Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.268
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(14): 3690-3711.e19, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838669

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.


Assuntos
Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Periodontite , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Camundongos , Hematopoiese Clonal/genética , Humanos , Periodontite/genética , Periodontite/patologia , Mutação , Masculino , Feminino , Inflamação/genética , Inflamação/patologia , Osteoclastos/metabolismo , Camundongos Endogâmicos C57BL , Adulto , Interleucina-17/metabolismo , Interleucina-17/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Hematopoese/genética , Osteogênese/genética , Células-Tronco Hematopoéticas/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Pessoa de Meia-Idade
2.
Cell ; 185(10): 1709-1727.e18, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483374

RESUMO

Bone marrow (BM)-mediated trained innate immunity (TII) is a state of heightened immune responsiveness of hematopoietic stem and progenitor cells (HSPC) and their myeloid progeny. We show here that maladaptive BM-mediated TII underlies inflammatory comorbidities, as exemplified by the periodontitis-arthritis axis. Experimental-periodontitis-related systemic inflammation in mice induced epigenetic rewiring of HSPC and led to sustained enhancement of production of myeloid cells with increased inflammatory preparedness. The periodontitis-induced trained phenotype was transmissible by BM transplantation to naive recipients, which exhibited increased inflammatory responsiveness and disease severity when subjected to inflammatory arthritis. IL-1 signaling in HSPC was essential for their maladaptive training by periodontitis. Therefore, maladaptive innate immune training of myelopoiesis underlies inflammatory comorbidities and may be pharmacologically targeted to treat them via a holistic approach.


Assuntos
Artrite , Periodontite , Animais , Células-Tronco Hematopoéticas , Imunidade Inata , Camundongos , Mielopoese
3.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34129837

RESUMO

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Assuntos
Imunidade nas Mucosas , Mucosa Bucal/citologia , Mucosa Bucal/imunologia , Neutrófilos/citologia , Adulto , Células Epiteliais/citologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Gengiva/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Microbiota , Células Mieloides/citologia , Periodontite/genética , Periodontite/imunologia , Periodontite/patologia , Análise de Célula Única , Células Estromais/citologia , Linfócitos T/citologia
4.
Cell ; 182(2): 447-462.e14, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32758418

RESUMO

The precise mechanism by which oral infection contributes to the pathogenesis of extra-oral diseases remains unclear. Here, we report that periodontal inflammation exacerbates gut inflammation in vivo. Periodontitis leads to expansion of oral pathobionts, including Klebsiella and Enterobacter species, in the oral cavity. Amassed oral pathobionts are ingested and translocate to the gut, where they activate the inflammasome in colonic mononuclear phagocytes, triggering inflammation. In parallel, periodontitis results in generation of oral pathobiont-reactive Th17 cells in the oral cavity. Oral pathobiont-reactive Th17 cells are imprinted with gut tropism and migrate to the inflamed gut. When in the gut, Th17 cells of oral origin can be activated by translocated oral pathobionts and cause development of colitis, but they are not activated by gut-resident microbes. Thus, oral inflammation, such as periodontitis, exacerbates gut inflammation by supplying the gut with both colitogenic pathobionts and pathogenic T cells.


Assuntos
Colite/patologia , Enterobacter/fisiologia , Microbioma Gastrointestinal , Klebsiella/fisiologia , Boca/microbiologia , Animais , Colite/microbiologia , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Enterobacter/isolamento & purificação , Feminino , Inflamassomos/metabolismo , Interleucina-10/deficiência , Interleucina-10/genética , Interleucina-1beta/metabolismo , Klebsiella/isolamento & purificação , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodontite/microbiologia , Periodontite/patologia , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo
5.
Immunity ; 57(4): 859-875.e11, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38513665

RESUMO

At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.


Assuntos
Interleucina-23 , Periodontite , Humanos , Células Epiteliais , Inflamação , Receptor 5 Toll-Like/metabolismo
6.
Immunity ; 57(4): 832-834, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599173

RESUMO

IL-23 activates pathogenic Th17 cells to drive inflammatory disease at barrier surfaces. Kim et al. now identify oral epithelial cells as the critical producers of IL-23 in human and mouse periodontitis, linking microbial dysbiosis to non-hematopoietic regulation of IL-17-associated inflammation.


Assuntos
Inflamação , Periodontite , Humanos , Animais , Camundongos , Inflamação/patologia , Células Epiteliais/patologia , Interleucina-23 , Células Th17/patologia , Disbiose
7.
Nat Immunol ; 20(1): 40-49, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30455459

RESUMO

Resolution of inflammation is essential for tissue homeostasis and represents a promising approach to inflammatory disorders. Here we found that developmental endothelial locus-1 (DEL-1), a secreted protein that inhibits leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and mouse periodontitis, waning of inflammation was correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium-urate-crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver X receptor-dependent macrophage reprogramming to a pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte-recruitment action to endothelial cell-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.


Assuntos
Proteínas de Transporte/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Neutrófilos/imunologia , Periodontite/imunologia , Adulto , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/genética , Moléculas de Adesão Celular , Reprogramação Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Inflamação/induzido quimicamente , Peptídeos e Proteínas de Sinalização Intercelular , Células K562 , Receptores X do Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose
8.
Immunol Rev ; 314(1): 93-110, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36271881

RESUMO

Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.


Assuntos
Neutrófilos , Periodontite , Humanos , Inflamação , Periodonto , Homeostase
9.
J Immunol ; 212(3): 433-445, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117781

RESUMO

Epoxyeicosatrienoic acids (EETs) and other epoxy fatty acids are short-acting lipids involved in resolution of inflammation. Their short half-life, due to its metabolism by soluble epoxide hydrolase (sEH), limits their effects. Specialized proresolving mediators (SPMs) are endogenous regulatory lipids insufficiently synthesized in uncontrolled and chronic inflammation. Using an experimental periodontitis model, we pharmacologically inhibited sEH, examining its impact on T cell activation and systemic SPM production. In humans, we analyzed sEH in the gingival tissue of periodontitis patients. Mice were treated with sEH inhibitor (sEHi) and/or EETs before ligature placement and treated for 14 d. Bone parameters were assessed by microcomputed tomography and methylene blue staining. Blood plasma metabololipidomics were carried out to quantify SPM levels. We also determined T cell activation by reverse transcription-quantitative PCR and flow cytometry in cervical lymph nodes. Human gingival samples were collected to analyze sEH using ELISA and electrophoresis. Data reveal that pharmacological sEHi abrogated bone resorption and preserved bone architecture. Metabololipidomics revealed that sEHi enhances lipoxin A4, lipoxin B4, resolvin E2, and resolvin D6. An increased percentage of regulatory T cells over Th17 was noted in sEHi-treated mice. Lastly, inflamed human gingival tissues presented higher levels and expression of sEH than did healthy gingivae, being positively correlated with periodontitis severity. Our findings indicate that sEHi preserves bone architecture and stimulates SPM production, associated with regulatory actions on T cells favoring resolution of inflammation. Because sEH is enhanced in human gingivae from patients with periodontitis and connected with disease severity, inhibition may prove to be an attractive target for managing osteolytic inflammatory diseases.


Assuntos
Reabsorção Óssea , Periodontite , Humanos , Animais , Camundongos , Microtomografia por Raio-X , Periodontite/metabolismo , Inflamação , Eicosanoides , Epóxido Hidrolases/metabolismo
10.
Semin Immunol ; 59: 101608, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691883

RESUMO

Periodontitis is an inflammatory disease caused by biofilm accumulation and dysbiosis in subgingival areas surrounding the teeth. If not properly treated, this oral disease may result in tooth loss and consequently poor esthetics, deteriorated masticatory function and compromised quality of life. Epidemiological and clinical intervention studies indicate that periodontitis can potentially aggravate systemic diseases, such as, cardiovascular disease, type 2 diabetes mellitus, rheumatoid arthritis, and Alzheimer disease. Therefore, improvements in the treatment of periodontal disease may benefit not only oral health but also systemic health. The complement system is an ancient host defense system that plays pivotal roles in immunosurveillance and tissue homeostasis. However, complement has unwanted consequences if not controlled appropriately or excessively activated. Complement overactivation has been observed in patients with periodontitis and in animal models of periodontitis and drives periodontal inflammation and tissue destruction. This review places emphasis on a promising periodontal host-modulation therapy targeting the complement system, namely the complement C3-targeting drug, AMY-101. AMY-101 has shown safety and efficacy in reducing gingival inflammation in a recent Phase 2a clinical study. We also discuss the potential of AMY-101 to treat peri-implant inflammatory conditions, where complement also seems to be involved and there is an urgent unmet need for effective treatment.


Assuntos
Diabetes Mellitus Tipo 2 , Periodontite , Animais , Humanos , Complemento C3 , Qualidade de Vida , Periodontite/terapia , Inflamação
11.
PLoS Pathog ; 19(10): e1011743, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871107

RESUMO

Gram-negative bacteria derived extracellular vesicles (EVs), also known as outer membrane vesicles, have attracted significant attention due to their pathogenic roles in various inflammatory diseases. We recently demonstrated that EVs secreted by the periodontopathogen Aggregatibacter actinomycetemcomitans (Aa) can cross the blood-brain barrier (BBB) and that their extracellular RNA cargo can promote the secretion of proinflammatory cytokines, such as IL-6 and TNF-α, in the brain. To gain more insight into the relationship between periodontal disease (PD) and neuroinflammatory diseases, we investigated the effect of Aa EVs in a mouse model of ligature-induced PD. When EVs were administered through intragingival injection or EV-soaked gel, proinflammatory cytokines were strongly induced in the brains of PD mice. The use of TLR (Toll-like receptor)-reporter cell lines and MyD88 knockout mice confirmed that the increased release of cytokines was triggered by Aa EVs via TLR4 and TLR8 signaling pathways and their downstream MyD88 pathway. Furthermore, the injection of EVs through the epidermis and gingiva resulted in the direct retrograde transfer of Aa EVs from axon terminals to the cell bodies of trigeminal ganglion (TG) neurons and the subsequent activation of TG neurons. We also found that the Aa EVs changed the action potential of TG neurons. These findings suggest that EVs derived from periodontopathogens such as Aa might be involved in pathogenic pathways for neuroinflammatory diseases, neuropathic pain, and other systemic inflammatory symptoms as a comorbidity of periodontitis.


Assuntos
Vesículas Extracelulares , Doenças Periodontais , Periodontite , Camundongos , Animais , Doenças Neuroinflamatórias , Gânglio Trigeminal , Fator 88 de Diferenciação Mieloide/metabolismo , Periodontite/metabolismo , Doenças Periodontais/metabolismo , Barreira Hematoencefálica/metabolismo , Citocinas/metabolismo , Camundongos Knockout , Vesículas Extracelulares/metabolismo
12.
J Immunol ; 211(3): 453-461, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306457

RESUMO

A minimized version of complement factor H (FH), designated mini-FH, was previously engineered combining the N-terminal regulatory domains (short consensus repeat [SCR]1-4) and C-terminal host-surface recognition domains (SCR19-20) of the parent molecule. Mini-FH conferred enhanced protection, as compared with FH, in an ex vivo model of paroxysmal nocturnal hemoglobinuria driven by alternative pathway dysregulation. In the current study, we tested whether and how mini-FH could block another complement-mediated disease, namely periodontitis. In a mouse model of ligature-induced periodontitis (LIP), mini-FH inhibited periodontal inflammation and bone loss in wild-type mice. Although LIP-subjected C3-deficient mice are protected relative to wild-type littermates and exhibit only modest bone loss, mini-FH strikingly inhibited bone loss even in C3-deficient mice. However, mini-FH failed to inhibit ligature-induced bone loss in mice doubly deficient in C3 and CD11b. These findings indicate that mini-FH can inhibit experimental periodontitis even in a manner that is independent of its complement regulatory activity and is mediated by complement receptor 3 (CD11b/CD18). Consistent with this notion, a complement receptor 3-interacting recombinant FH segment that lacks complement regulatory activity (specifically encompassing SCRs 19 and 20; FH19-20) was also able to suppress bone loss in LIP-subjected C3-deficient mice. In conclusion, mini-FH appears to be a promising candidate therapeutic for periodontitis by virtue of its ability to suppress bone loss via mechanisms that both include and go beyond its complement regulatory activity.


Assuntos
Fator H do Complemento , Periodontite , Camundongos , Animais , Fator H do Complemento/metabolismo , Via Alternativa do Complemento , Proteínas do Sistema Complemento , Receptores de Complemento
13.
J Immunol ; 211(10): 1516-1525, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819772

RESUMO

Notopterol, an active component isolated from the traditional Chinese medicine Notopterygium incisum Ting ex H.T. Chang, exerts anti-inflammatory activity in rheumatoid arthritis. However, its roles in suppression of inflammatory insults and halting progression of tissue destruction in periodontitis remain elusive. In this study, we reveal that notopterol can inhibit osteoclastogenesis, thereby limiting alveolar bone loss in vivo. In vitro results demonstrated that notopterol administration inhibited synthesis of inflammatory mediators such as IL-1ß, IL-32, and IL-8 in LPS-stimulated human gingival fibroblasts. Mechanistically, notopterol inhibits activation of the NF-κB signaling pathway, which is considered a prototypical proinflammatory signaling pathway. RNA sequencing data revealed that notopterol activates the PI3K/protein kinase B (Akt)/NF-E2-related factor 2 (Nrf2) signaling pathway in LPS-stimulated human gingival fibroblasts, a phenomenon validated via Western blot assay. Additionally, notopterol treatment suppressed reactive oxygen species levels by upregulating the expression of antioxidant genes, including heme oxygenase 1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), catalase (CAT), and glutathione reductase (GSR), indicating that notopterol confers protection against oxidative stress. Notably, inhibition of Akt activity by the potent inhibitor, MK-2206, partially attenuated both anti-inflammatory and antioxidant effects of notopterol. Collectively, these results raise the possibility that notopterol relieves periodontal inflammation by suppressing and activating the NF-κB and PI3K/AKT/Nrf2 signaling pathways in periodontal tissue, respectively, suggesting its potential as an efficacious treatment therapy for periodontitis.


Assuntos
NF-kappa B , Periodontite , Humanos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes , Heme Oxigenase-1/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34992142

RESUMO

Bacterial behavior and virulence during human infection is difficult to study and largely unknown, as our vast knowledge of infection microbiology is primarily derived from studies using in vitro and animal models. Here, we characterize the physiology of Porphyromonas gingivalis, a periodontal pathogen, in its native environment using 93 published metatranscriptomic datasets from periodontally healthy and diseased individuals. P. gingivalis transcripts were more abundant in samples from periodontally diseased patients but only above 0.1% relative abundance in one-third of diseased samples. During human infection, P. gingivalis highly expressed genes encoding virulence factors such as fimbriae and gingipains (proteases) and genes involved in growth and metabolism, indicating that P. gingivalis is actively growing during disease. A quantitative framework for assessing the accuracy of model systems showed that 96% of P. gingivalis genes were expressed similarly in periodontitis and in vitro midlogarithmic growth, while significantly fewer genes were expressed similarly in periodontitis and in vitro stationary phase cultures (72%) or in a murine abscess infection model (85%). This high conservation in gene expression between periodontitis and logarithmic laboratory growth is driven by overall low variance in P. gingivalis gene expression, relative to other pathogens including Pseudomonas aeruginosa and Staphylococcus aureus Together, this study presents strong evidence for the use of simple test tube growth as the gold standard model for studying P. gingivalis biology, providing biological relevance for the thousands of laboratory experiments performed with logarithmic phase P. gingivalis Furthermore, this work highlights the need to quantitatively assess the accuracy of model systems.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Periodontite/microbiologia , Porphyromonas gingivalis/crescimento & desenvolvimento , Porphyromonas gingivalis/metabolismo , Animais , Fímbrias Bacterianas/metabolismo , Cisteína Endopeptidases Gingipaínas , Humanos , Laboratórios , Camundongos , Porphyromonas gingivalis/patogenicidade , Transcriptoma , Virulência/genética , Fatores de Virulência
15.
J Infect Dis ; 229(1): 262-272, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855446

RESUMO

Periodontitis is an exemplar of dysbiosis associated with the coordinated action of multiple members within the microbial consortium. The polymicrobial synergy and dysbiosis hypothesis proposes a dynamic host-microbiome balance, with certain modulators capable of disrupting eubiosis and driving shifts towards dysbiosis within the community. However, these factors remain to be explored. We established a Porphyromonas gingivalis- or Aggregatibacter actinomycetemcomitans-modified subgingival microbiome model and 16S rRNA sequencing revealed that P. gingivalis and A. actinomycetemcomitans altered the microbiome structure and composition indicated by α and ß diversity metrics. P. gingivalis increased the subgingival dysbiosis index (SDI), while A. actinomycetemcomitans resulted in a lower SDI. Furthermore, P. gingivalis-stimulated microbiomes compromised epithelium function and reduced expression of tight junction proteins, whereas A. actinomycetemcomitans yielded mild effects. In conclusion, by inoculating P. gingivalis, we created dysbiotic microcosm biofilms in vitro resembling periodontitis-related subgingival microbiota, exhibiting enhanced dysbiosis and impaired epithelium integrity.


Assuntos
Microbiota , Periodontite , Humanos , Porphyromonas gingivalis , Aggregatibacter actinomycetemcomitans/genética , RNA Ribossômico 16S/genética , Disbiose
16.
J Proteome Res ; 23(1): 3-15, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38018860

RESUMO

The purpose of this study was to determine potential metabolic biomarkers and therapeutic drugs in the gingival tissue of individuals with periodontitis. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the gingival tissue samples from 20 patients with severe periodontitis and 20 healthy controls. Differential metabolites were identified using variable important in projection (VIP) values from the orthogonal partial least squares discrimination analysis (OPLS-DA) model and then verified for significance between groups using a two-tailed Student's t test. In total, 65 metabolites were enriched in 33 metabolic pathways, with 40 showing a significant increase and 25 expressing a significant decrease. In addition, it was found that patients with severe periodontitis have abnormalities in metabolic pathways, such as glucose metabolism, purine metabolism, amino acid metabolism, and so on. Furthermore, based on a multidimensional analysis, 12 different metabolites may be the potential biomarkers of severe periodontitis. The experiment's raw data have been uploaded to the MetaboLights database, and the project number is MTBLS8357. Moreover, osteogenesis differentiation characteristics were detected in the selected metabolites. The findings may provide a basis for the study of diagnostic biomarkers and therapeutic metabolites in severe periodontitis.


Assuntos
Metabolômica , Periodontite , Humanos , Metabolômica/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Biomarcadores
17.
J Proteome Res ; 23(1): 25-39, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38088868

RESUMO

Periodontitis is a prevalent oral inflammatory disease that can result in tooth loss and is closely linked to type 2 diabetes (T2D). In this study, we analyzed the salivary proteome and intact N-glycopeptides (IGPs) of individuals with mild-moderate, severe, aggressive periodontitis, and periodontitis with T2D, including those treated with antidiabetic drugs, to identify specific signatures associated with the disease. Our results revealed that salivary proteins and glycoproteins were altered in all periodontitis groups (PRIDE ID: 1-20230612-72345), with fucose- and sialic acid-containing N-glycans showing the greatest increase. Additionally, differentially expressed proteins were classified into 9 clusters, including those that were increased in all periodontitis groups and those that were only altered in certain types of periodontitis. Interestingly, treatment with antidiabetic drugs reversed many of the changes observed in the salivary proteome and IGPs in T2D-related periodontitis, suggesting a potential therapeutic approach for managing periodontitis in patients with T2D. Consistent with MS/MS results, the expression of salivary IGHA2 and Fucα1-3/6GlcNAc (AAL) was significantly increased in MP. These findings provide new insights into the pathogenesis of periodontitis and highlight the potential of salivary biomarkers for diagnosis, prognosis, and monitoring of disease progression and treatment response.


Assuntos
Diabetes Mellitus Tipo 2 , Periodontite , Humanos , Proteoma/genética , Proteoma/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glicopeptídeos/metabolismo , Espectrometria de Massas em Tandem , Biomarcadores/metabolismo , Hipoglicemiantes , Saliva/metabolismo
18.
Infect Immun ; 92(3): e0034423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376159

RESUMO

As one of the keystone pathogens of periodontitis, the oral bacterium Porphyromonas gingivalis produces an array of virulence factors, including a recently identified sialidase (PG0352). Our previous report involving loss-of-function studies indicated that PG0352 plays an important role in the pathophysiology of P. gingivalis. However, this report had not been corroborated by gain-of-function studies or substantiated in different P. gingivalis strains. To fill these gaps, herein we first confirm the role of PG0352 in cell surface structures (e.g., capsule) and serum resistance using P. gingivalis W83 strain through genetic complementation and then recapitulate these studies using P. gingivalis ATCC33277 strain. We further investigate the role of PG0352 and its counterpart (PGN1608) in ATCC33277 in cell growth, biofilm formation, neutrophil killing, cell invasion, and P. gingivalis-induced inflammation. Our results indicate that PG0352 and PGN1608 are implicated in P. gingivalis cell surface structures, hydrophobicity, biofilm formation, resistance to complement and neutrophil killing, and host immune responses. Possible molecular mechanisms involved are also discussed. In summary, this report underscores the importance of sialidases in the pathophysiology of P. gingivalis and opens an avenue to elucidate their underlying molecular mechanisms.


Assuntos
Periodontite , Porphyromonas gingivalis , Humanos , Virulência , Neuraminidase/genética , Neuraminidase/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Periodontite/microbiologia
19.
J Cell Physiol ; 239(2): e31172, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38214117

RESUMO

Periodontitis is associated with significant alveolar bone loss. Patients with iron overload suffer more frequently from periodontitis, however, the underlying mechanisms remain largely elusive. Here, we investigated the role of transferrin receptor 2 (Tfr2), one of the main regulators of iron homeostasis, in the pathogenesis of periodontitis and the dental phenotype under basal conditions in mice. As Tfr2 suppresses osteoclastogenesis, we hypothesized that deficiency of Tfr2 may exacerbate periodontitis-induced bone loss. Mice lacking Tfr2 (Tfr2-/- ) and wild-type (Tfr2+/+ ) littermates were challenged with experimental periodontitis. Mandibles and maxillae were collected for microcomputed tomography and histology analyses. Osteoclast cultures from Tfr2+/+ and Tfr2-/- mice were established and analyzed for differentiation efficiency, by performing messenger RNA expression and protein signaling pathways. After 8 days, Tfr2-deficient mice revealed a more severe course of periodontitis paralleled by higher immune cell infiltration and a higher histological inflammation index than Tfr2+/+ mice. Moreover, Tfr2-deficient mice lost more alveolar bone compared to Tfr2+/+ littermates, an effect that was only partially iron-dependent. Histological analysis revealed a higher number of osteoclasts in the alveolar bone of Tfr2-deficient mice. In line, Tfr2-deficient osteoclastic differentiation ex vivo was faster and more efficient as reflected by a higher number of osteoclasts, a higher expression of osteoclast markers, and an increased resorptive activity. Mechanistically, Tfr2-deficient osteoclasts showed a higher p38-MAPK signaling and inhibition of p38-MAPK signaling in Tfr2-deficient cells reverted osteoclast formation to Tfr2+/+ levels. Taken together, our data indicate that Tfr2 modulates the inflammatory response in periodontitis thereby mitigating effects on alveolar bone loss.


Assuntos
Perda do Osso Alveolar , Periodontite , Animais , Humanos , Camundongos , Perda do Osso Alveolar/genética , Perda do Osso Alveolar/metabolismo , Ferro , Osteoclastos , Periodontite/genética , Periodontite/metabolismo , Receptores da Transferrina/genética , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Células Cultivadas
20.
J Cell Physiol ; 239(3): e31062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37357387

RESUMO

It has been known that periodontal ligament-associated protein-1 (PLAP-1/Asporin) not only inhibits cartilage formation in osteoarthritis, but it also influences the healing of skull defect. However, the effect and mechanism of PLAP-1/Asporin on the mutual regulation of osteoclasts and osteoblasts in periodontitis are not clear. In this study, we utilized a PLAP-1/Asporin gene knockout (KO) mouse model to research this unknown issue. We cultured mouse bone marrow mesenchymal stem cells with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) for osteogenic induction in vitro. The molecular mechanism of PLAP-1/Asporin in the regulation of osteoblasts was detected by immunoprecipitation, immunofluorescence, and inhibitors of signaling pathways. The results showed that the KO of PLAP-1/Asporin promoted osteogenic differentiation through transforming growth factor beta 1 (TGF-ß1)/Smad3 in inflammatory environments. We further found the KO of PLAP-1/Asporin inhibited osteoclast differentiation and promoted osteogenic differentiation through the TGF-ß1/Smad signaling pathway in an inflammatory coculture system. The experimental periodontitis model was established by silk ligation and the alveolar bone formation in PLAP-1/Asporin KO mice was promoted through TGF-ß1/Smad3 signaling pathway. The subcutaneous osteogenesis model in nude mice also confirmed that the KO of PLAP-1/Asporin promoted bone formation by the histochemical staining. In conclusion, PLAP-1/Asporin regulated the differentiation of osteoclasts and osteoblasts through TGF-ß1/Smad signaling pathway. The results of this study lay a theoretical foundation for the further study of the pathological mechanism underlying alveolar bone resorption, and the prevention and treatment of periodontitis.


Assuntos
Proteínas da Matriz Extracelular , Osteoblastos , Osteoclastos , Osteogênese , Periodontite , Animais , Camundongos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos Knockout , Camundongos Nus , Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese/genética , Ligamento Periodontal/metabolismo , Periodontite/genética , Periodontite/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais , Porphyromonas gingivalis , Lipopolissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA