Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 15(4): e1007729, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31002734

RESUMO

The use of host nutrients to support pathogen growth is central to disease. We addressed the relationship between metabolism and trophic behavior by comparing metabolic gene expression during potato tuber colonization by two oomycetes, the hemibiotroph Phytophthora infestans and the necrotroph Pythium ultimum. Genes for several pathways including amino acid, nucleotide, and cofactor biosynthesis were expressed more by Ph. infestans during its biotrophic stage compared to Py. ultimum. In contrast, Py. ultimum had higher expression of genes for metabolizing compounds that are normally sequestered within plant cells but released to the pathogen upon plant cell lysis, such as starch and triacylglycerides. The transcription pattern of metabolic genes in Ph. infestans during late infection became more like that of Py. ultimum, consistent with the former's transition to necrotrophy. Interspecific variation in metabolic gene content was limited but included the presence of γ-amylase only in Py. ultimum. The pathogens were also found to employ strikingly distinct strategies for using nitrate. Measurements of mRNA, 15N labeling studies, enzyme assays, and immunoblotting indicated that the assimilation pathway in Ph. infestans was nitrate-insensitive but induced during amino acid and ammonium starvation. In contrast, the pathway was nitrate-induced but not amino acid-repressed in Py. ultimum. The lack of amino acid repression in Py. ultimum appears due to the absence of a transcription factor common to fungi and Phytophthora that acts as a nitrogen metabolite repressor. Evidence for functional diversification in nitrate reductase protein was also observed. Its temperature optimum was adapted to each organism's growth range, and its Km was much lower in Py. ultimum. In summary, we observed divergence in patterns of gene expression, gene content, and enzyme function which contribute to the fitness of each species in its niche.


Assuntos
Proteínas Fúngicas/genética , Glucana 1,4-alfa-Glucosidase/metabolismo , Nutrientes/metabolismo , Phytophthora/genética , Doenças das Plantas/parasitologia , Tubérculos/metabolismo , Solanum tuberosum/metabolismo , Adaptação Fisiológica , Evolução Molecular , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Parasita/genética , Phytophthora/classificação , Phytophthora/fisiologia , Doenças das Plantas/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/parasitologia , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/parasitologia
2.
Microb Ecol ; 81(1): 122-133, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32740757

RESUMO

Roots act as a biological filter that exclusively allows only a portion of the soil-associated microbial diversity to infect the plant. This microbial diversity includes organisms both beneficial and detrimental to plants. Phytophthora species are among the most important groups of detrimental microbes that cause various soil-borne plant diseases. We used a metabarcoding approach with Phytophthora-specific primers to compare the diversity and richness of Phytophthora species associated with roots of native and non-native trees, using different types of soil inocula collected from native and managed forests. Specifically, we analysed (1) roots of two non-native tree species (Eucalyptus grandis and Acacia mearnsii) and native trees, (2) roots of two non-native tree species from an in vivo plant baiting trial, (3) roots collected from the field versus those from the baiting trial, and (4) roots and soil samples collected from the field. The origin of the soil and the interaction between root and soil significantly influenced Phytophthora species richness. Moreover, species richness and community composition were significantly different between the field root samples and field soil samples with a higher number of Phytophthora species in the soil than in the roots. The results also revealed a substantial and previously undetected diversity of Phytophthora species from South Africa.


Assuntos
Phytophthora/classificação , Phytophthora/isolamento & purificação , Raízes de Plantas/parasitologia , Solo/parasitologia , Árvores/parasitologia , Acacia/parasitologia , Biodiversidade , Eucalyptus/parasitologia , Florestas , Phytophthora/genética , Doenças das Plantas/parasitologia , África do Sul
3.
Genomics ; 112(3): 2309-2317, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31923618

RESUMO

Root and collar rot disease caused by Phytophthora capsici (Leonian) is one of the most serious diseases in pepper, Capsicum annuum L. Knowledge about resistant genes is limited in pepper accessions to P. capsici. In this study, a diverse collection of 37 commercial edible and ornamental genotypes, and implication of seven novel candidate DEGs genes (XLOC_ 021757, XLOC_021821, XLOC_012788, XLOC_011295, XLOC_021928, XLOC_015473 and XLOC_000341) were up-regulated on resistant and susceptible pepper cultivars, through real-time polymerase chain reaction (qPCR) at transplanting and maturing stages. All seven related defense-gene candidates were up-regulated in all inoculated accessions to P. capsici, but these genes were highly expressed in resistant ones, 19OrnP-PBI, 37ChillP-Paleo, and 23CherryP-Orsh. The transcriptional levels of the seven related candidate DEGs were 5.90, 5.64, 5.62, 5.18, 3.94, 3.69, 3.16 folds higher in the resistant pepper genotypes, than the control ones, non-inoculated genotypes respectively. The candidate genes expressed herein, will provide a basis for further gene cloning and functional verification studies, and also will aid in an understanding of the regulatory mechanism of pepper resistance to P. capsici.


Assuntos
Capsicum , Resistência à Doença/genética , Phytophthora/genética , Doenças das Plantas/genética , Capsicum/anatomia & histologia , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Fenótipo , Filogenia , Phytophthora/classificação , Phytophthora/isolamento & purificação , Phytophthora/metabolismo , Doenças das Plantas/etiologia , Reação em Cadeia da Polimerase em Tempo Real
4.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34768864

RESUMO

Phytophthora capsici is one of the most destructive pathogens causing quick wilt (foot rot) disease in black pepper (Piper nigrum L.) to which no effective resistance has been defined. To better understand the P. nigrum-P. capsici pathosystem, we employed metabolomic approaches based on flow-infusion electrospray-high-resolution mass spectrometry. Changes in the leaf metabolome were assessed in infected and systemic tissues at 24 and 48 hpi. Principal Component Analysis of the derived data indicated that the infected leaves showed a rapid metabolic response by 24 hpi whereas the systemic leaves took 48 hpi to respond to the infection. The major sources of variations between infected leaf and systemic leaf were identified, and enrichment pathway analysis indicated, major shifts in amino acid, tricarboxylic acid cycle, nucleotide and vitamin B6 metabolism upon infection. Moreover, the individual metabolites involved in defensive phytohormone signalling were identified. RT-qPCR analysis of key salicylate and jasmonate biosynthetic genes indicated a transient reduction of expression at 24 hpi but this increased subsequently. Exogenous application of jasmonate and salicylate reduced P. capsici disease symptoms, but this effect was suppressed with the co-application of abscisic acid. The results are consistent with abscisic acid reprogramming, salicylate and jasmonate defences in infected leaves to facilitate the formation of disease. The augmentation of salicylate and jasmonate defences could represent an approach through which quick wilt disease could be controlled in black pepper.


Assuntos
Ácido Abscísico/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Phytophthora/classificação , Piper nigrum/metabolismo , Piper nigrum/parasitologia , Salicilatos/metabolismo , Metaboloma , Metabolômica , Doenças das Plantas/parasitologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Análise de Componente Principal
5.
Environ Microbiol ; 22(12): 5019-5032, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32452108

RESUMO

The genus Phytophthora represents a group of plant pathogens with broad global distribution. The majority of them cause the collar and root-rot of diverse plant species. Little is known about Phytophthora communities in forest ecosystems, especially in the Neotropical forests where natural enemies could maintain the huge plant diversity via negative density dependence. We characterized the diversity of soil-borne Phytophthora communities in the North French Guiana rainforest and investigated how they are structured by host identity and environmental factors. In this little-explored habitat, 250 soil cores were sampled from 10 plots hosting 10 different plant families across three forest environments (Terra Firme, Seasonally Flooded and White Sand). Phytophthora diversity was studied using a baiting approach and metabarcoding (High-Throughput Sequencing) on environmental DNA extracted from both soil samples and baiting-leaves. These three approaches revealed very similar communities, characterized by an unexpected low diversity of Phytophthora species, with the dominance of two cryptic species close to Phytophthora heveae. As expected, the Phytophthora community composition of the French Guiana rainforest was significantly impacted by the host plant family and environment. However, these plant pathogen communities are very small and are dominated by generalist species, questioning their potential roles as drivers of plant diversity in these Amazonian forests.


Assuntos
Biodiversidade , Phytophthora/classificação , Phytophthora/isolamento & purificação , Folhas de Planta/microbiologia , Inundações , Guiana Francesa , Phytophthora/genética , Doenças das Plantas/microbiologia , Plantas , Floresta Úmida , Solo , Microbiologia do Solo
6.
Mol Biol Rep ; 47(11): 9179-9188, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33068230

RESUMO

The Phytophthora genus is composed, mainly, of plant pathogens. This genus belongs to the Oomycete class, also known as "pseudo-fungi", within the Chromista Kingdom. Phytophthora spp. is highlighted due to the significant plant diseases that they cause, which represents some of the most economically and cultural losses, such as European chestnut ink disease, which is caused by P. cinnamomi. Currently, there have been four genome assemblies placed at the National Center for Biotechnology Information (NCBI), although the progress to understand and elucidate the pathogenic process of P. cinnamomi by its genome is progressing slowly. In this review paper, we aim to report and discuss the recent findings related to P. cinnamomi and its genomic information. Our research is based on paper databases that reported probable functions to P. cinnamomi proteins using sequence alignments, bioinformatics, and biotechnology approaches. Some of these proteins studied have functions that are proposed to be involved in the asexual sporulation and zoosporogenesis leading to the host colonization and consequently associated with pathogenicity. Some remarkable genes and proteins discussed here are related to oospore development, inhibition of sporangium formation and cleavage, inhibition of flagellar assembly, blockage of cyst germination and hyphal extension, and biofilm proteins. Lastly, we report some biotechnological approaches using biological control, studies with genome sequencing of P. cinnamomi resistant plants, and gene silencing through RNA interference (iRNA).


Assuntos
Biotecnologia/métodos , Biologia Computacional/métodos , Genômica/métodos , Oomicetos/genética , Phytophthora/genética , Parede Celular/microbiologia , Interações Hospedeiro-Patógeno , Oomicetos/fisiologia , Phytophthora/classificação , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Esporos/genética
7.
Mycoses ; 63(4): 395-406, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32012366

RESUMO

BACKGROUND: The evolution of pathogenic mechanisms is a major challenge, which requires a thorough comprehension of the phylogenetic relationships of pathogens. Peronosporaleans encompasses a heterogeneous group of oomycetes that includes some animal/human pathogens, like Pythium insidiosum. OBJECTIVE: We analysed here the phylogenetic positioning and other evolutionary aspects related to this species and other peronosporaleans, using a multi-locus approach with one mitochondrial and three nuclear genes. METHODOLOGY: Phylogenetic patterns of 55 oomycetes were inferred by maximum likelihood and Bayesian analysis, and a relaxed molecular clock method was applied to infer the divergence time of some peronosporaleans branches. RESULTS: Pythium insidiosum was monophyletic with a major and polytomous clade of American isolates; however, Pythium spp. was found to be paraphyletic with Phytopythium sp. and Phytophthora spp. In general, peronosporaleans subdivided into four lineages, one of which evidenced a close relationship of P insidiosum, P aphanidermatum and P arrhenomanes. This lineage diverged about 63 million years ago (Mya), whereas P insidiosum diversified at approximately 24 Mya. The divergence of American and Thai isolates seems to have occurred at approximately 17 Mya, with further American diversification at 2.4 Mya. CONCLUSION: Overall, this study clarifies the phylogenetic relationships of P insidiosum regarding other peronosporaleans in a multi-locus perspective, despite previous claims that phylogenomic analyses are needed to accurately infer the patterns and processes related to the evolution of different lineages in this group. Additionally, this is the first time that a molecular clock was applied to study the evolution of P insidiosum.


Assuntos
Evolução Molecular , Oomicetos/classificação , Filogenia , Pythium , Animais , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Mitocondriais , Phytophthora/classificação , Pythium/classificação , Pythium/isolamento & purificação , RNA Ribossômico/genética
8.
Phytopathology ; 109(5): 726-735, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30412010

RESUMO

The phytopathogen Phytophthora cactorum infects economically important herbaceous and woody plant species. P. cactorum isolates differ in host specificity; for example, strawberry crown rot is often caused by a specialized pathotype. Here we compared the transcriptomes of two P. cactorum isolates that differ in their virulence to garden strawberry (Pc407: high virulence; Pc440: low virulence). De novo transcriptome assembly and clustering of contigs resulted in 19,372 gene clusters. Two days after inoculation of Fragaria vesca roots, 3,995 genes were differently expressed between the P. cactorum isolates. One of the genes that were highly expressed only in Pc407 encodes a GAF sensor protein potentially involved in membrane trafficking processes. Two days after inoculation, elicitins were highly expressed in Pc407 and lipid catabolism appeared to be more active than in Pc440. Of the carbohydrate-active enzymes, those that degrade pectin were often more highly expressed in Pc440, whereas members of glycosyl hydrolase family 1, potentially involved in the metabolism of glycosylated secondary metabolites, were more highly expressed in Pc407 at the time point studied. Differences were also observed among the RXLR effectors: Pc407 appears to rely on a smaller set of key RXLR effectors, whereas Pc440 expresses a greater number of RXLRs. This study is the first step toward improving understanding of the molecular basis of differences in the virulence of P. cactorum isolates. Identification of the key effectors is important, as it enables effector-assisted breeding strategies toward crown rot-resistant strawberry cultivars.


Assuntos
Fragaria/microbiologia , Phytophthora/classificação , Doenças das Plantas/microbiologia , Transcriptoma , Carboidratos , Metabolismo dos Lipídeos , Phytophthora/enzimologia , Phytophthora/patogenicidade , Metabolismo Secundário , Virulência
9.
BMC Biol ; 16(1): 80, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049268

RESUMO

BACKGROUND: The interaction between oomycete plant pathogen Phytophthora sojae and soybean is characterized by the presence of avirulence (Avr) genes in P. sojae, which encode for effectors that trigger immune responses and resistance in soybean via corresponding resistance genes (Rps). A recent survey highlighted a rapid diversification of P. sojae Avr genes in soybean fields and the need to deploy new Rps genes. However, the full genetic diversity of P. sojae isolates remains complex and dynamic and is mostly characterized on the basis of phenotypic associations with differential soybean lines. RESULTS: We sequenced the genomes of 31 isolates of P. sojae, representing a large spectrum of the pathotypes found in soybean fields, and compared all the genetic variations associated with seven Avr genes (1a, 1b, 1c, 1d, 1k, 3a, 6) and how the derived haplotypes matched reported phenotypes in 217 interactions. We discovered new variants, copy number variations and some discrepancies with the virulence of previously described isolates with Avr genes, notably with Avr1b and Avr1c. In addition, genomic signatures revealed 11.5% potentially erroneous phenotypes. When these interactions were re-phenotyped, and the Avr genes re-sequenced over time and analyzed for expression, our results showed that genomic signatures alone accurately predicted 99.5% of the interactions. CONCLUSIONS: This comprehensive genomic analysis of seven Avr genes of P. sojae in a population of 31 isolates highlights that genomic signatures can be used as accurate predictors of phenotypes for compatibility with Rps genes in soybean. Our findings also show that spontaneous mutations, often speculated as a source of aberrant phenotypes, did not occur within the confines of our experiments and further suggest that epigenesis or gene silencing do not account alone for previous discordance between genotypes and phenotypes. Furthermore, on the basis of newly identified virulence patterns within Avr1c, our results offer an explanation why Rps1c has failed more rapidly in the field than the reported information on virulence pathotypes.


Assuntos
Glycine max/genética , Glycine max/microbiologia , Phytophthora/classificação , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Variações do Número de Cópias de DNA , Haplótipos , Virulência , Sequenciamento Completo do Genoma
10.
Plant Dis ; 103(12): 3057-3064, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31596694

RESUMO

A number of fir species (Abies) are produced as Christmas trees around the world. In particular, Fraser fir (Abies fraseri (Pursh) Poir.) is popular as it yields high-quality Christmas trees in temperate North America and Europe. A Phytophthora sp. causing root rot on Fraser fir was isolated from a Christmas tree farm in Connecticut, U.S.A., and found to be new to science according to morphological and molecular phylogenetic analysis using multilocus DNA sequences from ITS, Cox1, ß-Tub, Nadh1, and Hsp90 loci. Thus, it was described and illustrated as Phytophthora abietivora. An informative Koch's postulates test revealed that P. abietivora was the pathogen causing root rot of Fraser fir.


Assuntos
Abies , Filogenia , Phytophthora , Abies/parasitologia , Connecticut , DNA de Protozoário/genética , Phytophthora/classificação , Especificidade da Espécie
11.
Plant Dis ; 103(12): 3154-3160, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31560616

RESUMO

Phytophthora ramorum, the cause of sudden oak death (SOD), kills tanoak (Notholithocarpus densiflorus) trees in southwestern Oregon and California. Two lineages of P. ramorum are now found in wildland forests of Oregon (NA1 and EU1). In addition to the management of SOD in forest ecosystems, disease resistance could be used as a way to mitigate the impact of P. ramorum. The objectives of this study were to (i) characterize the variability in resistance of N. densiflorus among families using lesion length; (ii) determine whether lineage, isolate, family, or their interactions significantly affect variation in lesion length; and (iii) determine whether there are differences among isolates and among families in terms of lesion length. The parameters isolate nested within lineage (isolate[lineage]) and family × isolate(lineage) interaction explained the majority of the variation in lesion length. There was no significant difference between the NA1 and EU1 lineages in terms of mean lesion length; however, there were differences among the six isolates. Lesions on seedlings collected from surviving trees at infested sites were smaller, on average, than lesions of seedlings collected from trees at noninfested sites (P = 0.0064). The results indicate that there is potential to establish a breeding program for tanoak resistance to SOD and that several isolates of P. ramorum should be used in an artificial inoculation assay.


Assuntos
Phytophthora , Quercus , California , Resistência à Doença , Oregon , Phytophthora/classificação , Phytophthora/fisiologia , Doenças das Plantas/parasitologia , Quercus/parasitologia
12.
Plant Dis ; 103(8): 1923-1930, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31140922

RESUMO

Phytophthora plurivora is a recently described plant pathogen, formerly recognized as P. citricola. Recent sampling of Pacific Northwest nurseries frequently encountered this pathogen, and it has been shown to be among the most damaging Phytophthora pathogens on ornamentals. We characterized the population structure of P. plurivora in a survey of four Oregon nurseries across three different counties with focus on Rhododendron hosts. Isolates were identified to the species level by Sanger sequencing and/or a PCR-RFLP assay of the internal transcribed spacer (ITS) region. We used genotyping-by-sequencing to determine genetic diversity. Variants were called de novo, resulting in 284 high-quality variants for 61 isolates after stringent filtering. Based on Fst and AMOVA, populations were moderately differentiated among nurseries. Overall, population structure suggested presence of one dominant clonal lineage in all nurseries, as well as isolates of cryptic diversity mostly found in one nursery. Within the clonal lineage, there was a broad range of sensitivity to mefenoxam and phosphorous acid. Sensitivity of the two fungicides was correlated. P. plurivora was previously assumed to spread clonally, and the low genotypic diversity observed within and among isolates corroborated this hypothesis. The broad range of fungicide sensitivity within the P. plurivora population found in PNW nurseries has implications for managing disease caused by this important nursery pathogen. These findings provide the first perspective into P. plurivora population structure and phenotypic plasticity in Pacific Northwest nurseries.


Assuntos
Phytophthora , Rhododendron , DNA Espaçador Ribossômico/genética , Oregon , Phytophthora/classificação , Phytophthora/genética , Phytophthora/fisiologia , Doenças das Plantas/parasitologia , Rhododendron/parasitologia
13.
Plant Dis ; 103(9): 2295-2304, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31355734

RESUMO

Phytophthora species hybrids have been repeatedly reported as causing damaging diseases to cultivated and wild plants. Two known hybrids, P. andina and P. × pelgrandis, are pathogens of Solanaceae and ornamentals, respectively, although the extent of their host ranges are unknown. P. andina emerged from hybridization of P. infestans and an unidentified related species, whereas P. × pelgrandis emerged from P. nicotianae and P. cactorum. Considering that hybrids and parental species can coexist in the same regions and to distinguish them usually requires cloning or whole genome sequencing, we aimed to develop a rapid tool to distinguish them. Specifically, we used high-resolution melting (HRM) assays to differentiate genotypes based on their amplicon melting profiles. We designed primers for P. × pelgrandis and parental species based on available sequences of P. nicotianae and P. cactorum nuclear genes containing polymorphisms between species. For P. andina, heterozygous sites from Illumina short reads were used for the same purpose. We identified multiple amplicons exhibiting differences in melting curves between parental species and hybrids. We propose HRM as a rapid method for differentiation of P. andina and P. × pelgrandis hybrids from parental species that could be employed to advance research on these pathogens.


Assuntos
Hibridização Genética , Tipagem Molecular , Phytophthora , Primers do DNA , Hibridização Genética/genética , Tipagem Molecular/métodos , Tipagem Molecular/normas , Phytophthora/classificação , Phytophthora/genética , Solanaceae/parasitologia , Temperatura de Transição
14.
Int J Mol Sci ; 20(18)2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31540158

RESUMO

The mediator complex is an essential link between transcription factors and RNA polymerase II, and mainly functions in the transduction of diverse signals to genes involved in different pathways. Limited information is available on the role of soybean mediator subunits in growth and development, and their participation in defense response regulation. Here, we performed genome-wide identification of the 95 soybean mediator subunits, which were unevenly localized on the 20 chromosomes and only segmental duplication events were detected. We focused on GmMED16-1, which is highly expressed in the roots, for further functional analysis. Transcription of GmMED16-1 was induced in response to Phytophthora sojae infection. Agrobacterium rhizogenes mediated soybean hairy root transformation was performed for the silencing of the GmMED16-1 gene. Silencing of GmMED16-1 led to an enhanced susceptibility phenotype and increased accumulation of P. sojae biomass in hairy roots of transformants. The transcript levels of NPR1, PR1a, and PR5 in the salicylic acid defense pathway in roots of GmMED16-1-silenced transformants were lower than those of empty-vector transformants. The results provide evidence that GmMED16-1 may participate in the soybean-P. sojae interaction via a salicylic acid-dependent process.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max/genética , Glycine max/parasitologia , Interações Hospedeiro-Parasita/genética , Complexo Mediador/metabolismo , Phytophthora/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Phytophthora/classificação , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Subunidades Proteicas , Transcriptoma
15.
World J Microbiol Biotechnol ; 35(3): 44, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30810828

RESUMO

Bud rot disease is a damaging disease of oil palm in Colombia. The pathogen responsible for this disease is a species of oomyctes, Phytophthora palmivora which is also the causal pathogen of several tropical crop diseases such as fruit rot and stem canker of cocoa, rubber, durian and jackfruit. No outbreaks of bud rot have been reported in oil palm in Malaysia or other Southeast Asian countries, despite this particular species being present in the region. Analysis of the genomic sequences of several genetic markers; the internal transcribe spacer regions (ITS) of the ribosomal RNA gene cluster, beta-tubulin gene, translation elongation factor 1 alpha gene (EF-1α), cytochrome c oxidase subunit I & II (COXI and COXII) gene cluster along with amplified fragment length polymorphism (AFLP) analyses have been carried out to investigate the genetic diversity and variation of P. palmivora isolates from around the world and from different hosts in comparison to Colombian oil palm isolates, as one of the steps in understanding why this species of oomycetes causes devastating damage to oil palm in Latin America but not in other regions. Phylogenetic analyses of these regions showed that the Colombian oil palm isolates were not separated from Malaysian isolates. AFLP analysis and a new marker PPHPAV, targeting an unclassified hypothetical protein, was found to be able to differentiate Malaysian and Colombian isolates and showed a clear clade separations. Despite this, pathogenicity studies did not show any significant differences in the level of aggressiveness of different isolates against oil palm in glasshouse tests.


Assuntos
Arecaceae/microbiologia , Filogenia , Phytophthora/classificação , Phytophthora/genética , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Colômbia , DNA/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes Microbianos/genética , Genes de RNAr/genética , Variação Genética , Família Multigênica , Oomicetos/patogenicidade , Óleo de Palmeira , Fator 1 de Elongação de Peptídeos/genética , Phytophthora/isolamento & purificação , Análise de Sequência , Tubulina (Proteína)/genética
16.
Arch Microbiol ; 200(9): 1395-1405, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30032398

RESUMO

45 bacterial isolates from potatoes and wheat rhizospheres near Sétif (Algeria) pre-selected for their antagonistic activity against three fungal plant pathogens, two necrotrophic Fusarium solani var. coeruleum and Phytophtora infestans, and a systemic F. oxysporum f. sp. albedinis. Molecular typing of the isolates showed abundance of Bacillus compared to Pseudomonas. Some of the tested strains have shown very high biofilm formation. Among the 24 Gram-positive bacilli screened for four cyclic lipopeptides genes, some isolates harbor two or more genes, while others have a single gene or have none. Four selected isolates were able to regulate the expression of six defense-related genes in Arabidopsis and produce salicylic acid. Upon the features assessed in this study, strain B. amyloliquefaciens A16 was selected for a subsequent use as seed treatment and biocontrol agent in semi-arid region fields. This strain showed important biofilm formation, regulation of Arabidopsis defenses, and harbored three cLPs genes.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Bacillus/isolamento & purificação , Fusarium/isolamento & purificação , Regulação da Expressão Gênica de Plantas/genética , Phytophthora/isolamento & purificação , Pseudomonas/isolamento & purificação , Ácido Salicílico/metabolismo , Argélia , Arabidopsis/genética , Bacillus/classificação , Biofilmes/crescimento & desenvolvimento , Fusarium/classificação , Expressão Gênica , Lipopeptídeos , Phytophthora/classificação , Doenças das Plantas/microbiologia , Pseudomonas/classificação , Rizosfera , Solanum tuberosum/metabolismo , Triticum
17.
Phytopathology ; 108(7): 858-869, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29442578

RESUMO

Phytophthora spp. are regularly recovered from streams but their ecology in aquatic environments is not well understood. Phytophthora ramorum, invasive in California forests, persists in streams at times when sporulation in the canopy is absent, suggesting that it reproduces in the water. Streams are also inhabited by resident, clade 6 Phytophthora spp., believed to be primarily saprotrophic. We conducted experiments to determine whether differences of trophic specialization exist between these two taxa, and investigated how this may affect their survival and competition on stream leaf litter. P. ramorum effectively colonized fresh (live) rhododendron leaves but not those killed by freezing or drying, whereas clade 6 species colonized all leaf types. However, both taxa were recovered from naturally occurring California bay leaf litter in streams. In stream experiments, P. ramorum colonized bay leaves rapidly at the onset; however, colonization was quickly succeeded by clade 6 species. Nevertheless, both taxa persisted in leaves over 16 weeks. Our results confirm that clade 6 Phytophthora spp. are competent saprotrophs and, though P. ramorum could not colonize dead tissue, early colonization of suitable litter allowed it to survive at a low level in decomposing leaves.


Assuntos
Phytophthora/fisiologia , Doenças das Plantas , Folhas de Planta/microbiologia , Rios , Umbellularia/microbiologia , Florestas , Phytophthora/classificação , Fatores de Tempo
18.
World J Microbiol Biotechnol ; 34(9): 130, 2018 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-30101403

RESUMO

Chili pepper (Capsicum annum L.) is an important economic crop that is severely destroyed by the filamentous oomycete Phytophthora capsici. Little is known about this pathogen in key chili pepper farms in Punjab province, Pakistan. We investigated the genetic diversity of P. capsici strains using standard taxonomic and molecular tools, and characterized their colony growth patterns as well as their disease severity on chili pepper plants under the greenhouse conditions. Phylogenetic analysis based on ribosomal DNA (rDNA), ß-tubulin and translation elongation factor 1α loci revealed divergent evolution in the population structure of P. capsici isolates. The mean oospore diameter of mating type A1 isolates was greater than that of mating type A2 isolates. We provide first evidence of an uneven distribution of highly virulent mating type A1 and A2 of P. capsici that are insensitive to mefenoxam, pyrimorph, dimethomorph, and azoxystrobin fungicides, and represent a risk factor that could ease outpacing the current P. capsici management strategies.


Assuntos
Capsicum/microbiologia , Genes Fúngicos Tipo Acasalamento/genética , Variação Genética , Phytophthora/classificação , Phytophthora/genética , Acrilamidas/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Análise por Conglomerados , DNA Ribossômico/genética , Resistência a Medicamentos , Evolução Molecular , Fungicidas Industriais/farmacologia , Morfolinas/farmacologia , Paquistão , Elongação Traducional da Cadeia Peptídica/genética , Fenótipo , Filogenia , Phytophthora/efeitos dos fármacos , Phytophthora/isolamento & purificação , Doenças das Plantas/microbiologia , Raízes de Plantas/parasitologia , Pirimidinas/farmacologia , Fatores de Risco , Esporângios/citologia , Estrobilurinas/farmacologia , Temperatura , Tubulina (Proteína)/genética , Virulência
19.
Int J Syst Evol Microbiol ; 67(9): 3666-3675, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28857022

RESUMO

A new species of the genus Phytophthora was isolated from stream water in the subtropical forests of China during a survey of forest Phytophthora from 2011 to 2013. This new species is formally described here and named Phytophthora pseudopolonica sp. nov. This new homothallic species is distinct from other known Phytophthora species in morphology and produces nonpapillate and noncaducous sporangia with internal proliferation. Spherical hyphal swellings and thin-walled chlamydospores are abundant when the species is kept in sterile water. The P. pseudopolonica sp. nov. forms smooth oogonia with paragynous and sometimes amphigynous antheridia. The optimum growth temperature of the species is 30 °C in V8-juice agar with ß-sitosterol, yet it barely grows at 5 °C and 35 °C. Based on sequences of the internal transcribed spacer and the combined ß-tubulin and elongation factor 1α gene sequence data, isolates of the new species cluster together into a single branch and are close to Phytophthora polonicabelonging to clade 9.


Assuntos
Florestas , Filogenia , Phytophthora/classificação , Rios/microbiologia , China , DNA Espaçador Ribossômico/genética , Fator 1 de Elongação de Peptídeos/genética , Phytophthora/genética , Phytophthora/isolamento & purificação , Análise de Sequência de DNA , Tubulina (Proteína)/genética
20.
Phytopathology ; 107(3): 280-292, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27801078

RESUMO

Oomycete pathogens are commonly associated with soybean root rot and have been estimated to reduce soybean yields in the United States by 1.5 million tons on an annual basis. Limited information exists regarding the frequency and diversity of oomycete species across the major soybean-producing regions in North America. A survey was conducted across 11 major soybean-producing states in the United States and the province of Ontario, Canada. In 2011, 2,378 oomycete cultures were isolated from soybean seedling roots on a semiselective medium (CMA-PARPB) and were identified by sequencing of the internal transcribed spacer region of rDNA. Sequence results distinguished a total of 51 Pythium spp., three Phytophthora spp., three Phytopythium spp., and one Aphanomyces sp. in 2011, with Pythium sylvaticum (16%) and P. oopapillum (13%) being the most prevalent. In 2012, the survey was repeated, but, due to drought conditions across the sampling area, fewer total isolates (n = 1,038) were collected. Additionally, in 2012, a second semiselective medium (V8-RPBH) was included, which increased the Phytophthora spp. isolated from 0.7 to 7% of the total isolates. In 2012, 54 Pythium spp., seven Phytophthora spp., six Phytopythium spp., and one Pythiogeton sp. were recovered, with P. sylvaticum (14%) and P. heterothallicum (12%) being recovered most frequently. Pathogenicity and virulence were evaluated with representative isolates of each of the 84 species on soybean cv. Sloan. A seed-rot assay identified 13 and 11 pathogenic species, respectively, at 13 and 20°C. A seedling-root assay conducted at 20°C identified 43 species as pathogenic, having a significantly detrimental effect on the seedling roots as compared with the noninoculated control. A total of 15 species were pathogenic in both the seed and seedling assays. This study provides a comprehensive characterization of oomycete species present in soybean seedling roots in the major production areas in the United States and Ontario, Canada and provides a basis for disease management and breeding programs.


Assuntos
Glycine max/parasitologia , Oomicetos/isolamento & purificação , Doenças das Plantas/parasitologia , Aphanomyces/classificação , Aphanomyces/isolamento & purificação , Aphanomyces/patogenicidade , Geografia , Oomicetos/classificação , Oomicetos/patogenicidade , Filogenia , Phytophthora/classificação , Phytophthora/isolamento & purificação , Phytophthora/patogenicidade , Doenças das Plantas/prevenção & controle , Raízes de Plantas/parasitologia , Pythium/classificação , Pythium/isolamento & purificação , Pythium/patogenicidade , Plântula/parasitologia , Sementes/parasitologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA