RESUMO
5-Hydroxymethyluracil ( 5hmU ) is found in the genomes of a diverse range of organisms as another kind of 5-hydroxymethylpyrimidine, with the exception of 5-hydroxymethylcytosine ( 5hmC ). The biological function of 5hmU has not been well explored due to lacking both specific 5hmU recognition and single-cell analysis methods. Here we report differentiated visualization of single-cell 5hmU and 5hmC with microfluidic hydrogel encoding (sc 5hmU / 5hmC -microgel). Single cells and their genomic DNA after cell lysis can be encapsulated in individual agarose microgels. The 5hmU sites are then specifically labeled with thiophosphate for the first time, followed by labeling 5hmC with azide glucose. These labeled bases are each encoded into respective DNA barcode primers by chemical cross-linking. In situ amplification is triggered for single-molecule fluorescence visualization of single-cell 5hmU and 5hmC . On the basis of the sc 5hmU / 5hmC -microgel, we reveal cell type-specific molecular signatures of these two bases with remarkable single-cell heterogeneity. Utilizing machine learning algorithms to decode four-dimensional signatures of 5hmU / 5hmC , we visualize the discrimination of nontumorigenic, carcinoma and highly invasive breast cell lines. This strategy provides a new route to analyze and decode single-cell DNA epigenetic modifications.
Assuntos
5-Metilcitosina/análogos & derivados , Hidrogéis/química , Microfluídica , Pentoxil (Uracila)/análogos & derivados , Análise de Célula Única/métodos , 5-Metilcitosina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA/genética , Epigênese Genética , Feminino , Humanos , Invasividade Neoplásica , Pentoxil (Uracila)/metabolismoRESUMO
i-Motif (iM) is a four stranded DNA structure formed by cytosine-rich sequences, which are often present in functionally important parts of the genome such as promoters of genes and telomeres. Using electronic circular dichroism and UV absorption spectroscopies and electrophoretic methods, we examined the effect of four naturally occurring DNA base lesions on the folding and stability of the iM formed by the human telomere DNA sequence (C3TAA)3C3T. The results demonstrate that the TAA loop lesions, the apurinic site and 8-oxoadenine substituting for adenine, and the 5-hydroxymethyluracil substituting for thymine only marginally disturb the formation of iM. The presence of uracil, which is formed by enzymatic or spontaneous deamination of cytosine, shifts iM formation towards substantially more acidic pH values and simultaneously distinctly reduces iM stability. This effect depends on the position of the damage sites in the sequence. The results have enabled us to formulate additional rules for iM formation.
Assuntos
DNA/química , Telômero/química , Adenina/análogos & derivados , Adenina/química , Citosina/química , Dano ao DNA , Humanos , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/química , Uracila/químicaRESUMO
Oxidative stress in cells can lead to the accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized nucleotides such as 2'-deoxyribo-5-hydroxyuridin (HdU) and 2'-deoxyribo-5-hydroxymethyluridin (HMdU) can be inserted into DNA during replication and repair. HdU and HMdU have attracted particular interest because they have different effects on damaged-DNA processing enzymes that control the downstream effects of the lesions. Herein, we studied the chemically simulated translesion DNA synthesis (TLS) across the lesions formed by HdU or HMdU using microscale thermophoresis (MST). The thermodynamic changes associated with replication across HdU or HMdU show that the HdU paired with the mismatched deoxyribonucleoside triphosphates disturbs DNA duplexes considerably less than thymidine (dT) or HMdU. Moreover, we also demonstrate that TLS by DNA polymerases across the lesion derived from HdU was markedly less extensive and potentially more mutagenic than that across the lesion formed by HMdU. Thus, DNA polymerization by DNA polymerase η (polη), the exonuclease-deficient Klenow fragment of DNA polymerase I (KF-), and reverse transcriptase from human immunodeficiency virus type 1 (HIV-1 RT) across these pyrimidine lesions correlated with the different stabilization effects of the HdU and HMdU in DNA duplexes revealed by MST. The equilibrium thermodynamic data obtained by MST can explain the influence of the thermodynamic alterations on the ability of DNA polymerases to bypass lesions induced by oxidative products of pyrimidines. The results also highlighted the usefulness of MST in evaluating the impact of oxidative products of pyrimidines on the processing of these lesions by damaged DNA processing enzymes.
Assuntos
Replicação do DNA/efeitos dos fármacos , DNA/biossíntese , DNA/efeitos dos fármacos , Estresse Oxidativo , Pirimidinas/farmacologia , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , HIV-1 , Humanos , Mutagênicos/química , Mutagênicos/metabolismo , Mutagênicos/farmacologia , Oxirredução , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/química , Pentoxil (Uracila)/metabolismo , Pentoxil (Uracila)/farmacologia , Pirimidinas/química , Pirimidinas/metabolismo , Termodinâmica , Uracila/análogos & derivados , Uracila/química , Uracila/metabolismo , Uracila/farmacologiaRESUMO
Nucleosides, nucleotides and 2'-deoxyribonucleoside triphosphates (dNTPs) containing 5-(hydroxymethyl)uracil protected with photocleavable groups (2-nitrobenzyl-, 6-nitropiperonyl or 9-anthrylmethyl) were prepared and tested as building blocks for the polymerase synthesis of photocaged oligonucleotides and DNA. Photodeprotection (photorelease) reactions were studied in detail on model nucleoside monophosphates and their photoreaction quantum yields were determined. Photocaged dNTPs were then tested and used as substrates for DNA polymerases in primer extension or PCR. DNA probes containing photocaged or free 5-hydroxymethylU in the recognition sequence of restriction endonucleases were prepared and used for the study of photorelease of caged DNA by UV or visible light at different wavelengths. The nitropiperonyl-protected nucleotide was found to be a superior building block because the corresponding dNTP is a good substrate for DNA polymerases, and the protecting group is efficiently cleavable by irradiation by UV or visible light (up to 425 nm).
Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , DNA/química , Luz , Nucleotídeos/química , Pentoxil (Uracila)/análogos & derivados , Processos Fotoquímicos , Modelos Moleculares , Conformação de Ácido Nucleico , Pentoxil (Uracila)/químicaRESUMO
Oxidation of a DNA thymine to 5-hydroxymethyluracil is one of several recently discovered epigenetic modifications. Here, we report the results of nanopore translocation experiments and molecular dynamics simulations that provide insight into the impact of this modification on the structure and dynamics of DNA. When transported through ultrathin solid-state nanopores, short DNA fragments containing thymine modifications were found to exhibit distinct, reproducible features in their transport characteristics that differentiate them from unmodified molecules. Molecular dynamics simulations suggest that 5-hydroxymethyluracil alters the flexibility and hydrophilicity of the DNA molecules, which may account for the differences observed in our nanopore translocation experiments. The altered physico-chemical properties of DNA produced by the thymine modifications may have implications for recognition and processing of such modifications by regulatory DNA-binding proteins.
Assuntos
DNA/química , Simulação de Dinâmica Molecular , Pentoxil (Uracila)/análogos & derivados , Timina/química , Proteínas de Ligação a DNA/química , Epigênese Genética , Interações Hidrofóbicas e Hidrofílicas , Nanoporos , Desnaturação de Ácido Nucleico , Oxirredução , Pentoxil (Uracila)/química , Ligação Proteica , Propriedades de SuperfícieRESUMO
Active DNA demethylation (ADDM) in mammals occurs via hydroxylation of 5-methylcytosine (5mC) by TET and/or deamination by AID/APOBEC family enzymes. The resulting 5mC derivatives are removed through the base excision repair (BER) pathway. At present, it is unclear how the cell manages to eliminate closely spaced 5mC residues whilst avoiding generation of toxic BER intermediates and whether alternative DNA repair pathways participate in ADDM. It has been shown that non-canonical DNA mismatch repair (ncMMR) can remove both alkylated and oxidized nucleotides from DNA. Here, a phagemid DNA containing oxidative base lesions and methylated sites are used to examine the involvement of various DNA repair pathways in ADDM in murine and human cell-free extracts. We demonstrate that, in addition to short-patch BER, 5-hydroxymethyluracil and uracil mispaired with guanine can be processed by ncMMR and long-patch BER with concomitant removal of distant 5mC residues. Furthermore, the presence of multiple mispairs in the same MMR nick/mismatch recognition region together with BER-mediated nick formation promotes proficient ncMMR resulting in the reactivation of an epigenetically silenced reporter gene in murine cells. These findings suggest cooperation between BER and ncMMR in the removal of multiple mismatches that might occur in mammalian cells during ADDM.
Assuntos
5-Metilcitosina/metabolismo , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Animais , Linhagem Celular , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteína 2 Homóloga a MutS/genética , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/metabolismo , Regiões Promotoras Genéticas , Uracila/metabolismoRESUMO
Thymine DNA Glycosylase (TDG) performs essential functions in maintaining genetic integrity and epigenetic regulation. Initiating base excision repair, TDG removes thymine from mutagenic G ·: T mispairs caused by 5-methylcytosine (mC) deamination and other lesions including uracil (U) and 5-hydroxymethyluracil (hmU). In DNA demethylation, TDG excises 5-formylcytosine (fC) and 5-carboxylcytosine (caC), which are generated from mC by Tet (ten-eleven translocation) enzymes. Using improved crystallization conditions, we solved high-resolution (up to 1.45 Å) structures of TDG enzyme-product complexes generated from substrates including G·U, G·T, G·hmU, G·fC and G·caC. The structures reveal many new features, including key water-mediated enzyme-substrate interactions. Together with nuclear magnetic resonance experiments, the structures demonstrate that TDG releases the excised base from its tight product complex with abasic DNA, contrary to previous reports. Moreover, DNA-free TDG exhibits no significant binding to free nucleobases (U, T, hmU), indicating a Kd >> 10 mM. The structures reveal a solvent-filled channel to the active site, which might facilitate dissociation of the excised base and enable caC excision, which involves solvent-mediated acid catalysis. Dissociation of the excised base allows TDG to bind the beta rather than the alpha anomer of the abasic sugar, which might stabilize the enzyme-product complex.
Assuntos
Pareamento Incorreto de Bases , DNA/química , Timina DNA Glicosilase/química , Domínio Catalítico , Cristalografia por Raios X , DNA/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/química , Pentoxil (Uracila)/metabolismo , Ligação Proteica , Timina/metabolismo , Timina DNA Glicosilase/metabolismo , Uracila/metabolismoRESUMO
TET proteins play a vital role in active DNA demethylation in mammals and thus have important functions in many essential cellular processes. The chemistry for the conversion of 5mC to 5hmC, 5fC and 5caC catalysed by TET proteins is similar to that of T to 5hmU, 5fU and 5caU catalysed by thymine-7-hydroxylase (T7H) in the nucleotide anabolism in fungi. Here, we report the crystal structures and biochemical properties of Neurospora crassa T7H. T7H can bind the substrates only in the presence of cosubstrate, and binding of different substrates does not induce notable conformational changes. T7H exhibits comparable binding affinity for T and 5hmU, but 3-fold lower affinity for 5fU. Residues Phe292, Tyr217 and Arg190 play critical roles in substrate binding and catalysis, and the interactions of the C5 modification group of substrates with the cosubstrate and enzyme contribute to the slightly varied binding affinity and activity towards different substrates. After the catalysis, the products are released and new cosubstrate and substrate are reloaded to conduct the next oxidation reaction. Our data reveal the molecular basis for substrate specificity and catalytic mechanism of T7H and provide new insights into the molecular mechanism of substrate recognition and catalysis of TET proteins.
Assuntos
Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Biocatálise , Domínio Catalítico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Mutagênese , Neurospora crassa/enzimologia , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/química , Pentoxil (Uracila)/metabolismo , Ligação Proteica , Especificidade por Substrato , Timina/química , Timina/metabolismo , Uracila/análogos & derivados , Uracila/química , Uracila/metabolismoRESUMO
On early Earth, a primitive polymer that could spontaneously form from likely available precursors may have preceded both RNA and DNA as the first genetic material. Here, we report that heated aqueous solutions containing 5-hydroxymethyluracil (HMU) result in oligomers of uracil, heated solutions containing 5-hydroxymethylcytosine (HMC) result in oligomers of cytosine, and heated solutions containing both HMU and HMC result in mixed oligomers of uracil and cytosine. Oligomerization of hydroxymethylated pyrimidines, which may have been abundant on the primitive Earth, might have been important in the development of simple informational polymers.
Assuntos
5-Metilcitosina/análogos & derivados , Evolução Química , Pentoxil (Uracila)/análogos & derivados , Polimerização , Água/química , 5-Metilcitosina/química , Temperatura Alta , Origem da Vida , Pentoxil (Uracila)/químicaRESUMO
Ten eleven translocation (Tet) enzymes oxidize the epigenetically important DNA base 5-methylcytosine (mC) stepwise to 5-hydroxymethylcytosine (hmC), 5-formylcytosine and 5-carboxycytosine. It is currently unknown whether Tet-induced oxidation is limited to cytosine-derived nucleobases or whether other nucleobases are oxidized as well. We synthesized isotopologs of all major oxidized pyrimidine and purine bases and performed quantitative MS to show that Tet-induced oxidation is not limited to mC but that thymine is also a substrate that gives 5-hydroxymethyluracil (hmU) in mouse embryonic stem cells (mESCs). Using MS-based isotope tracing, we show that deamination of hmC does not contribute to the steady-state levels of hmU in mESCs. Protein pull-down experiments in combination with peptide tracing identifies hmU as a base that influences binding of chromatin remodeling proteins and transcription factors, suggesting that hmU has a specific function in stem cells besides triggering DNA repair.
Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Pentoxil (Uracila)/análogos & derivados , Proteínas Proto-Oncogênicas/metabolismo , Timina/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Isótopos de Carbono , Montagem e Desmontagem da Cromatina , Cromatografia Líquida , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/citologia , Expressão Gênica , Camundongos , Dados de Sequência Molecular , Oxirredução , Pentoxil (Uracila)/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Espectrometria de Massas por Ionização por Electrospray , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
How DNA demethylation is achieved in mammals is still under extensive investigation. One proposed mechanism is deamination of 5-hydroxymethylcytosine to form 5-hydroxymethyluracil (5hmU), followed by base excision repair to replace the mismatched 5hmU with cytosine. In this process, 5hmU:G mispair serves as a key intermediate and its localization and distribution in mammalian genome could be important information to investigate the proposed pathway. Here we describe a selective labeling method to map mismatched 5hmU. After converting other cytosine modifications to 5-carboxylcytosines, a biotin tag is installed onto mismatched 5hmU through ß-glucosyltransferase-catalyzed glucosylation and click chemistry. The enriched 5hmU-containing DNA fragments can be subject to subsequent sequencing to reveal the distribution of 5hmU:G mispair with base-resolution information acquired.
Assuntos
Metilação de DNA , DNA/química , Epigenômica/métodos , Mamíferos/genética , Pentoxil (Uracila)/análogos & derivados , Animais , Desaminação , Modelos Biológicos , Pentoxil (Uracila)/químicaRESUMO
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA-protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition.
Assuntos
Reparo do DNA , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/química , Telômero/metabolismo , Uracila/química , Sequência de Bases , Sítios de Ligação , DNA/química , DNA/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fluoruracila/química , Fluoruracila/metabolismo , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/química , Pentoxil (Uracila)/metabolismo , Ligação Proteica , Complexo Shelterina , Uracila/metabolismo , Uracila-DNA Glicosidase/metabolismoRESUMO
O-linked glucosylation of thymine in DNA (base J) is an important regulatory epigenetic mark in trypanosomatids. ß-d-glucopyranosyloxymethyluracil (base J) synthesis is initiated by the JBP1/2 enzymes that hydroxylate thymine, forming 5-hydroxymethyluracil (hmU). hmU is then glucosylated by a previously unknown glucosyltransferase. A recent computational screen identified a possible candidate for the base J-associated glucosyltransferase (JGT) in trypanosomatid genomes. We demonstrate that recombinant JGT utilizes uridine diphosphoglucose to transfer glucose to hmU in the context of dsDNA. Mutation of conserved residues typically involved in glucosyltransferase catalysis impairs DNA glucosylation in vitro. The deletion of both alleles of JGT from the genome of Trypanosoma brucei generates a cell line that completely lacks base J. Reintroduction of JGT in the JGT KO restores J synthesis. Ablation of JGT mRNA levels by RNAi leads to the sequential reduction in base J and increased levels of hmU that dissipate rapidly. The analysis of JGT function confirms the two-step J synthesis model and demonstrates that JGT is the only glucosyltransferase enzyme required for the second step of the pathway. Similar to the activity of the related Ten-Eleven Translocation (TET) family of dioxygenases on 5mC, our studies also suggest the ability of the base J-binding protein enzymes to catalyze iterative oxidation of thymine in trypanosome DNA. Here we discuss the regulation of hmU and base J formation in the trypanosome genome by JGT and base J-binding protein.
Assuntos
Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Pentoxil (Uracila)/análogos & derivados , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/enzimologia , Uracila/análogos & derivados , DNA de Protozoário/química , DNA de Protozoário/genética , DNA de Protozoário/metabolismo , Epigênese Genética , Técnicas de Inativação de Genes , Genoma de Protozoário , Glucosídeos/química , Glucosiltransferases/genética , Mutagênese Sítio-Dirigida , Pentoxil (Uracila)/química , Pentoxil (Uracila)/metabolismo , Proteínas de Protozoários/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Especificidade por Substrato , Timina/química , Timina/metabolismo , Trypanosoma brucei brucei/genética , Uracila/química , Uracila/metabolismoRESUMO
We present a chemical method to selectively tag and enrich thymine modifications, 5-formyluracil (5-fU) and 5-hydroxymethyluracil (5-hmU), found naturally in DNA. Inherent reactivity differences have enabled us to tag 5-fU chemoselectively over its C modification counterpart, 5-formylcytosine (5-fC). We rationalized the enhanced reactivity of 5-fU compared to 5-fC via ab initio quantum mechanical calculations. We exploited this chemical tagging reaction to provide proof of concept for the enrichment of 5-fU containing DNA from a pool that contains 5-fC or no modification. We further demonstrate that 5-hmU can be chemically oxidized to 5-fU, providing a strategy for the enrichment of 5-hmU. These methods will enable the mapping of 5-fU and 5-hmU in genomic DNA, to provide insights into their functional role and dynamics in biology.
Assuntos
DNA/química , Timina/química , Sequência de Bases , DNA/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/genética , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/química , Uracila/análogos & derivados , Uracila/químicaAssuntos
Síndromes Mielodisplásicas , Biomarcadores , Citosina/análogos & derivados , Proteínas de Ligação a DNA/genética , Dioxigenases , Humanos , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Pentoxil (Uracila)/análogos & derivados , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Processamento de RNA/genéticaRESUMO
CONTEXT: Oxidative stress linked with chronic inflammation is associated with etiology of the colorectal cancer. OBJECTIVES: To assess the diagnostic utility of urinary excretion of oxidatively modified DNA bases/nucleoside: 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 5-hydroxymethyluracil (5-hmUra). MATERIALS AND METHODS: Seventy-two healthy controls, 15 patients with adenomas and 56 colorectal cancer patients were recruited. RESULTS: The receiver operating characteristic (ROC) curve analysis showed that the area under the curve (AUC) for all markers tested separately was <0.7. The combination of these modifications showed better diagnostic power (AUC = 0.778 for 8-oxoGua + 8-oxodG)/5hmUra ratio). CONCLUSION: Urinary DNA modifications may reflect the oxidative stress/chronic inflammation in colorectal cancer but diagnostic performance for early-detection is moderate.
Assuntos
Biomarcadores Tumorais/urina , Neoplasias Colorretais/urina , Guanina/análogos & derivados , Pentoxil (Uracila)/análogos & derivados , 8-Hidroxi-2'-Desoxiguanosina/análogos & derivados , Idoso , Feminino , Guanina/urina , Humanos , Masculino , Pessoa de Meia-Idade , Pentoxil (Uracila)/urinaRESUMO
5-Methylcytosine is one of the most important epigenetic modifications and has a profound impact on embryonic development. After gamete fusion, there is a widespread and rapid active demethylation process of sperm DNA, which suggests that the paternal epigenome has an important role during embryonic development. To better understand the epigenome of sperm DNA and its possible involvement in a developing embryo, we determined epigenetic marks in human sperm DNA and in surrogate somatic tissue leukocytes; the analyzed epigenetic modifications included 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, and 5-hydroxymethyl-2'-deoxyuridine. For absolute determination of the modification, we used liquid chromatography with UV detection and tandem mass spectrometry techniques with isotopically labeled internal standards. Our analyses demonstrated, for the first time to date, that absolute global values of 5-methyl-2'-deoxycytidine, 5-hydroxymethyl-2'-deoxycytidine, and 5-hydroxymethyl-2'-deoxyuridine in sperm are highly statistically different from those observed for leukocyte DNA, with respective mean values of 3.815% versus 4.307%, 0.797 versus 2.945 per 104 deoxynucleosides, and 5.209 versus 0.492 per 106 deoxynucleosides. We hypothesize that an exceptionally high value of 5-hydroxymethyluracil in sperm (>10-fold higher than in leukocytes) may play a not yet recognized regulatory role in the paternal genome.
Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Metilação de DNA , Epigênese Genética , Pentoxil (Uracila)/análogos & derivados , Espermatozoides/metabolismo , Regulação para Cima , 5-Metilcitosina/sangue , Adulto , Biomarcadores/sangue , Biomarcadores/metabolismo , Cromatografia Líquida de Alta Pressão , Citosina/sangue , Citosina/metabolismo , DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/sangue , Desoxicitidina/metabolismo , Humanos , Leucócitos/metabolismo , Masculino , Pentoxil (Uracila)/sangue , Pentoxil (Uracila)/metabolismo , Polônia , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Timidina/análogos & derivados , Timidina/sangue , Timidina/metabolismoRESUMO
DNA nucleobases are reactive in nature and undergo modifications by deamination, oxidation, alkylation, or hydrolysis processes. Many such modified bases are susceptible to mutagenesis when formed in cellular DNA. The mutagenesis can occur by mispairing with DNA nucleobases by a DNA polymerase during replication. We have performed a study of mispairing of DNA bases with unnatural bases computationally. 5-Halo uracils have been studied as mispairs in mutagenesis; however, the reports on their different forms are scarce in the literature. The stability of mispairs with keto form, enol form, and ionized form of 5-halo-uracil has been computed with the M06-2X/6-31+G** level of theory. The enol form of 5-halo-uracil showed remarkable stability toward DNA mispair compared to the corresponding keto and ionized forms. (F)U-G mispair showed the highest stability in the series and (Halo)(U(enol/ionized)-G mispair interactions energies are more stable than the natural G-C basepair of DNA. To enhance the stability of DNA mispairs, we have introduced the hydroxyl group in the place of halogen atoms, which provides additional hydrogen-bonding interactions in the system while forming the 5-membered ring. The study has been further extended with lithiated 5-hydroxymethyl-uracil to stabilize the DNA mispair. (CH2OLi)U(ionized)-G mispair has shown the highest stability (ΔG = -32.4 kcal/mol) with multi O-Li interactions. AIM (atoms in molecules) and EDA (energy decomposition analysis) analysis has been performed to examine the nature of noncovalent interactions in such mispairs. EDA analysis has shown that electrostatic energy mainly contributes toward the interaction energy of mispairs. The higher stability achieved in these studied mispairs can play a pivotal role in the mutagenesis and can help to attain the mutation for many desired biological processes.
Assuntos
Pareamento de Bases , DNA/química , Guanina/química , Mutagênese , Uracila/química , Simulação por Computador , Citosina/química , Halogênios/química , Ligação de Hidrogênio , Modelos Genéticos , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/química , Eletricidade EstáticaRESUMO
Cytosine residues in mammalian DNA occur in at least three forms, cytosine (C), 5-methylcytosine (M; 5mC) and 5-hydroxymethylcytosine (H; 5hmC). During semi-conservative DNA replication, hemi-methylated (M/C) and hemi-hydroxymethylated (H/C) CpG dinucleotides are transiently generated, where only the parental strand is modified and the daughter strand contains native cytosine. Here, we explore the role of DNA methyltransferases (DNMT) and ten eleven translocation (Tet) proteins in perpetuating these states after replication, and the molecular basis of their recognition by methyl-CpG-binding domain (MBD) proteins. Using recombinant proteins and modified double-stranded deoxyoligonucleotides, we show that DNMT1 prefers a hemi-methylated (M/C) substrate (by a factor of >60) over hemi-hydroxymethylated (H/C) and unmodified (C/C) sites, whereas both DNMT3A and DNMT3B have approximately equal activity on all three substrates (C/C, M/C and H/C). Binding of MBD proteins to methylated DNA inhibited Tet1 activity, suggesting that MBD binding may also play a role in regulating the levels of 5hmC. All five MBD proteins generally have reduced binding affinity for 5hmC relative to 5mC in the fully modified context (H/M versus M/M), though their relative abilities to distinguish the two varied considerably. We further show that the deamination product of 5hmC could be excised by thymine DNA glycosylase and MBD4 glycosylases regardless of context.
Assuntos
Citosina/análogos & derivados , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Replicação do DNA , 5-Metilcitosina/análogos & derivados , DNA (Citosina-5-)-Metiltransferase 1 , Proteínas de Ligação a DNA/metabolismo , Humanos , Pentoxil (Uracila)/análogos & derivados , Pentoxil (Uracila)/metabolismo , Timina DNA Glicosilase/metabolismoRESUMO
The mammalian DNA glycosylase--methyl-CpG binding domain protein 4 (MBD4)--is involved in active DNA demethylation via the base excision repair pathway. MBD4 contains an N-terminal MBD and a C-terminal DNA glycosylase domain. MBD4 can excise the mismatched base paired with a guanine (G:X), where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination products of cytosine, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we present three structures of the MBD4 C-terminal glycosylase domain (wild-type and its catalytic mutant D534N), in complex with DNA containing a G:T or G:5hmU mismatch. MBD4 flips the target nucleotide from the double-stranded DNA. The catalytic mutant D534N captures the intact target nucleotide in the active site binding pocket. MBD4 specifically recognizes the Watson-Crick polar edge of thymine or 5hmU via the O2, N3 and O4 atoms, thus restricting its activity to thymine/uracil-based modifications while excluding cytosine and its derivatives. The wild-type enzyme cleaves the N-glycosidic bond, leaving the ribose ring in the flipped state, while the cleaved base is released. Unexpectedly, the C1' of the sugar has yet to be hydrolyzed and appears to form a stable intermediate with one of the side chain carboxyl oxygen atoms of D534, via either electrostatic or covalent interaction, suggesting a different catalytic mechanism from those of other DNA glycosylases.