g. grazing), effects of host damage on growth and physiological performance of root hemiparasites remain unclear. In this study, host shoot clipping was conducted to determine the influence of host damage on photosynthetic and growth performance of a weedy root hemiparasite, Pedicularis kansuensis, and its interaction with a host, Elymus nutans. Photosynthetic capacity, tissue mineral nutrient content and plant biomass of P. kansuensis were significantly improved when attached to a host plant. Host clipping had no effect on quantum efficiency (ΦPSII), but significantly reduced the growth rate and biomass of P. kansuensis. In contrast, clipping significantly improved photosynthetic capacity and accumulation of potassium in E. nutans. No significant decrease in biomass was observed in clipped host plants. By changing nutrient absorption and allocation, clipping affected the interaction between P. kansuensis and its host. Our results showed that host clipping significantly suppressed the growth of weedy P. kansuensis, but did not affect biomass accumulation in E. nutans. We propose that grazing (a dominant way of causing host damage in the field) may have a potential in the control against the weedy hemiparasite.
Assuntos
Elymus/parasitologia , Pedicularis/fisiologia , Brotos de Planta/fisiologia , Controle de Plantas Daninhas/métodos , Clorofila/química , Fluorescência , Fotossíntese , Plantas Daninhas/crescimento & desenvolvimentoRESUMO
The origin of the arctic flora covering the northernmost treeless areas is still poorly understood. Arctic plants may have evolved in situ or immigrated from the adjacent ecosystems. Frequently arctic species have disjunctive distributions between the Arctic and high mountain systems of the temperate zone. This pattern may result from long distance dispersal or from glacial plant migrations and extinctions of intermediate populations. The hemiparasitic genus Pedicularis is represented in the Arctic by c. 28 taxa and ranks among the six most species-rich vascular plant genera of this region. In this study, we test the hypothesis that these lineages evolved from predecessors occurring in northern temperate mountain ranges, many of which are current centers of diversity for the genus. We generated a nuclear ribosomal and chloroplast DNA phylogeny including almost all of the arctic taxa and nearly half of the genus as a whole. The arctic taxa of Pedicularis evolved 12-14 times independently and are mostly nested in lineages that otherwise occur in the high mountains of Eurasia and North America. It appears that only three arctic lineages arose from the present-day center of diversity of the genus, in the Hengduan Mountains and Himalayas. Two lineages are probably of lowland origin. Arctic taxa of Pedicularis show considerable niche conservatism with respect to soil moisture and grow predominantly in moist to wet soils. The studied characteristics of ecology, morphology, and chromosome numbers of arctic Pedicularis show a heterogeneous pattern of evolution. The directions of morphological changes among the arctic lineages show opposing trends. Arctic taxa are chiefly diploid, the few tetraploid chromosome numbers of the genus were recorded only for arctic taxa. Five arctic Pedicularis are annuals or biennials, life forms otherwise rare in the Arctic. Other genera of the Orobanchaceae consist also of an elevated number of short-lived species, thus hemiparasitism may favor this life form in the Arctic.
Assuntos
Altitude , Ecossistema , Pedicularis/genética , Filogenia , Regiões Árticas , DNA de Cloroplastos/genética , DNA Ribossômico/genética , Ecologia , Orobanchaceae/genética , Pedicularis/classificação , Análise de Sequência de DNARESUMO
BACKGROUND AND AIMS: Interest in pollinator-mediated evolutionary divergence of flower phenotype and speciation in plants has been at the core of plant evolutionary studies since Darwin. Specialized pollination is predicted to lead to reproductive isolation and promote speciation among sympatric species by promoting partitioning of (1) the species of pollinators used, (2) when pollinators are used, or (3) the sites of pollen placement. Here this last mechanism is investigated by observing the pollination accuracy of sympatric Pedicularis species (Orobanchacae). METHODS: Pollinator behaviour was observed on three species of Pedicularis (P. densispica, P. tricolor and P. dichotoma) in the Hengduan Mountains, south-west China. Using fluorescent powder and dyed pollen, the accuracy was assessed of stigma contact with, and pollen deposition on, pollinating bumble-bees, respectively. KEY RESULTS: All three species of Pedicularis were pollinated by bumble-bees. It was found that the adaptive accuracy of female function was much higher than that of male function in all three flower species. Although peak pollen deposition corresponded to the optimal location on the pollinator (i.e. the site of stigma contact) for each species, substantial amounts of pollen were scattered over much of the bees' bodies. CONCLUSIONS: The Pedicularis species studied in the eastern Himalayan region did not conform with Grant's 'Pedicularis Model' of mechanical reproductive isolation. The specialized flowers of this diverse group of plants seem unlikely to have increased the potential for reproductive isolation or influenced rates of speciation. It is suggested instead that the extreme species richness of the Pedicularis clade was generated in other ways and that specialized flowers and substantial pollination accuracy evolved as a response to selection generated by the diversity of co-occurring congeners.
Assuntos
Flores/fisiologia , Pedicularis/fisiologia , Polinização/fisiologia , Isolamento Reprodutivo , Simpatria/fisiologia , Animais , Abelhas/fisiologia , Especiação Genética , Fenazinas/metabolismo , Néctar de Plantas , Pólen/fisiologiaRESUMO
BACKGROUND AND AIMS: Buzz pollination involves explosive pollen release in response to vibration, usually by bees. The mechanism of pollen release is poorly understood, and it is not clear which component of vibration (acceleration, frequency, displacement or velocity) is critical; the role of buzz frequency has been particularly controversial. This study proposes a novel hypothesis that explosive pollen release results from vibration-induced triboelectric charging. If it does, pollen release is expected to depend on achievement of a critical threshold velocity. METHODS: Eight sympatric buzz-pollinated species of Pedicularis that share bumblebee pollinator species were studied, giving a rare opportunity to compare sonication behaviour of a shared pollinator on different plant species. KEY RESULTS: Reconsidering previous experimental studies, it is argued that they establish the critical role of the velocity component of vibration in pollen release, and that when displacement is constrained by body size bees can achieve the critical velocity by adjusting frequency. It was shown that workers of Bombus friseanus assorted themselves among Pedicularis species by body size, and that bees adjusted their buzz/wingbeat frequency ratio, which is taken as an index of the velocity component, to a value that corresponds with the galea length and pollen grain volume of each species of Pedicularis. CONCLUSIONS: Sonication behaviour of B. friseanus differs among Pedicularis species, not only because worker bees assort themselves among plant species by body size, but also because bees of a given size adjust the buzz frequency to achieve a vibration velocity corresponding to the floral traits of each plant species. These findings, and the floral traits that characterize these and other buzz-pollinated species, are compatible with the hypothesis of vibration-induced triboelectric charging of pollen grains.