Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.076
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
PLoS Genet ; 19(12): e1011098, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134213

RESUMO

Cell death resistance is a hallmark of tumor cells that drives tumorigenesis and drug resistance. Targeting cell death resistance-related genes to sensitize tumor cells and decrease their cell death threshold has attracted attention as a potential antitumor therapeutic strategy. However, the underlying mechanism is not fully understood. Recent studies have reported that NeuroD1, first discovered as a neurodifferentiation factor, is upregulated in various tumor cells and plays a crucial role in tumorigenesis. However, its involvement in tumor cell death resistance remains unknown. Here, we found that NeuroD1 was highly expressed in hepatocellular carcinoma (HCC) cells and was associated with tumor cell death resistance. We revealed that NeuroD1 enhanced HCC cell resistance to ferroptosis, a type of cell death caused by aberrant redox homeostasis that induces lipid peroxide accumulation, leading to increased HCC cell viability. NeuroD1 binds to the promoter of glutathione peroxidase 4 (GPX4), a key reductant that suppresses ferroptosis by reducing lipid peroxide, and activates its transcriptional activity, resulting in decreased lipid peroxide and ferroptosis. Subsequently, we showed that NeuroD1/GPX4-mediated ferroptosis resistance was crucial for HCC cell tumorigenic potential. These findings not only identify NeuroD1 as a regulator of tumor cell ferroptosis resistance but also reveal a novel molecular mechanism underlying the oncogenic function of NeuroD1. Furthermore, our findings suggest the potential of targeting NeuroD1 in antitumor therapy.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peróxidos Lipídicos , Ferroptose/genética , Neoplasias Hepáticas/genética , Peróxidos , Carcinogênese , Linhagem Celular Tumoral
2.
Nature ; 575(7784): 688-692, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31634900

RESUMO

Ferroptosis is a form of regulated cell death that is caused by the iron-dependent peroxidation of lipids1,2. The glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4) prevents ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols3,4. Ferroptosis has previously been implicated in the cell death that underlies several degenerative conditions2, and induction of ferroptosis by the inhibition of GPX4 has emerged as a therapeutic strategy to trigger cancer cell death5. However, sensitivity to GPX4 inhibitors varies greatly across cancer cell lines6, which suggests that additional factors govern resistance to ferroptosis. Here, using a synthetic lethal CRISPR-Cas9 screen, we identify ferroptosis suppressor protein 1 (FSP1) (previously known as apoptosis-inducing factor mitochondrial 2 (AIFM2)) as a potent ferroptosis-resistance factor. Our data indicate that myristoylation recruits FSP1 to the plasma membrane where it functions as an oxidoreductase that reduces coenzyme Q10 (CoQ) (also known as ubiquinone-10), which acts as a lipophilic radical-trapping antioxidant that halts the propagation of lipid peroxides. We further find that FSP1 expression positively correlates with ferroptosis resistance across hundreds of cancer cell lines, and that FSP1 mediates resistance to ferroptosis in lung cancer cells in culture and in mouse tumour xenografts. Thus, our data identify FSP1 as a key component of a non-mitochondrial CoQ antioxidant system that acts in parallel to the canonical glutathione-based GPX4 pathway. These findings define a ferroptosis suppression pathway and indicate that pharmacological inhibition of FSP1 may provide an effective strategy to sensitize cancer cells to ferroptosis-inducing chemotherapeutic agents.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Ferroptose/genética , Proteínas Mitocondriais/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ubiquinona/análogos & derivados , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulação Enzimológica da Expressão Gênica , Xenoenxertos , Humanos , Peróxidos Lipídicos/metabolismo , Masculino , Camundongos , Camundongos SCID , Proteínas Mitocondriais/genética , Ubiquinona/metabolismo
3.
Horm Metab Res ; 56(3): 193-196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37402397

RESUMO

Ferroptosis is an iron-dependent death mode mediated by the aggregation of lipid peroxides and lipid-reactive oxygen species. It is characterized by iron-dependent lipid peroxide accumulation accompanied by oxidoreductase deficiency. Pancreatic beta cell dysfunction and insulin resistance are two major causes of type 2 diabetes mellitus (T2DM). Iron accumulation and metabolism may play a role in the development of T2DM. The molecular mechanism of ß cell apoptosis and iron death in T2DM were reviewed. In addition, we discuss recent insights on the relationship between the trace element iron and apoptosis of ß cells in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Humanos , Vitamina D , Vitaminas , Transdução de Sinais , Ferro , Peróxidos Lipídicos , Espécies Reativas de Oxigênio
4.
Cell Mol Biol Lett ; 29(1): 40, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528461

RESUMO

Ferroptosis, a therapeutic strategy for tumours, is a regulated cell death characterised by the increased accumulation of iron-dependent lipid peroxides (LPO). Tumour-associated long non-coding RNAs (lncRNAs), when combined with traditional anti-cancer medicines or radiotherapy, can improve efficacy and decrease mortality in cancer. Investigating the role of ferroptosis-related lncRNAs may help strategise new therapeutic options for breast cancer (BC). Herein, we briefly discuss the genes and pathways of ferroptosis involved in iron and reactive oxygen species (ROS) metabolism, including the XC-/GSH/GPX4 system, ACSL4/LPCAT3/15-LOX and FSP1/CoQ10/NAD(P)H pathways, and investigate the correlation between ferroptosis and LncRNA in BC to determine possible biomarkers related to ferroptosis.


Assuntos
Ferroptose , Neoplasias , RNA Longo não Codificante , Ferroptose/genética , RNA Longo não Codificante/genética , Ferro , Peróxidos Lipídicos , Espécies Reativas de Oxigênio
5.
Biochemistry (Mosc) ; 89(Suppl 1): S148-S179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621749

RESUMO

The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.


Assuntos
Halogênios , Peróxidos Lipídicos , Animais , Humanos , Peroxidação de Lipídeos , Radicais Livres , Oxirredução , Mamíferos
6.
Mol Cell Neurosci ; 127: 103901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37729979

RESUMO

A BAX- and mitochondria-dependent production of reactive oxygen species (ROS) and reactive species (reactive nitrogen species, RNS) lying downstream of these ROS occurs in apoptotic and nonapoptotic mouse sympathetic neurons and cerebellar granule cells in cell culture. These ROS have been shown to lie downstream of caspase 3 in mouse sympathetic neurons. Here we show that BAX is necessary for similar ROS production in apoptotic and nonapoptotic mouse cortical neurons in cell culture and that it also positively regulates oxidative stress in the brains of mice of different ages. Brains from mice with genetically reduced levels of mitochondrial superoxide dismutase 2 (SOD2) exhibited elevated levels of DNA strand breaks consistent with oxidative damage. Lipid peroxides were also elevated at some ages in comparison to the brains of wild type animals. BAX deletion in these mice reduced both brain DNA strand breaks and lipid peroxide levels to well below those of wild type animals. Deletion of caspase 3 greatly reduced age-augmented levels of brain oxidative stress markers including lipid peroxides, oxidized DNA, and nitrosylated proteins. These findings indicate that BAX contributes to ROS production in mouse cortical neurons, to oxidative stress their brains, and that this effect is likely mediated via caspase 3 activity.


Assuntos
Apoptose , Peróxidos Lipídicos , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Peróxidos Lipídicos/metabolismo , Apoptose/fisiologia , Estresse Oxidativo/fisiologia , Neurônios/metabolismo , Encéfalo/metabolismo , DNA/metabolismo
7.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611845

RESUMO

In this paper, berberine hydrochloride-loaded liposomes-in-gel were designed and developed to investigate their antioxidant properties and therapeutic effects on the eczema model of the mouse. Berberine hydrochloride-liposomes (BBH-L) as the nanoparticles were prepared by the thin-film hydration method and then dispersed BBH-L evenly in the gel matrix to prepare the berberine hydrochloride liposomes-gel (BBH-L-Gel) by the natural swelling method. Their antioxidant capacity was investigated by the free radical scavenging ability on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and H2O2 and the inhibition of lipid peroxides malondialdehyde (MDA). An eczema model was established, and the efficacy of the eczema treatment was preliminarily evaluated using ear swelling, the spleen index, and pathological sections as indicators. The results indicate that the entrapment efficiency of BBH-L prepared by the thin-film hydration method was 78.56% ± 0.7%, with a particle size of 155.4 ± 9.3 nm. For BBH-L-Gel, the viscosity and pH were 18.16 ± 6.34 m Pas and 7.32 ± 0.08, respectively. The cumulative release in the unit area of the in vitro transdermal study was 85.01 ± 4.53 µg/cm2. BBH-L-Gel had a good scavenging capacity on DPPH and H2O2, and it could effectively inhibit the production of hepatic lipid peroxides MDA in the concentration range of 0.4-2.0 mg/mL. The topical application of BBH-L-Gel could effectively alleviate eczema symptoms and reduce oxidative stress injury in mice. This study demonstrates that BBH-L-Gel has good skin permeability, excellent sustained release, and antioxidant capabilities. They can effectively alleviate the itching, inflammation, and allergic symptoms caused by eczema, providing a new strategy for clinical applications in eczema treatment.


Assuntos
Berberina , Eczema , Animais , Camundongos , Antioxidantes/farmacologia , Berberina/farmacologia , Lipossomos , Peróxido de Hidrogênio , Peróxidos Lipídicos
8.
Med Res Rev ; 43(3): 683-712, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36658745

RESUMO

Cardio-metabolic-diseases (cardio-metabolic-diseases) are leading causes of death and disability worldwide and impose a tremendous burden on whole society as well as individuals. As a new type of regulated cell death (RCD), ferroptosis is distinct from several classical types of RCDs such as apoptosis and necroptosis in cell morphology, biochemistry, and genetics. The main molecular mechanisms of ferroptosis involve iron metabolism dysregulation, mitochondrial malfunction, impaired antioxidant capacity, accumulation of lipid-related peroxides and membrane disruption. Within the past few years, mounting evidence has shown that ferroptosis contributes to the pathophysiological process in cardio-metabolic-diseases. However, the exact roles and underlying molecular mechanisms have not been fully elucidated. This review comprehensively summarizes the mechanism of ferroptosis in the development and progression of cardio-metabolic-diseases, so as to provide new insights for cardio-metabolic-diseases pathophysiology. Moreover, we highlight potential druggable molecules in ferroptosis signaling pathway, and discuss recent advances in management strategies by targeting ferroptosis for prevention and treatment of cardio-metabolic-diseases.


Assuntos
Ferroptose , Doenças Metabólicas , Humanos , Apoptose , Doenças Metabólicas/tratamento farmacológico , Antioxidantes , Peróxidos Lipídicos
9.
Br J Cancer ; 128(8): 1439-1451, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36703079

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer deaths worldwide and is characterised by frequently mutated genes, such as APC, TP53, KRAS and BRAF. The current treatment options of chemotherapy, radiation therapy and surgery are met with challenges such as cancer recurrence, drug resistance, and overt toxicity. CRC therapies exert their efficacy against cancer cells by activating biological pathways that contribute to various forms of regulated cell death (RCD). In 2012, ferroptosis was discovered as an iron-dependent and lipid peroxide-driven form of RCD. Recent studies suggest that therapies which target ferroptosis are promising treatment strategies for CRC. However, a greater understanding of the mechanisms of ferroptosis initiation, propagation, and resistance in CRC is needed. This review provides an overview of recent research in ferroptosis and its potential role as a therapeutic target in CRC. We also propose future research directions that could help to enhance our understanding of ferroptosis in CRC.


Assuntos
Neoplasias Colorretais , Ferroptose , Humanos , Ferro , Peróxidos Lipídicos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia
10.
Biochem Biophys Res Commun ; 688: 149065, 2023 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-37979398

RESUMO

Intestinal injury caused by traumatic brain injury (TBI) seriously affects patient prognosis; however, the underlying mechanisms are unknown. Recent studies have demonstrated that ferritinophagy-mediated ferroptosis is involved in several intestinal disorders. However, uncertainty persists regarding the role of ferritinophagy-mediated ferroptosis in the intestinal damage caused by TBI. High-throughput transcriptional sequencing was used to identify the genes that were differentially expressed in the intestine after TBI. The intestinal tissues were harvested for hematoxylin and eosin staining (HE), immunofluorescence, and western blot (WB). Lipid peroxide markers and iron content in the intestines were determined using the corresponding kits. High throughput sequencing revealed that the ferroptosis signaling pathway was enriched, demonstrating that intestinal damage caused by TBI may include ferroptosis. Chiu's score, tight junction proteins, and lipid peroxide indicators demonstrated that TBI caused an intestinal mucosal injury that persisted for several days. The ferroptosis pathway-related proteins, ferritin heavy polypeptide 1 (Fth1) and glutathione peroxidase 4 (GPX4), exhibited dynamic changes. The results indicated that lipid peroxide products were markedly increased, whereas antioxidant enzymes were markedly decreased. WB analysis demonstrated that the expression levels of nuclear receptor coactivator 4 (NCOA4), LC3II/LC3I, and p62 were markedly upregulated, whereas those of GPX4 and Fth1 were markedly downregulated. In addition, ferrostatin-1 attenuates intestinal ferroptosis and injury post-TBI in vivo. Intriguingly, 3-methyladenine (3-MA) reduces intestinal ferritin decomposition, iron accumulation, and ferroptosis after TBI. Moreover, 3-MA markedly reduced intestinal apoptosis. In conclusion, NCOA4 mediated ferritinophagy and ferroptosis play roles in intestinal oxidative stress injury post-TBI. This study provides a deeper understanding of the mechanisms underlying intestinal damage following TBI.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Humanos , Peróxidos Lipídicos , Intestinos , Estresse Oxidativo , Fatores de Transcrição , Ferritinas , Ferro , Autofagia , Coativadores de Receptor Nuclear/genética
11.
Nat Chem Biol ; 17(4): 465-476, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542532

RESUMO

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.


Assuntos
Ferroptose/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Animais , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Animais de Doenças , Feminino , Fosfolipases A2 do Grupo VI/fisiologia , Humanos , Ferro/metabolismo , Leucotrienos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Peróxidos Lipídicos/metabolismo , Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Doença de Parkinson/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , Ratos , Ratos Endogâmicos Lew
12.
FASEB J ; 36(11): e22569, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36183339

RESUMO

Ferroptosis is an iron-dependent form of nonapoptotic cell death characterized by the accumulation of lipid peroxides in cells. In recent years, extensive attention has been dedicated to exploring safe and effective natural ferroptosis regulators which can provide novel treatment strategies for ferroptosis-related diseases. This study identified galangin, a natural flavonoid, as an effective inhibitor of ferroptosis, which could increase cell viability in RSL3-inhibited HT1080 cells, decrease levels of lipid ROS and MDA, improve PTGS2 mRNA expression, and enhance the expression of glutathione peroxidase 4 (GPX4). Ferroptosis is widely present in ischemia-reperfusion (IR) injury. This study found that galangin significantly ameliorated the pathological damage of liver tissue in mice with IR, reduced levels of serum ALT, AST, and MDA, and increased the expression of GPX4. The results of RNA-seq exhibited ferroptosis was significant and the PI3K/AKT pathway deserved to explore the inhibition effects of galangin on ferroptosis. Indeed, galangin treatment significantly rescued RSL3-inhibited phosphorylation levels of PI3K, AKT, and CREB proteins, and the ferroptosis inhibitory effects of galangin were counteracted by PI3K inhibitor LY294002. These findings indicated that galangin may exert its anti-ferroptosis effects via activating the PI3K/AKT/CREB signaling pathway and it will hopefully serve as a promising effective measure to attenuate IR injury by inhibiting ferroptosis.


Assuntos
Fosfatidilinositol 3-Quinases , Traumatismo por Reperfusão , Animais , Ciclo-Oxigenase 2 , Flavonoides/farmacologia , Ferro/metabolismo , Peróxidos Lipídicos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo
13.
Ann Hematol ; 102(8): 1985-1999, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314462

RESUMO

Ferroptosis is a form of cell death that is regulated by iron and characterized by the buildup of lipid peroxides (LPO) and subsequent rupture of the cell membrane. The molecular mechanisms of ferroptosis involve metabolic pathways related to iron, lipids, and amino acids, which contribute to the production of lipid reactive oxygen species (ROS). In recent years, there has been increasing attention on the occurrence of ferroptosis in various diseases. Ferroptosis has been found to play a crucial role in cardiovascular diseases, digestive diseases, respiratory and immunological diseases, and particularly in malignancies. However, there is still a lack of studies on ferroptosis in acute myeloid leukemia (AML). This paper provides a comprehensive review of the mechanism of ferroptosis and its regulatory molecules and therapeutic agents in AML. It also evaluates the relationship between ferroptosis-related genes (FRGs), non-coding RNAs (ncRNAs), and prognosis to develop prognostic molecular models in AML. The study also explores the association between ferroptosis and immune infiltration in AML, to identify novel potential target regimens for AML.


Assuntos
Doenças Cardiovasculares , Ferroptose , Leucemia Mieloide Aguda , Humanos , Ferroptose/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Ferro , Peróxidos Lipídicos
14.
Neurochem Res ; 48(3): 956-966, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36402927

RESUMO

Ferroptosis is characterized by excessive accumulation of iron and lipid peroxides, which are involved in ischemia, reperfusion-induced organ injury, and stroke. Propofol, an anesthetic agent, has neuroprotective effects due to its potent antioxidant, anti-ischemic, and anti-inflammatory properties. However, the relationship between propofol and ferroptosis is still unclear. In the current study, we elucidated the role of ferroptosis in the neuroprotective effect of propofol in mouse brains subjected to cerebral ischemia reperfusion injury (CIRI). Ferroptosis was confirmed by Western blotting assays, transmission electron microscopy, and glutathione assays. Propofol regulated Nrf2/Gpx4 signaling, enhanced antioxidant potential, inhibited the accumulation of lipid peroxides in CIRI-affected neurons, and significantly reversed CIRI-induced ferroptosis. Additionally, Gpx4 inhibitor RSL3 and Nrf2 inhibitor ML385 attenuated the effects of propofol on antioxidant capacity, lipid peroxidation, and ferroptosis in CIRI-affected neurons. Our data support a protective role of propofol against ferroptosis as a cause of cell death in mice with CIRI. Propofol protected against CIRI-induced ferroptosis partly by regulating the Nrf2/Gpx4 signaling pathway. These findings may contribute to the development of future therapies targeting ferroptosis induced by CIRI.


Assuntos
Propofol , Traumatismo por Reperfusão , Animais , Camundongos , Propofol/farmacologia , Propofol/uso terapêutico , Fator 2 Relacionado a NF-E2 , Antioxidantes , Peróxidos Lipídicos , Traumatismo por Reperfusão/tratamento farmacológico , Modelos Animais de Doenças , Transdução de Sinais , Morte Celular
15.
Bioorg Med Chem ; 90: 117352, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257255

RESUMO

Ferroptosis is a new type of regulated, non-apoptotic cell death driven by iron-dependent phospholipid peroxidation. Inducing cell ferroptosis by inactivating glutathione peroxidase 4 (GPX4) has been considered as an effective cancer treatment strategy, but only few GPX4 inhibitors have been reported to date. Targeted protein degradation is receiving increasing attention in the discovery and development of therapeutic modality, particularly proteolysis targeting chimeras (PROTACs). Herein, we reported the design, synthesis, and evaluation of different types of GPX4-targeting PROTACs using ML162 derivatives and ligands for CRBN/VHL E3 ligases. Among them, CRBN-based PROTAC GDC-11 showed a relatively balanced biological profile in GPX4 degradation (degradation rate of 33% at 10 µM), cytotoxicity (IC50 = 11.69 µM), and lipid peroxides accumulation (2-foldincreaserelatedtoDMSO), suggesting a typical characteristic of ferroptosis. In silico docking and quantum chemistry theoretical calculations provided a plausible explanation for the moderate degrading effect of these synthesized PROTACs. Overall, this work lays the foundation for subsequent studies of GPX4-targeting PROTACs, and further design and synthesis of GPX4-targeting degrader are currently in progress in our group, which will be reported in due course.


Assuntos
Ferro , Peróxidos Lipídicos , Proteólise , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Peróxidos , Quimera de Direcionamento de Proteólise
16.
Bioorg Chem ; 131: 106285, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36450198

RESUMO

The peroxygenase pathway plays pivotal roles in plant responses to oxidative stress and other environmental stressors. Analysis of a network of co-expressed stress-regulated rice genes demonstrated that expression of OsPXG9 is negatively correlated with expression of genes involved in jasmonic acid biosynthesis. DNA sequence analysis and structure/function studies reveal that OsPXG9 is a caleosin-like peroxygenase with amphipathic α-helices that localizes to lipid droplets in rice cells. Enzymatic studies demonstrate that 12-epoxidation is slightly more favorable with 9(S)-hydroperoxyoctadecatrienoic acid than with 9(S)-hydroperoxyoctadecadienoic acid as substrate. The products of 12-epoxidation are labile, and the epoxide ring is hydrolytically cleaved into corresponding trihydroxy compounds. On the other hand, OsPXG9 catalyzed 15-epoxidation of 13(S)-hydroperoxyoctadecatrienoic acid generates a relatively stable epoxide product. Therefore, the regiospecific 12- or 15-epoxidation catalyzed by OsPXG9 strongly depends on activation of the 9- or 13- peroxygenase reaction pathways, with their respective preferred substrates. The relative abundance of products in the 9-PXG and 13-PXG pathways suggest that the 12-epoxidation involves intramolecular oxygen transfer while the 15-epoxidation can proceed via intramolecular or intermolecular oxygen transfer. Expression of OsPXG9 is up-regulated by abiotic stimuli such as drought and salt stress, but it is down-regulated by biotic stimuli such as flagellin 22 and salicylic acid. The results suggest that the primary function of OsPXG9 is to modulate the level of lipid peroxides to facilitate effective defense responses to abiotic and biotic stressors.


Assuntos
Peróxidos Lipídicos , Oryza , Compostos de Epóxi/metabolismo , Lipoxigenase , Oryza/metabolismo , Oxigênio
17.
Nature ; 547(7664): 453-457, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28678785

RESUMO

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumours and cancer cell lines has been associated with resistance to multiple treatment modalities across diverse cancer lineages, but the mechanistic underpinning for this state has remained incompletely understood. Here we molecularly characterize this therapy-resistant high-mesenchymal cell state in human cancer cell lines and organoids and show that it depends on a druggable lipid-peroxidase pathway that protects against ferroptosis, a non-apoptotic form of cell death induced by the build-up of toxic lipid peroxides. We show that this cell state is characterized by activity of enzymes that promote the synthesis of polyunsaturated lipids. These lipids are the substrates for lipid peroxidation by lipoxygenase enzymes. This lipid metabolism creates a dependency on pathways converging on the phospholipid glutathione peroxidase (GPX4), a selenocysteine-containing enzyme that dissipates lipid peroxides and thereby prevents the iron-mediated reactions of peroxides that induce ferroptotic cell death. Dependency on GPX4 was found to exist across diverse therapy-resistant states characterized by high expression of ZEB1, including epithelial-mesenchymal transition in epithelial-derived carcinomas, TGFß-mediated therapy-resistance in melanoma, treatment-induced neuroendocrine transdifferentiation in prostate cancer, and sarcomas, which are fixed in a mesenchymal state owing to their cells of origin. We identify vulnerability to ferroptic cell death induced by inhibition of a lipid peroxidase pathway as a feature of therapy-resistant cancer cells across diverse mesenchymal cell-state contexts.


Assuntos
Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Caderinas/metabolismo , Morte Celular , Linhagem Celular Tumoral , Linhagem da Célula , Transdiferenciação Celular , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal , Humanos , Ferro/metabolismo , Peróxidos Lipídicos/metabolismo , Masculino , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/metabolismo , Melanoma/patologia , Mesoderma/efeitos dos fármacos , Mesoderma/enzimologia , Mesoderma/metabolismo , Mesoderma/patologia , Neoplasias/genética , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , Reprodutibilidade dos Testes , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
18.
Int J Med Sci ; 20(12): 1616-1630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859699

RESUMO

Purpose: Acute liver failure (ALF) is a clinically fatal disease that leads to the rapid loss of normal liver function. Acetaminophen (APAP) is a leading cause of drug-induced ALF. Ferroptosis, defined as iron-dependent cell death associated with lipid peroxide accumulation, has been shown to be strongly associated with APAP-induced liver injury. Growth arrest-specific 1 (GAS1) is a growth arrest-specific gene, which is closely related to the inhibition of cell growth and promotion of apoptosis. However, the functional role and underlying mechanism of GAS1 in APAP-induced ferroptosis remain unknown. Methods: We established liver-specific overexpression of GAS1 (GAS1AAV8-OE) mice and the control (GAS1AAV8-vector) mice by tail vein injection of male mice with adeno-associated virus. APAP at 500 mg/kg was intraperitoneally injected into these two groups of mice to induce acute liver failure. The shRNA packaged by the lentivirus inhibits GAS1 gene expression in human hepatoma cell line HepaRG (HepaRG-shNC and HepaRG-shGAS1-2) and primary hepatocytes of mice with liver-specific overexpression of GAS1 were isolated and induced by APAP in vitro to further investigate the regulatory role of GAS1 in APAP-induced acute liver failure. Results: APAP-induced upregulation of ferroptosis, levels of lipid peroxides and reactive oxygen species, and depletion of glutathione were effectively alleviated by the ferroptosis inhibitor, ferrostatin-1, and downregulation of GAS1 expression. GAS1 overexpression promoted ferroptosis-induced lipid peroxide accumulation via p53, inhibiting its downstream target, solute carrier family 7 member 11. Conclusion: Collectively, our findings suggest that GAS1 overexpression plays a key role in aggravating APAP-induced acute liver injury by promoting ferroptosis-induced accumulation of lipid peroxides.


Assuntos
Ferroptose , Falência Hepática Aguda , Animais , Humanos , Masculino , Camundongos , Acetaminofen/toxicidade , Proteínas de Ciclo Celular/metabolismo , Ferroptose/genética , Proteínas Ligadas por GPI/metabolismo , Hepatócitos/metabolismo , Peróxidos Lipídicos/metabolismo , Fígado , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/genética , Falência Hepática Aguda/metabolismo , Camundongos Endogâmicos C57BL
19.
Biosci Biotechnol Biochem ; 87(2): 179-190, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36416801

RESUMO

Food lipid oxidation provides various volatile compounds involved in food flavor via the decomposition of lipid hydroperoxide (LOOH). This study predicted the pathways which can coherently explain LOOH decomposition focusing on hydroperoxy octadecadienoic acid (HpODE) isomers (9-EZ-HpODE, 9-EE-HpODE, 10-HpODE, 12-HpODE, 13-ZE-HpODE, and 13-EE-HpODE) which are the major LOOH contained in edible oils. Each standard was first prepared and thermally decomposed. Generated volatile and non-volatile compounds were analyzed by GC-MS and LC-MS/MS. The results showed that all HpODE decomposition was based on the factors such as favorable scission, radical delocalization, and cyclization. Interestingly, the formation of 8-HpODE and 14-HpODE were demonstrated during HpODE decomposition. The insights obtained in this study would explain the generation pathways of flavor involved in food quality.


Assuntos
Peróxidos Lipídicos , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Ácidos Linoleicos
20.
Proc Natl Acad Sci U S A ; 117(44): 27319-27328, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33087576

RESUMO

The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specific manner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.


Assuntos
Ferroptose/fisiologia , Fosfolipases A2 do Grupo VI/metabolismo , Trofoblastos/metabolismo , Animais , Feminino , Glutationa Peroxidase/metabolismo , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/fisiologia , Humanos , Ferro/metabolismo , Peróxidos Lipídicos/metabolismo , Camundongos , Camundongos Knockout , Fosfatidiletanolaminas/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Placenta/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA