Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arch Microbiol ; 203(7): 4619-4628, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34165623

RESUMO

Soil yeasts exhibit an array of beneficial effects to plants viz., plant growth promotion, phosphate solubilization, nitrogen and sulphur oxidation, etc. Yeasts remain as poorly investigated group of microorganisms that represent an abundant and dependable source of bioactive/chemically novel compounds and potential bioinoculants. Hence this study holds the key concept of assessing the performance of soil yeasts with potential plant growth promoting ability in soil quality improvement. Sixteen soil yeast isolates with plant growth promoting traits were assessed for biofilm forming potential and five potential soil yeast isolates were selected and identified through molecular technique. Soil incubation study was performed with these isolates to assess their impact on soil physical, chemical and biological properties. Due to inoculation of soil yeasts, notable changes were observed in soil physical, chemical and biological properties. Among the soil yeast isolates, Pichia kudriavzevii gave better results in soil incubation study.


Assuntos
Pichia , Microbiologia do Solo , Pichia/fisiologia , Solo/química
2.
Plant Cell Rep ; 40(9): 1723-1733, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34142216

RESUMO

KEY MESSAGE: Maize group II LEA protein ZmDHN11 could protect protein activity and confer resistance to osmotic stress on transgenic yeast and tobacco. Late embryogenesis abundant (LEA) proteins are widely assumed to play crucial roles in environmental stress tolerance, but their function has remained obscure. Dehydrins are group II LEA proteins, which are highly hydrophilic plant stress proteins. In the present study, a novel group II LEA protein, ZmDHN11, was cloned and identified from maize. The expression of ZmDHN11 was induced by high osmotic stress, low temperature, salinity, and ABA (abscisic acid). The ZmDHN11 protein specifically accumulated in the nuclei and cytosol. Further study indicated that ZmDHN11 is phosphorylated by the casein kinase CKII. ZmDHN11 protected the activity of LDH under water-deficit stress. The overexpression of ZmDHN11 endows transgenic yeast and tobacco with tolerance to osmotic stress.


Assuntos
Nicotiana/genética , Pressão Osmótica/fisiologia , Pichia/genética , Proteínas de Plantas/genética , Zea mays/genética , Animais , Animais Geneticamente Modificados , Caseína Quinase II/metabolismo , Regulação da Expressão Gênica de Plantas , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Microrganismos Geneticamente Modificados , Fosforilação , Pichia/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/fisiologia
3.
Molecules ; 26(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530641

RESUMO

Wine fermentation processes are driven by complex microbial systems, which comprise eukaryotic and prokaryotic microorganisms that participate in several biochemical interactions with the must and wine chemicals and modulate the organoleptic properties of wine. Among these, yeasts play a fundamental role, since they carry out the alcoholic fermentation (AF), converting sugars to ethanol and CO2 together with a wide range of volatile organic compounds. The contribution of Saccharomyces cerevisiae, the reference organism associated with AF, has been extensively studied. However, in the last decade, selected non-Saccharomyces strains received considerable commercial and oenological interest due to their specific pro-technological aptitudes and the positive influence on sensory quality. This review aims to highlight the inter-specific variability within the heterogeneous class of non-Saccharomyces in terms of synthesis and release of volatile organic compounds during controlled AF in wine. In particular, we reported findings on the presence of model non-Saccharomyces organisms, including Torulaspora delbrueckii, Hanseniaspora spp,Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia spp. and Candida zemplinina, in combination with S. cerevisiae. The evidence is discussed from both basic and applicative scientific perspective. In particular, the oenological significance in different kind of wines has been underlined.


Assuntos
Odorantes/análise , Saccharomycetales/fisiologia , Vinho/microbiologia , Fermentação , Hanseniaspora/fisiologia , Metschnikowia/fisiologia , Pichia/fisiologia , Torulaspora/fisiologia , Compostos Orgânicos Voláteis/química , Vinho/análise
4.
J Cell Sci ; 131(1)2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29183915

RESUMO

The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii, we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a ß-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress.This article has an associated First Person interview with the first author of the paper.


Assuntos
Temperatura Alta , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Pressão Osmótica , Fosforilação , Pichia/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/fisiologia
5.
Yeast ; 37(2): 237-245, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31756769

RESUMO

The methylotrophic yeasts Ogataea (Hansenula) polymorpha and Komagataella phaffii (Pichia pastoris) have important industrial applications and are models for several biological processes including peroxisome biology and methanol metabolism. We examined the carbon source requirements for mating-type (MAT) switching and mating in both species. Haploid strains of O. polymorpha and K. phaffii are homothallic, and switch MAT by a flip/flop mechanism in which a chromosomal region containing the MAT genes undergoes an inversion. MAT switching is induced by nitrogen starvation in both species and can be detected 4-6 hr after induction. Both switching and mating require a utilizable carbon source that can be either fermentable or nonfermentable. We further observed that although methanol can be used as a sole carbon source in both species, it does not support the induction of MAT switching or mating. Our results provide insight into the nutritional cues that influence entry into sexual processes in methylotrophic yeasts that undergo flip/flop MAT switching.


Assuntos
Carbono/metabolismo , Pichia/fisiologia , Reprodução/fisiologia , Saccharomycetales/fisiologia , Fermentação , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Haploidia , Metanol/metabolismo , Peroxissomos/metabolismo , Filogenia , Pichia/genética , Reprodução/genética , Saccharomycetales/genética
6.
Microb Pathog ; 140: 103969, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31918000

RESUMO

The consumption of probiotics has increased due to the reported health benefits, mainly in preventing or treating gastrointestinal pathology. This study investigated the antimicrobial capacity of yeasts, Saccharomyces cerevisiae and Pichia kluyveri, previously isolated from fermented foods (indigenous beverage, kefir and cocoa) against the adhesion of foodborne pathogens to Caco-2 cells. Co-aggregation of yeasts with pathogens and were evaluated by quantitative analysis and using scanning electron and laser confocal microscopies. All yeasts strains were able to co-aggregate with the tested pathogens, however, this activity was strain-dependent. The inhibition tests showed that the adhesion of Escherichia coli EPEC, Listeria monocytogenes and Salmonella Enteritidis to Caco-2 was reduced by all the yeasts studied. Most of the evaluated yeasts showed inhibition rates equal to or greater than the commercial probiotic Saccharomyces boulardii. The yeasts were able to reduce up to 50% of the bacterial infection, as observed for CCMA0615 towards EPEC in exclusion assay; CCMA0731, CCMA0732 and CCMA0615 towards L. monocytogenes in exclusion and competition assays; and CCMA0731 in exclusion and CCMA0731, CCMA0732, CCMA0615 in competition assay towards S. Enteritidis. No antimicrobial compounds were produced by the yeasts, showing that competition for nutrients and/or receptors in the intestinal mucosa was the mechanism to bacterial inhibition.


Assuntos
Antibiose , Alimentos Fermentados/microbiologia , Pichia/fisiologia , Saccharomyces cerevisiae/fisiologia , Aderência Bacteriana , Brasil , Células CACO-2 , Escherichia coli/fisiologia , Microbiologia de Alimentos , Humanos , Listeria monocytogenes/fisiologia , Pichia/genética , Pichia/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Salmonella enteritidis/fisiologia
7.
Antonie Van Leeuwenhoek ; 113(8): 1135-1146, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32372375

RESUMO

The inhibiting activity of three yeast strains belonging to Pichia kudriavzevii, Pichia occidentalis, and Meyerozyma quilliermondii/Meyerozyma caribbica genera against common plant pathogens representing Mucor spp., Penicillium chrysogenum, Penicillium expansum, Aspergillus flavus, Fusarium cereals, Fusarium poae, as well as Botrytis cinerea genera was investigated. The yeast strains tested had a positive impact on growth inhibition of all target plant pathogens. The degree of inhibition was more than 50% and varied depending on both the yeast antagonist and the mold. Ethyl esters of medium-chain fatty acids, phenylethyl alcohol, and its acetate ester prevailed among the analyzed volatile organic compounds (VOCs) emitted by yeasts in the presence of the target plant pathogens. Due to the method used, assuming no contact between the antagonist and the pathogen, the antagonistic activity of the yeast strains studied resulted mainly from the production of biologically active VOCs. Moreover, the antagonistic activity was not only restricted to a single plant pathogen but effective towards molds of different genera, making the yeast strains studied very useful for potential application in biological control.


Assuntos
Agentes de Controle Biológico/farmacologia , Doenças das Plantas/prevenção & controle , Secale/microbiologia , Vitis/microbiologia , Compostos Orgânicos Voláteis/farmacologia , Leveduras/fisiologia , Antibiose , Antifúngicos/farmacologia , Botrytis , Fungos/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Penicillium/efeitos dos fármacos , Pichia/fisiologia , Doenças das Plantas/microbiologia , Saccharomycetales/fisiologia , Leveduras/isolamento & purificação
8.
Food Microbiol ; 88: 103404, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31997760

RESUMO

In this study, P. kudriavzevii was isolated and identified as an effective antagonistic yeast, which could significantly inhibit the rotting rate, weight loss, and delay the color change, with no effect on total soluble solids (TSS), titratable acid (TA), or firmness during cherry tomato storage. High-throughput sequencing was used to survey the effect of P. kudriavzevii on fungal community throughout cold storage. The results showed that the biological succession of predominant pathogens was disrupted by P. kudriavzevii. The abundance of Botrytis and Alternaria was higher in the control than upon P. kudriavzevii treatment at 28 d, but some yeast genera such as Naganishia, Wickerhamomyces, and Cutaneotrichosporon at 14 d, Pichia and Sporidiobolus at 21 d, and Cystofilobasidium at 28 d, had relatively higher abundances in P. kudriavzevii treatments than the control. Oddly, as an antagonist agent, P. kudriavzevii was not the dominant population, indicating that altering the course of succession of the fungal community may be an effective mechanism of antagonistic yeast. Furthermore, the total network correlation analysis of fungal community revealed that the community development was more dependent on similarities in function than on taxonomic relationships.


Assuntos
Antibiose , Frutas/microbiologia , Microbiota , Micobioma , Pichia/fisiologia , Solanum lycopersicum/microbiologia , Agentes de Controle Biológico , Armazenamento de Alimentos/métodos
9.
J Sci Food Agric ; 100(10): 3812-3821, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32248529

RESUMO

BACKGROUND: Penicillium digitatum is one of the most important pathogens causing citrus green mold, leading to significant economic losses. Traditionally, synthetic fungicides are used to control diseases. However, the side effects of fungicides should not be ignored. Thus, antagonistic yeasts were proposed to be safe and effective alternatives for managing diseases. Orchards are excellent sources of naturally occurring antagonists against pathogens. Therefore, in the present study, antagonistic yeasts obtained from orchards were screened, and the possible biocontrol mechanisms of the most promising yeast were investigated. RESULTS: Seventy-eight isolates of yeasts (15 species of 10 genera) were obtained from citrus orchards. In in vitro assays, 16 strains showed antifungal activity against Pichia digitatum and 15 strains showed biocontrol potential against green mold on Olinda oranges. Pichia galeiformis (BAF03) exhibited the best antagonistic activity against P. digitatum during 6 days storage at 25 °C and a good antagonistic activity during 29 days at 4 °C. Pichia galeiformis (BAF03) could colonize and amplify quickly in wounded citrus. Scanning electron microscopy results showed that the citrus wound was colonised by the yeast. A total of eight volatile organic compounds (VOCs) were identified by gas chromatography-mass spectrometry The VOCs produced by P. galeiformis (BAF03) efficiently inhibited P. digitatum. CONCLUSION: Pichia galeiformis (BAF03) isolated from a citrus orchard showed potential to control postharvest green mold of citrus. The possible mechanisms of action likely include competition for space and nutrients as well as production of VOCs.


Assuntos
Antibiose , Citrus/microbiologia , Penicillium/fisiologia , Pichia/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
10.
BMC Microbiol ; 19(1): 100, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101012

RESUMO

BACKGROUND: Thermotolerance is a highly desirable trait of microbial cell factories and has been the focus of extensive research. Yeast usually tolerate only a narrow temperature range and just two species, Kluyveromyces marxianus and Ogataea polymorpha have been described to grow at reasonable rates above 40 °C. However, the complex mechanisms of thermotolerance in yeast impede its full comprehension and the rare physiological data at elevated temperatures has so far not been matched with corresponding metabolic analyses. RESULTS: To elaborate on the metabolic network response to increased fermentation temperatures of up to 49 °C, comprehensive physiological datasets of several Kluyveromyces and Ogataea strains were generated and used for 13C-metabolic flux analyses. While the maximum growth temperature was very similar in all investigated strains, the metabolic network response to elevated temperatures was not conserved among the different species. In fact, metabolic flux distributions were remarkably irresponsive to increasing temperatures in O. polymorpha, while the K. marxianus strains exhibited extensive flux rerouting at elevated temperatures. CONCLUSIONS: While a clear mechanism of thermotolerance is not deducible from the fluxome level alone, the generated data can be valued as a knowledge repository for using temperature to modulate the metabolic activity towards engineering goals.


Assuntos
Temperatura Alta , Redes e Vias Metabólicas , Termotolerância , Leveduras/fisiologia , Fermentação , Kluyveromyces/fisiologia , Pichia/fisiologia , Saccharomyces cerevisiae/fisiologia , Leveduras/classificação
11.
Fish Shellfish Immunol ; 85: 52-60, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30016686

RESUMO

Oral vaccination is of major interest because it can be used for mass vaccination of fish of various size and age. Given that their administration is relatively easy and stress-free, oral vaccines have both economic and animal welfare benefits. Yet, mostly due to their limited efficacy, only very few oral vaccines are available to aquaculture industry. Here we present a method for oral vaccine delivery based on the yeast Pichia pastoris. We could express a model antigen, green fluorescent protein (GFP), in this yeast and subsequently show delivery of the GFP protein to the intestine of juvenile flounder or adult carp and trout. We tested this approach in several commercially-relevant fish species, from juvenile to adult stage. To test the oral delivery of antigen to larval fish, the GFP-expressing Pichia pastoris was first fed to planktonic crustacean Daphnia or rotifers that served as 'bioencapsulation vehicles' and afterwards, fed to flounder larvae. Again, we could show delivery of intact GFP protein to the intestine. In rainbow trout, the orally-administered GFP-expressing yeast elicited a rapid local innate immune response in the intestine and a subsequent systemic response in the spleen. Our results show that Pichia pastoris is a good vehicle for oral antigen delivery and that it can be used in non-encapsulated form for older fish or in bioencapsulated form for larval fish. We discuss the immunomodulatory properties of the yeast itself, and its potential to enhance local immune responses and act as an adjuvant.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Carpas/imunologia , Linguado/imunologia , Imunidade Inata/efeitos dos fármacos , Vacinação em Massa/veterinária , Oncorhynchus mykiss/imunologia , Pichia/fisiologia , Administração Oral , Animais , Proteínas de Fluorescência Verde/análise , Vacinação em Massa/métodos
12.
Fish Shellfish Immunol ; 84: 970-978, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30395995

RESUMO

The receptor for the globular head of complement component C1q, gC1qR, is a multifunctional and multiligand binding protein with a crucial role in host defense. In the present study, a full-length cDNA sequence of a gC1qR homolog (PtgC1qR) in Portunus trituberculatus was identified. PtgC1qR was a 268-amino-acid polypeptide with a conserved MAM33 domain and a mitochondrial targeting sequence in the first 56 amino acids. The transcripts of PtgC1qR were detected in all examined tissues with the highest level detected in the hepatopancreas. Compared with other early embryonic stages, PtgC1qR was highly expressed in the fertilized eggs and embryos at the cleavage stage, which suggest PtgC1qR may be a maternal gene. The transcripts of PtgC1qR in hemocytes exhibited time-dependent response expression pattern after challenged with bacteria (Vibrio alginolyticus, Micrococcus luteus) and fungi (Pichia pastoris). Moreover, the recombinant PtgC1qR (rPtgC1qR) exhibited strong antibacterial activity and microbial-binding activity, suggesting its crucial role in immune defense and recognition. Further phenoloxidase (PO) assay showed that rPtgC1qR could suppress the crab PO activity in vitro in a dose-dependent manner, and it could result in nearly 100% inhibition of PO activity under the concentration of 11.65 µM. Knockdown of PtgC1qR could significantly enhance the expression of serine protease related genes (PtSP1-3 and PtSPH), proPO-associated genes (PtproPO and PtPPAF) and C3-like genes (Ptα2M1 and PtTEP). However, the phagocytosis related genes (PtMyosin, PtRab5 and PtArp) and Ptα2M2 were significantly down-regulated in the PtgC1qR silenced crabs. These findings together demonstrate that PtgC1qR might function in crab immune response via its antibacterial activity, immune recognition or regulating the proPO system, complement pathway and phagocytosis.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Complemento C1q/genética , Complemento C1q/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Complemento C1q/química , Perfilação da Expressão Gênica , Micrococcus luteus/fisiologia , Filogenia , Pichia/fisiologia , Vibrio alginolyticus/fisiologia
13.
Fish Shellfish Immunol ; 84: 733-743, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30381264

RESUMO

Crustins play important roles in defending against bacteria in the innate immunity system of crustaceans. In present study, we identified a crustin gene in Scylla paramamosain, which was named as SpCrus6. The ORF of SpCrus6 possessed a signal peptide sequence (SPS) at the N-terminus and a WAP domain at the C-terminus. And there were 5 Proline residues, 5 Glycine and 4 Cysteine residues between SPS and WAP domain in SpCrus6. These features indicated that SpCrus6 was a new member of crustin family. The SpCrus6 mRNA transcripts were up-regulated obviously after bacteria or virus challenge. These changes showed that SpCrus6 was involved in the antimicrobial and antiviral responses of Scylla paramamosain. Recombinant SpCrus6 (rSpCrus6) showed strong inhibitory abilities against Gram-positive bacteria (Bacillus megaterium, Staphylococcus aureus, and Bacillus subtilis). But the inhibitory abilities against four Gram-negative bacteria (Vibrio parahemolyticus, Vibrio alginolyticus, Vibrio harveyi and Escherichia coli) and two fungi (Pichia pastoris and Candida albicans) were not strong enough. Besides, rSpCrus6 could strongly bind to two Gram-positive bacteria (B. subtilis and B. megaterium) and three Gram-negative bacteria (V. alginolyticus, V. parahemolyticus, and V. harveyi). And the binding levels to S. aureus and two fungi (P. pastoris and C. albicans) were weak. The polysaccharides binding assays' results showed rSpCrus6 had superior binding activities to LPS, LTA, PGN and ß-glucan. Through agglutinating assays, we found rSpCrus6 could agglutinate well three Gram-positive bacteria (S. aureus, B. subtilis and B. megaterium). And the agglutinating activities to Gram-negative bacteria and fungi were not found. In the aspect of antiviral functions, rSpCrus6 could bind specifically to the recombinant envelop protein 26 (rVP26) of white spot syndrome virus (WSSV) but not to recombinant envelop protein 28 (rVP28), whereas GST protein could not bind to rVP26 or rVP28. Besides, rSpCrus6 could suppress WSSV reproduction to some extent. Taken together, SpCrus6 was a multifunctional immunity effector in the innate immunity defending response of S. paramamosain.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Candida albicans/fisiologia , Perfilação da Expressão Gênica , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/fisiologia , Filogenia , Pichia/fisiologia , Alinhamento de Sequência
14.
Fish Shellfish Immunol ; 89: 448-457, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30974220

RESUMO

Mannose-binding lectin (MBL) is a pattern recognition receptor (PRR) that plays an important role in the innate immune response. In this study, a novel mannose-binding lectin was cloned from the swimmimg crab Portunus trituberculatus (designated as PtMBL). The complete cDNA of PtMBL gene was 1208 bp in length with an open reading frame (ORF) of 732 bp that encoded 244 amino acid proteins. PtMBL shared lower amino acid similarity with other MBLs, yet it contained the conserved carbohydrate-recognition domain (CRD) with QPD motif and was clearly member of the collectin family. PtMBL transcripts were mainly detected in eyestalk and gill with sexually dimorphic expression. The temporal expression of PtMBL in hemocytes showed different activation times after challenged with Vibrio alginolyticus, Micrococcus luteus and Pichia pastoris. The recombinant PtMBL protein revealed antimicrobial activity against the tested Gram-negative and Gram-positive bacteria. It could also bind and agglutinate (Ca2+-dependent) both bacteria and yeast. Furthermore, the agglutinating activity could be inhibited by both d-galactose and d-mannose, suggesting the broader pathogen-associated molecular patterns (PAMPs) recognition spectrum of PtMBL. These results together indicate that PtMBL could serve as not only a PRR in immune recognition but also a potential antibacterial protein in the innate immune response of crab.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Masculino , Lectina de Ligação a Manose/química , Micrococcus luteus/fisiologia , Filogenia , Pichia/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Vibrio alginolyticus/fisiologia
15.
J Basic Microbiol ; 59(9): 867-878, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31347180

RESUMO

Removal of heavy metals from food material by growing micro-organisms is limited by the toxicity to cells. In this study, different preincubation treatments were investigated to analyze their effects on cadmium resistance and removal ability of Pichia kudriavzevii A16 and Saccharomyces cerevisiae CICC1211. Sucrose preincubation improved the cadmium resistance of both yeast cells and increased the cadmium-removal rate of P. kudriavzevii A16. An evident decrease of intracellular and cell-surface cadmium accumulation was observed after sucrose preincubation, which may be the primary reason responsible for the improved cadmium resistance. Flow cytometry assay showed that sucrose significantly reduced the production of reactive oxygen species (ROS) and cell death rate of both yeasts under cadmium compared with those normally cultured cells. Under cadmium stress, the content of both protein carbonyls and malonyldialdehyde were also reduced by the addition of sucrose, the results were in accordance with the tendency of ROS, exhibiting a defending function of sucrose. Osmotic regulators as proline and trehalose were increased by sucrose preincubation in P. kudriavzevii A16 in the presence of cadmium. The results suggested that sucrose preincubation could be applied to improve cadmium resistance and removal rate of yeasts.


Assuntos
Cádmio/metabolismo , Pichia/efeitos dos fármacos , Pichia/metabolismo , Sacarose/farmacologia , Biodegradação Ambiental/efeitos dos fármacos , Cádmio/toxicidade , Viabilidade Microbiana/efeitos dos fármacos , Pichia/fisiologia , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico/efeitos dos fármacos , Trealose/metabolismo
16.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-31426544

RESUMO

There is an ongoing debate on how peroxisomes form: by growth and fission of pre-existing peroxisomes or de novo from another membrane. It has been proposed that, in wild type yeast cells, peroxisome fission and careful segregation of the organelles over mother cells and buds is essential for organelle maintenance. Using live cell imaging we observed that cells of the yeast Hansenula polymorpha, lacking the peroxisome fission protein Pex11, still show peroxisome fission and inheritance. Also, in cells of mutants without the peroxisome inheritance protein Inp2 peroxisome segregation can still occur. In contrast, peroxisome fission and inheritance were not observed in cells of a pex11 inp2 double deletion strain. In buds of cells of this double mutant, new organelles likely appear de novo. Growth of pex11 inp2 cells on methanol, a growth substrate that requires functional peroxisomes, is retarded relative to the wild type control. Based on these observations we conclude that in H. polymorpha de novo peroxisome formation is a rescue mechanism, which is less efficient than organelle fission and inheritance to maintain functional peroxisomes.


Assuntos
Biogênese de Organelas , Peroxinas/fisiologia , Peroxissomos/fisiologia , Pichia/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Microrganismos Geneticamente Modificados , Mutação , Peroxinas/genética , Pichia/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/fisiologia
17.
J Sci Food Agric ; 99(2): 647-655, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29962027

RESUMO

BACKGROUND: Antagonistic yeast and hot air treatment are two promising methods for conferring resistance to pathogenic fungi. The study assessed the effectiveness of hot-air treatment (45 °C, 4 h) and antagonistic yeast (Pichia guilliermondii at 108 CFU mL-1 ) alone or in combination on the two major postharvest diseases (Rhizopus stolonifer and Penicillium expansum), as well as the quality and antioxidant parameters in harvested peaches. RESULTS: The combination of hot-air treatment and Pichia guilliermondii had notable inhibitory effects on infections in peach fruit wounds. In addition, the individual hot-air treatment or Pichia guilliermondii could improve quality indexes to varying degrees, but the combination of the above two treatments could achieve the highest efficacy. Furthermore, compared with other groups, the combined treatment induced the highest activities of superoxide dismutase and catalase, improved the content of total phenolics and reduced glutathione most obviously. Lastly, the most significant reductions in malondialdehyde content and relative electrical conductivity were observed in the combination-treated fruit. CONCLUSIONS: The combined treatment could control fungal diseases, besides delay the decline of quality and antioxidant parameters, so as to achieve the purpose of fresh keeping for harvested peach fruit. © 2018 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Frutas/microbiologia , Pichia/fisiologia , Doenças das Plantas/prevenção & controle , Prunus persica/microbiologia , Ar/análise , Antibiose , Frutas/química , Temperatura Alta , Malondialdeído , Penicillium/fisiologia , Doenças das Plantas/microbiologia , Prunus persica/química , Rhizopus/fisiologia
18.
J Cell Physiol ; 233(4): 2759-2767, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28256706

RESUMO

The yeast Pichia fermentans DISAABA 726 strain (P. fermentans) is a dimorphic yeast that under different environmental conditions may switch from a yeast-like to pseudohyphal morphology. We hypothesize that exosomes-like vesicles (EV) could mediate this rapid modification. EV are membrane-derived vesicles carrying lipids, proteins, mRNAs and microRNAs and have been recognized as important mediators of intercellular communication. Although it has been assumed for a long time that fungi release EV, knowledge of their functions is still limited. In this work we analyze P. fermentans EV production during growth in two different media containing urea (YCU) or methionine (YCM) where yeast-like or pseudohyphal morphology are produced. We developed a procedure to extract EV from the neighboring biofilm which is faster and more efficient as compared to the widely used ultracentrifugation method. Differences in morphology and RNA content of EV suggest that they might have an active role during dimorphic transition as response to the growth conditions. Our findings are coherent with a general state of hypoxic stress of the pseudohyphal cells.


Assuntos
Biofilmes , Vesículas Extracelulares/metabolismo , Pichia/fisiologia , Meios de Cultura , Vesículas Extracelulares/ultraestrutura , Proteínas Fúngicas/metabolismo , MicroRNAs/metabolismo , Viabilidade Microbiana , Pichia/citologia , Pichia/ultraestrutura , RNA Fúngico/metabolismo
19.
FEMS Yeast Res ; 18(3)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29447393

RESUMO

The ability to adapt to environmental changes is a necessary strategy for cell survival. Spt23 is responsible for regulation of Δ-9 desaturase expression in Pichia pastoris. Disruption of SPT23 leads to a remarkable decrease in cellular unsaturated fatty acids. In this study, we found that deletion of SPT23 resulted in growth defects under high temperature culture conditions and heat treatment induced the expression of SPT23. By measuring expression changes of heat shock proteins, protein levels and cellular localization of Hsf1, it was revealed that the sensitivity of spt23Δ to high temperature was independent of the heat shock response. Addition of the osmotic stabilizer sorbitol can restore the growth defects of spt23Δ under heat conditions. In addition, loss of SPT23 led to increased plasma membrane permeability, decreased plasma membrane integrity, depolarization, ergosterol synthesis defects and cell wall component disorder, which suggested that the sensitivity to heat treatment in spt23Δ was due to plasma membrane damage. Taken together, our results give new insights into the relationship between Spt23 and high temperature environmental stress.


Assuntos
Permeabilidade da Membrana Celular , Proteínas Fúngicas/genética , Temperatura Alta , Proteínas de Membrana/genética , Pichia/genética , Membrana Celular/patologia , Resposta ao Choque Térmico/genética , Pichia/fisiologia , Estearoil-CoA Dessaturase/genética
20.
FEMS Yeast Res ; 18(2)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29438555

RESUMO

Lignocellulosic biomass belongs to main sustainable renewable sources for global energy supply. One of the main challenges in the conversion of saccharified lignocellulosic biomass into bioethanol is the utilization of xylose, since lignocellulosic feedstocks contain a significant amount of this pentose. The non-conventional thermotolerant yeast Ogataea polymorpha naturally ferments xylose to ethanol at elevated temperatures (45°C). Studying the molecular mechanisms of regulation of xylose metabolism is a promising way toward increased xylose conversion to ethanol. Insertional mutagenesis was applied to yeast O. polymorpha to identify genes involved in regulation of xylose fermentation. An insertional mutant selected as 3-bromopyruvate resistant strain possessed 50% increase in ethanol production as compared to the parental strain. Increase in ethanol production was caused by disruption of an autophagy-related gene ATG13. Involvement of Atg13 in regulation of xylose fermentation was confirmed by deletion of that gene. The atg13Δ strain also produced an elevated amount of ethanol from xylose. Insertion in ATG13 gene did not disrupt HORMA domain and did not lead to defects in autophagy whereas knock out of this gene impaired autophagy process. We suggest that Atg13 plays two different functions and its role in regulation of xylose fermentation differs from that in autophagy.


Assuntos
Ascomicetos/fisiologia , Proteínas Relacionadas à Autofagia/genética , Etanol/metabolismo , Fermentação , Proteínas Fúngicas/genética , Xilose/metabolismo , Autofagia , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Ordem dos Genes , Vetores Genéticos/genética , Engenharia Metabólica , Mutação , Pichia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA