Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 701
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Biochem ; 120(6): 10662-10669, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30652348

RESUMO

Earlier studies showed that the oxidant menadione (MD) induces apoptosis in certain cells and also has anticancer effects. Most of these studies emphasized the role of the mitochondria in this process. However, the engagement of other organelles is less known. Particularly, the role of lysosomes and their proteolytic system, which participates in apoptotic cell death, is still unclear. The aim of this study was to investigate the role of lysosomal cathepsins on molecular signaling in MD-induced apoptosis in U937 cells. MD treatment induced translocation of cysteine cathepsins B, C, and S, and aspartic cathepsin D. Once in the cytosol, some cathepsins cleaved the proapoptotic molecule, Bid, in a process that was completely prevented by E64d, a general inhibitor of cysteine cathepsins, and partially prevented by the pancaspase inhibitor, z-VAD-fmk. Upon loss of the mitochondrial membrane potential, apoptosome activation led to caspase-9 processing, activation of caspase-3-like caspases, and poly (ADP-ribose) polymerase cleavage. Notably, the endogenous protein inhibitor, stefin B, was degraded by cathepsin D and caspases. This process was prevented by z-VAD-fmk, and partially by pepstatin A-penetratin. These findings suggest that the cleaved Bid protein acts as an amplifier of apoptotic signaling through mitochondria, thus enhancing the activity of cysteine cathepsins following stefin B degradation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Cistatina B/genética , Regulação Neoplásica da Expressão Gênica , Lisossomos/efeitos dos fármacos , Vitamina K 3/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/genética , Apoptossomas/efeitos dos fármacos , Apoptossomas/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Catepsina B/antagonistas & inibidores , Catepsina B/genética , Catepsina B/metabolismo , Catepsina C/antagonistas & inibidores , Catepsina C/genética , Catepsina C/metabolismo , Catepsina D/antagonistas & inibidores , Catepsina D/genética , Catepsina D/metabolismo , Catepsinas/antagonistas & inibidores , Catepsinas/genética , Catepsinas/metabolismo , Cistatina B/metabolismo , Humanos , Leucina/análogos & derivados , Leucina/farmacologia , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pepstatinas/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Proteases/farmacologia , Proteólise/efeitos dos fármacos , Transdução de Sinais , Células U937
2.
Int J Mol Sci ; 20(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884823

RESUMO

Triple-negative breast cancers (TNBCs) are more aggressive than other breast cancer (BC) subtypes and lack effective therapeutic options. Unraveling marker events of TNBCs may provide new directions for development of strategies for targeted TNBC therapy. Herein, we reported that Annexin A1 (AnxA1) and Cathepsin D (CatD) are highly expressed in MDA-MB-231 (TNBC lineage), compared to MCF-10A and MCF-7. Since the proposed concept was that CatD has protumorigenic activity associated with its ability to cleave AnxA1 (generating a 35.5 KDa fragment), we investigated this mechanism more deeply using the inhibitor of CatD, Pepstatin A (PepA). Fourier Transform Infrared (FTIR) spectroscopy demonstrated that PepA inhibits CatD activity by occupying its active site; the OH bond from PepA interacts with a CO bond from carboxylic acids of CatD catalytic aspartate dyad, favoring the deprotonation of Asp33 and consequently inhibiting CatD. Treatment of MDA-MB-231 cells with PepA induced apoptosis and autophagy processes while reducing the proliferation, invasion, and migration. Finally, in silico molecular docking demonstrated that the catalytic inhibition comprises Asp231 protonated and Asp33 deprotonated, proving all functional results obtained. Our findings elucidated critical CatD activity in TNBC cell trough AnxA1 cleavage, indicating the inhibition of CatD as a possible strategy for TNBC treatment.


Assuntos
Anexina A1/genética , Catepsina D/genética , Simulação de Acoplamento Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Catepsina D/antagonistas & inibidores , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Pepstatinas/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
3.
Biochem J ; 473(6): 769-77, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26759376

RESUMO

Pharmacological challenges to oncogenic Ras-expressing cancer cells have shown a novel type of cell death, ferroptosis, which requires intracellular iron. In the present study, we assessed ferroptosis following treatment of human fibrosarcoma HT1080 cells with several inhibitors of lysosomal activity and found that they prevented cell death induced by the ferroptosis-inducing compounds erastin and RSL3. Fluorescent analyses with a reactive oxygen species (ROS) sensor revealed constitutive generation of ROS in lysosomes, and treatment with lysosome inhibitors decreased both lysosomal ROS and a ferroptotic cell-death-associated ROS burst. These inhibitors partially prevented intracellular iron provision by attenuating intracellular transport of transferrin or autophagic degradation of ferritin. Furthermore, analyses with a fluorescent sensor that detects oxidative changes in cell membranes revealed that formation of lipid ROS in perinuclear compartments probably represented an early event in ferroptosis. These results suggest that lysosomal activity is involved in lipid ROS-mediated ferroptotic cell death through regulation of cellular iron equilibria and ROS generation.


Assuntos
Morte Celular/fisiologia , Ferro/metabolismo , Lisossomos/fisiologia , Ácido Aspártico Proteases/antagonistas & inibidores , Linhagem Celular Tumoral , Desferroxamina/farmacologia , Humanos , Pepstatinas/farmacologia , Piperazinas/farmacologia , Espécies Reativas de Oxigênio
4.
Fish Physiol Biochem ; 43(1): 127-136, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27531133

RESUMO

Dietary nucleic acids (NAs) were important nutrients. However, the digestion of NAs in stomach has not been studied. In this study, the digestion of NAs by enzymes from fish stomach was investigated. The snakehead pepsins (SP) which were the main enzymes in stomach were extracted and purified. The purity of SP was evaluated by SDS-PAGE and HPLC. The snakehead pepsin 2 (SP2) which was the main component in the extracts was used for investigating the protein and NAs digestion activity. SP2 could digest NAs, including λ DNA and salmon sperm DNA. Interestingly, the digestion could be inhibited by treatment of alkaline solution at pH 8.0 and pepstatin A, and the digestion could happen either in the presence or absence of hemoglobin (Hb) and BSA as the protein substrates. Similarly, the stomach enzymes of banded grouper also showed the NAs digestion activity. NAs could be digested by the stomach enzymes of snakehead and banded grouper. It may be helpful for understanding both animal nutrition and NAs metabolic pathway.


Assuntos
DNA/metabolismo , Proteínas de Peixes/metabolismo , Pepsina A/metabolismo , Perciformes/metabolismo , Estômago/enzimologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos , Digestão/efeitos dos fármacos , Proteínas de Peixes/química , Proteínas de Peixes/isolamento & purificação , Hemoglobinas/farmacologia , Pepsina A/química , Pepsina A/isolamento & purificação , Pepstatinas/farmacologia , Soroalbumina Bovina/farmacologia
5.
J Pharmacol Exp Ther ; 356(2): 375-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26660229

RESUMO

Inhibition of the major lysosomal proteases, cathepsins B, D, and L, impairs growth of several cell types but leads to apoptosis in neuroblastoma. The goal of this study was to examine the mechanisms by which enzyme inhibition could cause cell death. Cathepsin inhibition caused cellular accumulation of fragments of the insulin growth factor 1 (IGF-1) receptor. The fragments were located in dense organelles that were characterized as autophagosomes. This novel discovery provides the first clear link between lysosomal function, autophagy, and IGF-1- mediated cell proliferation. A more in-depth analysis of the IGF1 signaling pathway revealed that the mitogen-activated protein kinase (MAPK) cell-proliferation pathway was impaired in inhibitor treated cells, whereas the Akt cell survival pathway remained functional. Shc, an adapter protein that transmits IGF-1 signaling through the MAPK pathway, was sequestered in autophagosomes; whereas IRS-2, an adapter protein that transmits IGF-1 signaling through the Akt pathway, was unaffected by cathepsin inhibition. Furthermore, Shc was sequestered in autophagosomes as its active form, indicating that autophagy is a key mechanism for downregulating IGF-1-induced cell proliferation. Cathepsin inhibition had a greater effect on autophagic sequestration of the neuronal specific adapter protein, Shc-C, than ubiquitously expressed Shc-A, providing mechanistic support for the enhanced sensitivity of neuronally derived tumor cells. We also observed impaired activation of MAPK by epidermal growth factor treatment in inhibitor-treated cells. The Shc adapter proteins are central to transducing proliferation signaling by a range of receptor tyrosine kinases; consequently, cathepsin inhibition may become an important therapeutic approach for treating neuroblastoma and other tumors of neuronal origin.


Assuntos
Autofagia/fisiologia , Catepsinas/antagonistas & inibidores , Catepsinas/metabolismo , Regulação para Baixo/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Neuroblastoma/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Pepstatinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Nature ; 463(7281): 632-6, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20130644

RESUMO

During their intraerythrocytic development, malaria parasites export hundreds of proteins to remodel their host cell. Nutrient acquisition, cytoadherence and antigenic variation are among the key virulence functions effected by this erythrocyte takeover. Proteins destined for export are synthesized in the endoplasmic reticulum (ER) and cleaved at a conserved (PEXEL) motif, which allows translocation into the host cell via an ATP-driven translocon called the PTEX complex. We report that plasmepsin V, an ER aspartic protease with distant homology to the mammalian processing enzyme BACE, recognizes the PEXEL motif and cleaves it at the correct site. This enzyme is essential for parasite viability and ER residence is essential for its function. We propose that plasmepsin V is the PEXEL protease and is an attractive enzyme for antimalarial drug development.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Eritrócitos/metabolismo , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Motivos de Aminoácidos , Animais , Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Biocatálise/efeitos dos fármacos , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Eritrócitos/citologia , Eritrócitos/parasitologia , Genes Dominantes , Genes Essenciais , Inibidores da Protease de HIV/farmacologia , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/patologia , Complexos Multiproteicos/metabolismo , Pepstatinas/farmacologia , Fenótipo , Plasmídeos/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidade , Ligação Proteica , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Transporte Proteico , Proteômica , Proteínas de Protozoários/química , Especificidade por Substrato
7.
Biochem Biophys Res Commun ; 465(2): 213-7, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26239660

RESUMO

Stefin B is the major general cytosolic protein inhibitor of cysteine cathepsins. Its main function is to protect the organism against the activity of endogenous potentially hazardous proteases accidentally released from lysosomes. In this study, we investigated the possible effect of endosomal/lysosomal aspartic cathepsins D and E on stefin B after membrane permeabilization. Loss of membrane integrity of lysosomes and endosomes was induced by a lysosomotropic agent L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe). The rat thyroid cell line FRTL-5 was selected as a model cell line owing to its high levels of proteases, including cathepsin D and E. Permeabilization of acid vesicles from FRTL-5 cells induced degradation of stefin B. The process was inhibited by pepstatin A, a potent inhibitor of aspartic proteases. However, degradation of stefin B was prevented by siRNA-mediated silencing of cathepsin D expression. In contrast, cathepsin E silencing had no effect on stefin B degradation. These results showed that cathepsin D and not cathepsin E degrades stefin B. It can be concluded that the presence of cathepsin D in the cytosol affects the inhibitory potency of stefin B, thus preventing the regulation of cysteine cathepsin activities in various biological processes.


Assuntos
Catepsina D/metabolismo , Cistatina B/metabolismo , Citosol/enzimologia , Células Matadoras Naturais/enzimologia , Linfócitos/enzimologia , Macrófagos/enzimologia , Animais , Catepsina D/antagonistas & inibidores , Catepsina D/genética , Catepsina E/antagonistas & inibidores , Catepsina E/genética , Catepsina E/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular/efeitos dos fármacos , Cistatina B/farmacologia , Citosol/efeitos dos fármacos , Dipeptídeos/farmacologia , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Expressão Gênica , Células HEK293 , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Linfócitos/citologia , Linfócitos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Pepstatinas/farmacologia , Proteólise/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Glândula Tireoide/citologia , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/enzimologia
8.
J Biol Chem ; 288(42): 30485-30494, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24022484

RESUMO

The proinflammatory cytokine IL-1ß is a key mediator of inflammatory responses that contribute to and exacerbate brain injury. IL-1ß is synthesized by microglia in the brain as an inactive precursor (pro-IL-1ß). Cleavage of pro-IL-1ß to a mature form is stimulated by damage-associated molecular patterns (DAMPs). These DAMPs are sensed by a pattern recognition receptor called NLRP3, which forms an inflammasome, resulting in the activation of caspase-1 and cleavage of pro-IL-1ß. To date, regulation of the inflammasome in culture has been studied under normal culture conditions, and it is not known how DAMPs signal under disease relevant conditions such as acidosis. Given the presence of acidosis in pathological states, our objective was to test the hypothesis that acidic conditions modify DAMP-induced IL-1ß release from cultured primary mouse glial cells. When LPS-primed glial cells were stimulated with DAMPs under acidic conditions (pH 6.2), the predominant IL-1ß form secreted was the 20-kDa rather than the 17-kDa caspase-1-dependent species. Lactic acidosis, induced by the addition of 25 mm lactic acid, also induced the release of 20-kDa IL-1ß. This 20-kDa product was produced independently of NLRP3 and caspase-1 but was inhibited by the cathepsin D inhibitor pepstatin A. These data suggest that under disease relevant acidosis, DAMPs and lactic acid induce the secretion of IL-1ß independently of the inflammasome. Therapeutic strategies directed to the inhibition of IL-1ß processing should therefore consider alternative processing of IL-1ß in addition to caspase-1-dependent processing.


Assuntos
Acidose Láctica/metabolismo , Caspase 1/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Neuroglia/metabolismo , Transdução de Sinais , Acidose Láctica/induzido quimicamente , Acidose Láctica/genética , Acidose Láctica/patologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/genética , Catepsina D/antagonistas & inibidores , Catepsina D/genética , Catepsina D/metabolismo , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Inflamassomos/genética , Interleucina-1beta/genética , Ácido Láctico/efeitos adversos , Ácido Láctico/farmacologia , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuroglia/patologia , Pepstatinas/farmacologia , Inibidores de Proteases/farmacologia
9.
J Neurochem ; 128(6): 950-61, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24138030

RESUMO

Parkinson's disease is a neurodegenerative movement disorder. The histopathology of Parkinson's disease comprises proteinaceous inclusions known as Lewy bodies, which contains aggregated α-synuclein. Cathepsin D (CD) is a lysosomal protease previously demonstrated to cleave α-synuclein and decrease its toxicity in both cell lines and mouse brains in vivo. Here, we show that pharmacological inhibition of CD, or introduction of catalytically inactive mutant CD, resulted in decreased CD activity and increased cathepsin B activity, suggesting a possible compensatory response to inhibition of CD activity. However, this increased cathepsin B activity was not sufficient to maintain α-synuclein degradation, as evidenced by the accumulation of endogenous α-synuclein. Interestingly, the levels of LC3, LAMP1, and LAMP2, proteins involved in autophagy-lysosomal activities, as well as total lysosomal mass as assessed by LysoTracker flow cytometry, were unchanged. Neither autophagic flux nor proteasomal activities differs between cells over-expressing wild-type versus mutant CD. These observations point to a critical regulatory role for that endogenous CD activity in dopaminergic cells in α-synuclein homeostasis which cannot be compensated for by increased Cathepsin B. These data support the potential need to enhance CD function in order to attenuate α-synuclein accumulation as a therapeutic strategy against development of synucleinopathy.


Assuntos
Catepsina B/metabolismo , Catepsina D/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Caspases/metabolismo , Catepsina D/metabolismo , Linhagem Celular Tumoral , Expressão Gênica/fisiologia , Humanos , Lentivirus/genética , Lisossomos/metabolismo , Neuroblastoma , Neurônios/citologia , Neurônios/efeitos dos fármacos , Pepstatinas/farmacologia , Inibidores de Proteases/farmacologia
10.
J Neurochem ; 128(5): 713-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24118054

RESUMO

The cell adhesion molecule L1 regulates cellular responses in the developing and adult nervous system. Here, we show that stimulation of cultured mouse cerebellar neurons by a function-triggering L1 antibody leads to cathepsin E-mediated generation of a sumoylated 30 kDa L1 fragment (L1-30) and to import of L1-30 into the nucleus. Mutation of the sumoylation site at K1172 or the cathepsin E cleavage site at E1167 abolishes generation of L1-30, while mutation of the nuclear localization signal at K1147 prevents nuclear import of L1-30. Moreover, the aspartyl protease inhibitor pepstatin impairs the generation of L1-30 and inhibits L1-induced migration of cerebellar neurons and Schwann cells as well as L1-dependent in vitro myelination on axons of dorsal root ganglion neurons by Schwann cells. L1-stimulated migration of HEK293 cells expressing L1 with mutated cathepsin E cleavage site is diminished in comparison to migration of cells expressing non-mutated L1. In addition, L1-stimulated migration of HEK293 cells expressing non-mutated L1 is also abolished upon knock-down of cathepsin E expression and enhanced by over-expression of cathepsin E. The findings of the present study indicate that generation and nuclear import of L1-30 regulate neuronal and Schwann cell migration as well as myelination. Cell adhesion molecule L1 regulates cellular responses in the developing and adult nervous system. L1 stimulation triggers sumoylation and cleavage of L1, thus generating the L1-70 fragment (1) which is cleaved by cathepsin E (2) yielding the L1-30 fragment that is imported to the nucleus (3), may bind to DNA and/or nuclear proteins (4), to regulate diverse cellular functions.


Assuntos
Catepsina E/metabolismo , Movimento Celular/fisiologia , Bainha de Mielina/fisiologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/fisiologia , Células de Schwann/fisiologia , Sumoilação/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Catepsina E/genética , Cerebelo/citologia , Técnicas de Cocultura , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação/fisiologia , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Neuritos/efeitos dos fármacos , Pepstatinas/farmacologia , Fragmentos de Peptídeos/metabolismo , Inibidores de Proteases/farmacologia , RNA Interferente Pequeno/genética , Sumoilação/genética
11.
J Nat Prod ; 77(7): 1749-52, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24960234

RESUMO

Two linear peptides, ahpatinin Ac (1) and ahpatinin Pr (2), were isolated together with the known ahpatinin (i)Bu, pepstatin Ac, pepstatin Pr, and pepsinostreptin from a Streptomyces sp. derived from a deep-sea sediment. The structure of ahpatinin Pr (2) was assigned by interpretation of NMR data and HPLC analysis of the hydrolysate after converting to the DNP-L-Val derivative. During the LCMS analysis of the acid hydrolysate, products arising from the retro-aldol cleavage of the statine and Ahppa units in 2 were observed and could facilitate the determination of the absolute configuration of the statine class of nonproteinogenic amino acids. Both ahpatinin Ac (1) and ahpatinin Pr (2) potently inhibited pepsin and moderately inhibited cathepsin B.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/farmacologia , Pepstatinas/isolamento & purificação , Pepstatinas/farmacologia , Inibidores de Proteases/isolamento & purificação , Inibidores de Proteases/farmacologia , Streptomyces/química , Aminoácidos/química , Catepsina B/antagonistas & inibidores , Biologia Marinha , Estrutura Molecular , Oligopeptídeos/química , Pepsina A/antagonistas & inibidores , Pepstatinas/química , Inibidores de Proteases/química , Relação Estrutura-Atividade
12.
Zygote ; 22(3): 404-10, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23759564

RESUMO

Microtubule-associated protein light chain 3 (LC3)-II is a marker of autophagosome. In this study, LC3-II expression was used to identify autophagy, during the in vitro maturation of porcine oocytes. In a time-course experiment, cumulus-oocyte complexes (COCs) were cultured in NCSU23 medium for 0 h, 14 h, 28 h or 42 h. The cumulus cells were removed and denuded oocytes were processed for western blotting or immunostaining. Western blotting showed that the LC3-II levels changed over time, with maximum levels observed at 14 h and minimum levels at 42 h. Immunostaining of LC3 showed the signals with dot shapes and ring shapes in oocytes at every group that probably represent autophagosomes. To ascertain whether autophagic induction and degradation were occurring, we treated the cultures with autophagic inhibitors. Lysosomal protease inhibitor E64d and pepstatin A increased the LC3-II levels and wortmannin, inhibitor of autophagic induction, decreased the LC3-II levels. Western blotting and immunostaining demonstrated that LC3-II is present in porcine oocytes cultured in vitro. The decreased LC3-II levels after wortmannin treatment suggest that it is newly generated in porcine oocytes, a phenomenon that represents autophagic induction. Furthermore, increased LC3-II levels after E64d and pepstatin A addition imply that LC3-II is degraded by lysosomal proteases, an indication of autophagic degradation. Our results suggest that autophagy, which is a dynamic process whereby autophagosomes are newly generated and subsequently degraded, is probably occurring in porcine oocytes during in vitro maturation.


Assuntos
Western Blotting/métodos , Técnicas de Maturação in Vitro de Oócitos/métodos , Proteínas Associadas aos Microtúbulos/análise , Oócitos/fisiologia , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Células do Cúmulo , Feminino , Leucina/análogos & derivados , Leucina/farmacologia , Oócitos/efeitos dos fármacos , Pepstatinas/farmacologia , Suínos
13.
Eur J Med Chem ; 267: 116178, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38295686

RESUMO

Cathepsin D (CD) is overexpressed in several types of cancer and constitutes an important biological target. Pepstatin A, a pentapeptide incorporating two non-proteinogenic statin residues, is among the most potent inhibitor of CD but lacks selectivity and suffers from poor bioavailability. Eight analogues of Pepstatin A, were synthesized, replacing residues in P3 or P1 position by non-canonical (S)- and (R)-α-Trifluoromethyl Alanine (TfmAla), (S)- and (R)-Trifluoromethionine (TFM) or non-natural d-Valine. The biological activities of those analogues were quantified on isolated CD and Pepsin by fluorescence-based assay (FRET) and cytotoxicity of the best fluorinated inhibitors was evaluated on SKOV3 ovarian cancer cell line. (R)-TFM based analog of Pepstatin A (compound 6) returned a sub-nanomolar IC50 against CD and an increased selectivity. Molecular Docking experiments could partially rationalize these results. Stabilized inhibitor 6 in the catalytic pocket of CD showed strong hydrophobic interactions of the long and flexible TFM side chain with lipophilic residues of S1 and S3 sub-pockets of the catalytic pocket. The newly synthesized inhibitors returned no cytotoxicity at IC50 concentrations on SKOV3 cancer cells, however the compounds derived from (S)-TfmAla and (R)-TFM led to modifications of cells morphologies, associated with altered organization of F-actin and extracellular Fibronectin.


Assuntos
Catepsina D , Metionina/análogos & derivados , Pepsina A , Pepstatinas/farmacologia , Pepstatinas/química , Simulação de Acoplamento Molecular , Alanina
14.
Laryngoscope ; 134(7): 3080-3085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38214310

RESUMO

OBJECTIVE: This study aimed to evaluate the role of pepsin inhibitors in the inflammatory response and their effects on laryngeal mucosal integrity during gastroesophageal reflux (GERD) under in vivo conditions. METHODS: A surgical model of GERD was used, in which mice were treated with pepstatin (0.3 mg/kg) or darunavir (8.6 mg/kg) for 3 days. On the third day after the experimental protocol, the laryngeal samples were collected to assess the severity of inflammation (wet weight and myeloperoxidase activity) and mucosal integrity (transepithelial electrical resistance and paracellular epithelial permeability to fluorescein). RESULTS: The surgical GERD model was reproduced. It showed features of inflammation and loss of barrier function in the laryngeal mucosa. Pepstatin and darunavir administration suppressed laryngeal inflammation and preserved laryngeal mucosal integrity. CONCLUSION: Pepsin inhibition by the administration of pepstatin and darunavir improved inflammation and protected the laryngeal mucosa in a mouse experimental model of GERD. LEVEL OF EVIDENCE: NA Laryngoscope, 134:3080-3085, 2024.


Assuntos
Modelos Animais de Doenças , Refluxo Gastroesofágico , Pepsina A , Animais , Camundongos , Refluxo Gastroesofágico/tratamento farmacológico , Pepstatinas/farmacologia , Mucosa Laríngea/efeitos dos fármacos , Mucosa Laríngea/patologia , Masculino , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
15.
Analyst ; 138(7): 2104-9, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23403906

RESUMO

The proteolytic activity of renin is a key element in the regulation of blood pressure and a main target for inhibitor design. Currently, the activity of renin and its inhibitors is mainly analyzed using radioimmunoassays or FRET-substrates, which both have their limitations. Here, a novel kinetic assay is presented that combines the advantages of a homogeneous proteolytic reaction and a robust heterogeneous detection in a sandwich immunoassay format. The proteolysis in solution is not influenced by surface interactions and yields accurate kinetic values, while the specific detection of the cleavage products on a microtiter plate strongly reduces interference by concomitant substances and allows for a self-referenced signal readout. A new enzyme kinetic scheme for the inhibition of renin has been developed and validated by using the model inhibitor pepstatin. This kinetic analysis is amenable to parallelization for large-scale inhibitor screening. Furthermore, it can be easily adapted to inhibitors of other medically important proteases.


Assuntos
Pepstatinas/farmacologia , Renina/antagonistas & inibidores , Renina/sangue , Sequência de Aminoácidos , Animais , Imunoensaio/métodos , Cinética , Camundongos , Inibidores de Proteases/análise
16.
J Fluoresc ; 23(2): 311-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23212130

RESUMO

This is the first report of inactivation of xyloglucanase from Thermomonospora sp by pepstatin A, a specific inhibitor towards aspartic proteases. The steady state kinetics revealed a reversible, competitive, two-step inhibition mechanism with IC 50 and K i values of 3.5 ± 0.5 µM and 1.25 ± 0.5 µM respectively. The rate constants determined for the isomerization of EI to EI(*) and the dissociation of EI* were 14.5 ± 1.5 × 10(-5) s(-1) and 2.85 ± 1.2 × 10(-8) s(-1) respectively, whereas the overall inhibition constant K i(*) was 27 ± 1 nM. The conformational changes induced upon inhibitor binding to xyloglucanase were monitored by fluorescence analysis and the rate constants derived were in agreement with the kinetic data. The abolished isoindole fluorescence of o-phthalaldehyde (OPTA)-labeled xyloglucanase and far UV analysis suggested that pepstatin binds to the active site of the enzyme. Our results revealed that the inactivation of xyloglucanase is due to the interference in the electronic microenvironment and disruption of the hydrogen-bonding network between the essential histidine and other residues involved in catalysis.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Glicosídeo Hidrolases/antagonistas & inibidores , Pepstatinas/farmacologia , Inibidores de Proteases/farmacologia , Dicroísmo Circular , Glicosídeo Hidrolases/isolamento & purificação , Cinética , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , o-Ftalaldeído/química
17.
Mol Cell Proteomics ; 10(6): M111.008193, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474794

RESUMO

Macrophages are central effectors of innate immune responses to bacteria. We have investigated how activation of the abundant macrophage lysosomal protease, cathepsin D, regulates the macrophage proteome during killing of Streptococcus pneumoniae. Using the cathepsin D inhibitor pepstatin A, we demonstrate that cathepsin D differentially regulates multiple targets out of 679 proteins identified and quantified by eight-plex isobaric tag for relative and absolute quantitation. Our statistical analysis identified 18 differentially expressed proteins that passed all paired t-tests (α = 0.05). This dataset was enriched for proteins regulating the mitochondrial pathway of apoptosis or inhibiting competing death programs. Five proteins were selected for further analysis. Western blotting, followed by pharmacological inhibition or genetic manipulation of cathepsin D, verified cathepsin D-dependent regulation of these proteins, after exposure to S. pneumoniae. Superoxide dismutase-2 up-regulation was temporally related to increased reactive oxygen species generation. Gelsolin, a known regulator of mitochondrial outer membrane permeabilization, was down-regulated in association with cytochrome c release from mitochondria. Eukaryotic elongation factor (eEF2), a regulator of protein translation, was also down-regulated by cathepsin D. Using absence of the negative regulator of eEF2, eEF2 kinase, we confirm that eEF2 function is required to maintain expression of the anti-apoptotic protein Mcl-1, delaying macrophage apoptosis and confirm using a murine model that maintaining eEF2 function is associated with impaired macrophage apoptosis-associated killing of Streptococcus pneumoniae. These findings demonstrate that cathepsin D regulates multiple proteins controlling the mitochondrial pathway of macrophage apoptosis or competing death processes, facilitating intracellular bacterial killing.


Assuntos
Catepsina D/antagonistas & inibidores , Macrófagos/fisiologia , Proteoma/metabolismo , Streptococcus pneumoniae/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Contagem de Colônia Microbiana , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Retículo Endoplasmático/fisiologia , Chaperona BiP do Retículo Endoplasmático , Ensaios Enzimáticos , Feminino , Gelsolina/genética , Gelsolina/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Humanos , Pulmão/microbiologia , Macrófagos/imunologia , Macrófagos/microbiologia , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Estresse Oxidativo , Pepstatinas/farmacologia , Inibidores de Proteases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Proteína A6 Ligante de Cálcio S100 , Proteínas S100/metabolismo , Streptococcus pneumoniae/imunologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
18.
J Sci Food Agric ; 93(6): 1349-55, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23044751

RESUMO

BACKGROUND: Katsuobushi is a dried, smoked and fermented bonito used in Japanese cuisine. During the fermentation process with several Aspergillus species, the colour of Katsuobushi gradually changes from a dark reddish-brown derived from haem proteins to pale pink. The change in colour gives Katsuobushi a higher ranking and price. This study aimed to elucidate the mechanism of decolourisation of Katsuobushi. RESULTS: A decolourising factor from the culture supernatant of Aspergillus (Eurotium) repens strain MK82 was purified to homogeneity. The purification was monitored by measuring the decolourising activity using equine myoglobin and bovine haemoglobin as substrates. It was found that the decolourising factor had protease activity towards myoglobin and haemoglobin. Complete inhibition of the enzyme by the inhibitor pepstatin A and the internal amino acid sequence classified the protein as an aspartic protease. The enzyme limitedly hydrolysed myoglobin between 1-Met and 2-Gly, 43-Lys and 44-Phe, and 70-Leu and 71-Thr. The purified enzyme decolourised blood of Katsuwonus pelamis (bonito) and a slice of dried bonito. CONCLUSION: It is proposed that aspartic protease plays a role in the decolourisation of Katsuobushi by the hydrolysis of haem proteins that allows the released haem to aggregate in the dried bonito.


Assuntos
Ácido Aspártico Proteases/metabolismo , Aspergillus/enzimologia , Microbiologia de Alimentos , Hemoglobinas/metabolismo , Mioglobina/metabolismo , Pigmentação , Alimentos Marinhos/microbiologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Ácido Aspártico Proteases/isolamento & purificação , Bovinos , Cor , Dessecação , Dieta , Fermentação , Peixes , Cavalos , Humanos , Hidrólise , Pepstatinas/farmacologia , Alimentos Marinhos/análise
19.
Invest Clin ; 54(3): 270-83, 2013 Sep.
Artigo em Espanhol | MEDLINE | ID: mdl-24354241

RESUMO

Through two peptidase assay methods, one in liquid-phase and another, in gel-phase (gel zymography), an acid peptidase was detected in protein crude extracts of epimastigotes of Trypanosoma cruzi, from a rural area of Venezuela where Chagas disease is endemic. The peptidase shows activity at a pH range between 2.0 and 2.9. Under the experimental conditions described, the acid peptidase was insensitive to usual concentrations of peptidase inhibitors of the types: serine, cysteine, aspartic and metallopeptidases. Nevertheless, like porcine pepsin at pH 2.9, the peptidase was inhibited in the presence of 5mM DTT.


Assuntos
Peptídeo Hidrolases/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Trypanosoma cruzi/enzimologia , Doença de Chagas/parasitologia , Doenças Endêmicas , Hemoglobinas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Pepstatinas/farmacologia , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Especificidade por Substrato , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/isolamento & purificação , Venezuela
20.
ACS Chem Biol ; 18(4): 686-692, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920024

RESUMO

Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.


Assuntos
Ácido Aspártico Endopeptidases , Catepsina D , Pepstatinas , Marcadores de Fotoafinidade , Humanos , Ácido Aspártico Endopeptidases/química , Catepsina D/química , Diazometano , Pepstatinas/química , Pepstatinas/farmacologia , Marcadores de Fotoafinidade/química , Proteína Sequestossoma-1/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA