Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(6): e0050724, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38775482

RESUMO

Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.


Assuntos
Doenças das Plantas , Potyvirus , Proteínas Virais , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Cucumis melo/virologia , Resistência à Doença/genética , Morte Celular , Plasmodesmos/virologia , Plasmodesmos/metabolismo , Virulência , Cucurbitaceae/virologia , Interações Hospedeiro-Patógeno , Retículo Endoplasmático/virologia , Retículo Endoplasmático/metabolismo , Mutação , Citrullus/virologia
2.
Mol Plant Microbe Interact ; 33(1): 26-39, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31715107

RESUMO

Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.


Assuntos
Vírus de Plantas , Plasmodesmos , Citoesqueleto/metabolismo , Desenvolvimento Vegetal/fisiologia , Vírus de Plantas/fisiologia , Plantas/virologia , Plasmodesmos/virologia , Transporte Proteico/fisiologia , Transdução de Sinais
3.
BMC Microbiol ; 20(1): 72, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228456

RESUMO

BACKGROUND: Plant viruses move through plasmodesmata (PD) to infect new cells. To overcome the PD barrier, plant viruses have developed specific protein(s) to guide their genomic RNAs or DNAs to path through the PD. RESULTS: In the present study, we analyzed the function of Pepper vein yellows virus P4 protein. Our bioinformatic analysis using five commonly used algorithms showed that the P4 protein contains an transmembrane domain, encompassing the amino acid residue 117-138. The subcellular localization of P4 protein was found to target PD and form small punctates near walls. The P4 deletion mutant or the substitution mutant constructed by overlap PCR lost their function to produce punctates near the walls inside the fluorescent loci. The P4-YFP fusion was found to move from cell to cell in infiltrated leaves, and P4 could complement Cucumber mosaic virus movement protein deficiency mutant to move between cells. CONCLUSION: Taking together, we consider that the P4 protein is a movement protein of Pepper vein yellows virus.


Assuntos
Biologia Computacional/métodos , Nicotiana/virologia , Vírus de Plantas/fisiologia , Proteínas Virais/metabolismo , Algoritmos , Cucumovirus/fisiologia , Mutação , Folhas de Planta/virologia , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Domínios Proteicos , Nicotiana/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
4.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30135122

RESUMO

Plant virus cell-to-cell movement is an essential step in viral infections. This process is facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis virus (CPsV) infection in sweet orange involves the formation of tubule-like structures within PD, suggesting that CPsV belongs to "tubule-forming" viruses that encode MPs able to assemble a hollow tubule extending between cells to allow virus movement. Consistent with this hypothesis, we show that the MP of CPsV (MPCPsV) indeed forms tubule-like structures at PD upon transient expression in Nicotiana benthamiana leaves. Tubule formation by MPCPsV depends on its cleavage capacity, mediated by a specific aspartic protease motif present in its primary sequence. A single amino acid mutation in this motif abolishes MPCPsV cleavage, alters the subcellular localization of the protein, and negatively affects its activity in facilitating virus movement. The amino-terminal 34-kDa cleavage product (34KCPsV), but not the 20-kDa fragment (20KCPsV), supports virus movement. Moreover, similar to tubule-forming MPs of other viruses, MPCPsV (and also the 34KCPsV cleavage product) can homooligomerize, interact with PD-located protein 1 (PDLP1), and assemble tubule-like structures at PD by a mechanism dependent on the secretory pathway. 20KCPsV retains the protease activity and is able to cleave a cleavage-deficient MPCPsV in trans Altogether, these results demonstrate that CPsV movement depends on the autolytic cleavage of MPCPsV by an aspartic protease activity, which removes the 20KCPsV protease and thereby releases the 34KCPsV protein for PDLP1-dependent tubule formation at PD.IMPORTANCE Infection by citrus psorosis virus (CPsV) involves a self-cleaving aspartic protease activity within the viral movement protein (MP), which results in the production of two peptides, termed 34KCPsV and 20KCPsV, that carry the MP and viral protease activities, respectively. The underlying protease motif within the MP is also found in the MPs of other members of the Aspiviridae family, suggesting that protease-mediated protein processing represents a conserved mechanism of protein expression in this virus family. The results also demonstrate that CPsV and potentially other ophioviruses move by a tubule-guided mechanism. Although several viruses from different genera were shown to use this mechanism for cell-to-cell movement, our results also demonstrate that this mechanism is controlled by posttranslational protein cleavage. Moreover, given that tubule formation and virus movement could be inhibited by a mutation in the protease motif, targeting the protease activity for inactivation could represent an important approach for ophiovirus control.


Assuntos
Ácido Aspártico Proteases/metabolismo , Citrus sinensis/virologia , Nicotiana/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/crescimento & desenvolvimento , Plasmodesmos/fisiologia , Aminoácidos/genética , Ácido Aspártico Proteases/genética , Microscopia Eletrônica de Transmissão , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Plasmodesmos/genética , Plasmodesmos/virologia
5.
PLoS Pathog ; 13(6): e1006463, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640879

RESUMO

Plant virus movement proteins (MPs) localize to plasmodesmata (PD) to facilitate virus cell-to-cell movement. Numerous studies have suggested that MPs use a pathway either through the ER or through the plasma membrane (PM). Furthermore, recent studies reported that ER-PM contact sites and PM microdomains, which are subdomains found in the ER and PM, are involved in virus cell-to-cell movement. However, functional relationship of these subdomains in MP traffic to PD has not been described previously. We demonstrate here the intracellular trafficking of fig mosaic virus MP (MPFMV) using live cell imaging, focusing on its ER-directing signal peptide (SPFMV). Transiently expressed MPFMV was distributed predominantly in PD and patchy microdomains of the PM. Investigation of ER translocation efficiency revealed that SPFMV has quite low efficiency compared with SPs of well-characterized plant proteins, calreticulin and CLAVATA3. An MPFMV mutant lacking SPFMV localized exclusively to the PM microdomains, whereas SP chimeras, in which the SP of MPFMV was replaced by an SP of calreticulin or CLAVATA3, localized exclusively to the nodes of the ER, which was labeled with Arabidopsis synaptotagmin 1, a major component of ER-PM contact sites. From these results, we speculated that the low translocation efficiency of SPFMV contributes to the generation of ER-translocated and the microdomain-localized populations, both of which are necessary for PD localization. Consistent with this hypothesis, SP-deficient MPFMV became localized to PD when co-expressed with an SP chimera. Here we propose a new model for the intracellular trafficking of a viral MP. A substantial portion of MPFMV that fails to be translocated is transferred to the microdomains, whereas the remainder of MPFMV that is successfully translocated into the ER subsequently localizes to ER-PM contact sites and plays an important role in the entry of the microdomain-localized MPFMV into PD.


Assuntos
Arabidopsis/virologia , Membrana Celular/virologia , Retículo Endoplasmático/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Vírus do Mosaico do Tabaco/isolamento & purificação , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/virologia , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/virologia , Microtúbulos/metabolismo , Microtúbulos/virologia , Plasmodesmos/metabolismo , Transporte Proteico/fisiologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/metabolismo
6.
Plant Mol Biol ; 98(4-5): 363-373, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30392159

RESUMO

KEY MESSAGE: Citrus tristeza virus encodes a unique protein, p23, with multiple functional roles that include co-option of the cytoplasmic glyceraldehyde 3-phosphate dehydrogenase to facilitate the viral infectious cycle. The genome of citrus tristeza virus (CTV), genus Closterovirus family Closteroviridae, is a single-stranded (+) RNA potentially encoding at least 17 proteins. One (p23), an RNA-binding protein of 209 amino acids with a putative Zn-finger and some basic motifs, displays singular features: (i) it has no homologues in other closteroviruses, (ii) it accumulates mainly in the nucleolus and Cajal bodies, and in plasmodesmata, and (iii) it mediates asymmetric accumulation of CTV RNA strands, intracellular suppression of RNA silencing, induction of some CTV syndromes and enhancement of systemic infection when expressed as a transgene ectopically or in phloem-associated cells in several Citrus spp. Here, a yeast two-hybrid screening of an expression library of Nicotiana benthamiana (a symptomatic experimental host for CTV), identified a transducin/WD40 domain protein and the cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as potential host interactors with p23. Bimolecular fluorescence complementation corroborated the p23-GAPDH interaction in planta and showed that p23 interacts with itself in the nucleolus, Cajal bodies and plasmodesmata, and with GAPDH in the cytoplasm (forming aggregates) and in plasmodesmata. The latter interaction was preserved in a p23 deletion mutant affecting the C-terminal domain, but not in two others affecting the Zn-finger and one internal basic motif. Virus-induced gene silencing of GAPDH mRNA resulted in a decrease of CTV titer as revealed by real-time RT-quantitative PCR and RNA gel-blot hybridization. Thus, like other viruses, CTV seems to co-opt GAPDH, via interaction with p23, to facilitate its infectious cycle.


Assuntos
Citrus/virologia , Closterovirus/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Citrus/genética , Closterovirus/genética , Closterovirus/fisiologia , Gliceraldeído-3-Fosfato Desidrogenases/genética , Interações Hospedeiro-Patógeno , Microscopia Confocal , Plantas Geneticamente Modificadas , Plasmodesmos/virologia , Mapeamento de Interação de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Nicotiana/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Proteínas Virais/fisiologia
7.
Plant Physiol ; 173(4): 2399-2410, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28258211

RESUMO

The tomato Tobacco mosaic virus resistance-22 (Tm-22 ) gene encodes a coiled-coil-nucleotide binding site-Leu-rich repeat protein lacking a conventional plasma membrane (PM) localization motif. Tm-22 confers plant extreme resistance against tobamoviruses including Tobacco mosaic virus (TMV) by recognizing the avirulence (Avr) viral movement protein (MP). However, the subcellular compartment where Tm-22 functions is unclear. Here, we demonstrate that Tm-22 interacts with TMV MP to form a protein complex at the PM We show that both inactive and active Tm-22 proteins are localized to the PM When restricted to PM by fusing Tm-22 to the S-acylated PM association motif, the Tm-22 fusion protein can still induce a hypersensitive response cell death, consistent with its activation at the PM Through analyses of viral MP mutants, we find that the plasmodesmata (PD) localization of the Avr protein MP is not required for Tm-22 function. These results suggest that Tm-22-mediated resistance takes place on PM without requirement of its Avr protein to be located to PD.


Assuntos
Membrana Celular/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/metabolismo , Membrana Celular/virologia , Resistência à Doença/genética , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia , Microscopia Confocal , Mutação , Doenças das Plantas/genética , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas do Movimento Viral em Plantas/genética , Plantas Geneticamente Modificadas , Plasmodesmos/virologia , Ligação Proteica , Nicotiana/genética , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Vírus do Mosaico do Tabaco/fisiologia
8.
Arch Virol ; 163(5): 1317-1323, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29392491

RESUMO

The nonstructural protein pc6 encoded by rice grassy stunt virus (RGSV) plays a significant role in viral cell-to-cell movement, presumably by transport through plasmodesmata (PD). We confirmed the association of pc6 with PD, and also elucidated the mechanisms of protein targeting to PD. Several inhibitor treatments showed conclusively that pc6 is targeted to PD via the ER-to-Golgi secretory system and actin filaments. In addition, VIII-1 myosin was also found to be involved in pc6 PD targeting. Deletion mutants demonstrated that C-terminal amino acid residues 209-229 (transmembrane domain 2; TM2) are essential for pc6 to move through PD.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Tenuivirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Doenças das Plantas/virologia , Transporte Proteico , Via Secretória , Deleção de Sequência , Tenuivirus/química , Tenuivirus/genética , Nicotiana/virologia , Proteínas não Estruturais Virais/genética
9.
Int J Mol Sci ; 19(12)2018 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-30477269

RESUMO

Pepino mosaic virus (PepMV) is a mechanically-transmitted tomato pathogen of importance worldwide. Interactions between the PepMV coat protein and triple gene block protein (TGBp1) with the host heat shock cognate protein 70 and catalase 1 (CAT1), respectively, have been previously reported by our lab. In this study, a novel tomato interactor (SlTXND9) was shown to bind the PepMV TGBp1 in yeast-two-hybrid screening, in vitro pull-down and bimolecular fluorescent complementation (BiFC) assays. SlTXND9 possesses part of the conserved thioredoxin (TRX) active site sequence (W__PC vs. WCXPC), and TXND9 orthologues cluster within the TRX phylogenetic superfamily closest to phosducin-like protein-3. In PepMV-infected and healthy Nicotiana benthamiana plants, NbTXND9 mRNA levels were comparable, and expression levels remained stable in both local and systemic leaves for 10 days post inoculation (dpi), as was also the case for catalase 1 (CAT1). To localize the TXND9 in plant cells, a polyclonal antiserum was produced. Purified α-SlTXND9 immunoglobulin (IgG) consistently detected a set of three protein bands in the range of 27⁻35 kDa, in the 1000 and 30,000 g pellets, and the soluble fraction of extracts of healthy and PepMV-infected N. benthamiana leaves, but not in the cell wall. These bands likely consist of the homologous protein NbTXND9 and its post-translationally modified derivatives. On electron microscopy, immuno-gold labelling of ultrathin sections of PepMV-infected N. benthamiana leaves using α-SlTXND9 IgG revealed particle accumulation close to plasmodesmata, suggesting a role in virus movement. Taken together, this study highlights a novel tomato-PepMV protein interaction and provides data on its localization in planta. Currently, studies focusing on the biological function of this interaction during PepMV infection are in progress.


Assuntos
Interações Hospedeiro-Patógeno , Folhas de Planta/genética , Proteínas de Plantas/genética , Potexvirus/genética , Solanum lycopersicum/genética , Tiorredoxinas/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Anticorpos/química , Expressão Gênica , Soros Imunes/química , Imuno-Histoquímica , Solanum lycopersicum/classificação , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia , Filogenia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Plasmodesmos/genética , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Potexvirus/metabolismo , Ligação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiorredoxinas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Proteínas Virais/metabolismo
10.
J Gen Virol ; 97(8): 1990-1997, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27146092

RESUMO

The movement protein NSm of Tomato spotted wilt tospovirus (TSWV) plays pivotal roles in viral intercellular trafficking. Recently, the TSWV NSm was also identified as an avirulence (Avr) determinant during the Sw-5b-mediated hypersensitive response (HR). However, whether the cell-to-cell movement of NSm is coupled to its function in HR induction remains obscure. Here, we showed that the NSm mutants defective in targeting plasmodesmata and cell-to-cell movement were still capable of inducing Sw-5b-mediated HR. In addition, introduction of a single amino-acid substitution, C118Y or T120N, identified previously from TSWV resistance-breaking isolates, into the movement-defective NSm mutants resulted in the failure of HR induction. Collectively, our results showed that the intercellular trafficking of NSm is uncoupled from its function in HR induction. These findings shed light on the evolutionary mechanism of R-Avr recognition and may be used to explain why this uncoupled phenomenon can be observed in many different viruses.


Assuntos
Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Solanum lycopersicum/virologia , Tospovirus/fisiologia , Deleção de Genes , Interações Hospedeiro-Patógeno , Solanum lycopersicum/imunologia , Mutação de Sentido Incorreto , Proteínas do Movimento Viral em Plantas/efeitos dos fármacos , Transporte Proteico , Tospovirus/imunologia
11.
PLoS Pathog ; 10(10): e1004448, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329993

RESUMO

Viruses are obligatory parasites that depend on host cellular factors for their replication as well as for their local and systemic movement to establish infection. Although myosin motors are thought to contribute to plant virus infection, their exact roles in the specific infection steps have not been addressed. Here we investigated the replication, cell-to-cell and systemic spread of Tobacco mosaic virus (TMV) using dominant negative inhibition of myosin activity. We found that interference with the functions of three class VIII myosins and two class XI myosins significantly reduced the local and long-distance transport of the virus. We further determined that the inactivation of myosins XI-2 and XI-K affected the structure and dynamic behavior of the ER leading to aggregation of the viral movement protein (MP) and to a delay in the MP accumulation in plasmodesmata (PD). The inactivation of myosin XI-2 but not of myosin XI-K affected the localization pattern of the 126k replicase subunit and the level of TMV accumulation. The inhibition of myosins VIII-1, VIII-2 and VIII-B abolished MP localization to PD and caused its retention at the plasma membrane. These results suggest that class XI myosins contribute to the viral propagation and intracellular trafficking, whereas myosins VIII are specifically required for the MP targeting to and virus movement through the PD. Thus, TMV appears to recruit distinct myosins for different steps in the cell-to-cell spread of the infection.


Assuntos
Miosinas/metabolismo , Nicotiana/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Vírus do Mosaico do Tabaco , Plasmodesmos/metabolismo , Vírus do Mosaico do Tabaco/fisiologia , Replicação Viral/fisiologia
12.
Arch Virol ; 161(5): 1309-14, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26780773

RESUMO

Cowpea mosaic virus forms tubules constructed from the movement protein (MP) in plasmodesmata (PD) to achieve cell-to-cell movement of its virions. Similar tubules, delineated by the plasma membrane (PM), are formed protruding from the surface of infected protoplasts. These PM-tubule complexes were isolated from protoplasts by immunoprecipitation and analysed for their protein content by tandem mass spectrometry to identify host proteins with affinity for the movement tubule. Seven host proteins were abundantly present in the PM-tubule complex, including molecular chaperonins and an AAA protein. Members of both protein families have been implicated in establishment of systemic infection. The potential role of these proteins in tubule-guided cell-cell transport is discussed.


Assuntos
Membrana Celular/virologia , Comovirus/genética , Proteínas do Movimento Viral em Plantas/fisiologia , Western Blotting , Comovirus/fisiologia , Fabaceae/virologia , Plasmodesmos/virologia , Proteômica , Protoplastos/virologia
13.
Virol J ; 12: 141, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26373859

RESUMO

BACKGROUND: The multifunctional cylindrical inclusion (CI) protein of potyviruses contains ATP binding and RNA helicase activities. As part of the viral replication complex, it assists viral genome replication, possibly by binding to RNA and unwinding the RNA duplex. It also functions in viral cell-to-cell movement, likely via the formation of conical structures at plasmodesmata (PD) and the interaction with coat protein (CP). METHODS: To further understand the role of CI in the viral infection process, we employed the alanine-scanning mutagenesis approach to mutate CI in the infectious full-length cDNA clone of Turnip mosaic virus (TuMV) tagged by green fluorescent protein. A total of 40 double-substitutions were made at the clustered charged residues. The effect of these mutations on viral genome amplification was determined using a protoplast inoculation assay. All the mutants were also introduced into Nicotiana benthamiana plants to assess their cell-to-cell and long-distance movement. Three cell-to-cell movement-abolished mutants were randomly selected to determine if their mutated CI protein targets PD and interacts with CP by confocal microscopy. RESULTS: Twenty CI mutants were replication-defective (5 abolished and 15 reduced), one produced an elevated level of viral genome in comparison with the parental virus, and the remaining 19 retained the same replication level as the parental virus. The replication-defective mutations were predominately located in the helicase domains and C-terminal region. All 15 replication-reduced mutants showed delayed or abolished cell-to-cell movement. Nine of 20 replication-competent mutants contained infection within single cells. Five of them distributed mutations within the N-terminal 100 amino acids. Most of replication-defective or cell-to-cell movement-abolished mutants failed to infect plants systemically. Analysis of three randomly selected replication-competent yet cell-to-cell movement-abolished mutants revealed that the mutated CI failed to form regular punctate structures at PD and/or to interact with CP. CONCLUSIONS: The helicase domain and C-terminal region of TuMV CI are essential for viral genome replication, and the N-terminal sequence modulates viral cell-to-cell movement. TuMV CI plays both interlinked and distinct roles in replication and intercellular movement. The ability of CI to target PD and interact with CP is associated with its functional role in viral cell-to-cell movement.


Assuntos
Tymovirus/fisiologia , Proteínas Virais/metabolismo , Internalização do Vírus , Liberação de Vírus , Replicação Viral , Proteínas do Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Mutagênese Sítio-Dirigida , Plasmodesmos/virologia , Mapeamento de Interação de Proteínas , Nicotiana/virologia , Tymovirus/genética , Proteínas Virais/genética
14.
J Plant Res ; 128(1): 37-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25527904

RESUMO

Plant viruses utilize plasmodesmata (PD), unique membrane-lined cytoplasmic nanobridges in plants, to spread infection cell-to-cell and long-distance. Such invasion involves a range of regulatory mechanisms to target and modify PD. Exciting discoveries in this field suggest that these mechanisms are executed by the interaction between plant cellular components and viral movement proteins (MPs) or other virus-encoded factors. Striking working analogies exist among endogenous non-cell-autonomous proteins and viral MPs, in which not only do they all use PD to traffic, but also they exploit same regulatory components to exert their functions. Thus, this review discusses on the viral strategies to move via PD and the PD-regulatory mechanisms involved in viral pathogenesis.


Assuntos
Movimento Celular , Vírus de Plantas/fisiologia , Plasmodesmos/virologia , Modelos Biológicos , Plantas/imunologia , Plantas/virologia , Proteínas Virais/metabolismo
15.
Mol Plant Microbe Interact ; 27(3): 215-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24405034

RESUMO

A unique feature shared by all plant viruses of the Potyviridae family is the induction of characteristic pinwheel-shaped inclusion bodies in the cytoplasm of infected cells. These cylindrical inclusions are composed of the viral-encoded cylindrical inclusion helicase (CI protein). Its helicase activity was characterized and its involvement in replication demonstrated through different reverse genetics approaches. In addition to replication, the CI protein is also involved in cell-to-cell and long-distance movements, possibly through interactions with the recently discovered viral P3N-PIPO protein. Studies over the past two decades demonstrate that the CI protein is present in several cellular compartments interacting with viral and plant protein partners likely involved in its various roles in different steps of viral infection. Furthermore, the CI protein acts as an avirulence factor in gene-for-gene interactions with dominant-resistance host genes and as a recessive-resistance overcoming factor. Although a significant amount of data concerning the potential functions and subcellular localization of this protein has been published, no synthetic review is available on this important multifunctional protein. In this review, we compile and integrate all information relevant to the current understanding of this viral protein structure and function and present a mode of action for CI, combining replication and movement.


Assuntos
Genoma Viral/fisiologia , Corpos de Inclusão Viral/metabolismo , Doenças das Plantas/virologia , Plantas/virologia , Potyviridae/enzimologia , RNA Helicases/metabolismo , Sequência de Aminoácidos , Interações Hospedeiro-Patógeno , Corpos de Inclusão Viral/química , Corpos de Inclusão Viral/ultraestrutura , Modelos Biológicos , Dados de Sequência Molecular , Vírus de Plantas/enzimologia , Vírus de Plantas/fisiologia , Vírus de Plantas/ultraestrutura , Plantas/ultraestrutura , Plasmodesmos/ultraestrutura , Plasmodesmos/virologia , Potyviridae/fisiologia , Potyviridae/ultraestrutura , RNA Helicases/química , RNA Helicases/ultraestrutura , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/ultraestrutura
16.
Mol Plant Microbe Interact ; 27(11): 1211-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25025779

RESUMO

In this study, we investigated the fine regulation of cell-to-cell movement of Bamboo mosaic virus (BaMV). We report that the coat protein (CP) of BaMV is phosphorylated in planta at position serine 241 (S241), in a process involving Nicotiana benthamiana casein kinase 2α (NbCK2α). BaMV CP and NbCK2α colocalize at the plasmodesmata, suggesting that phosphorylation of BaMV may be involved in its movement. S241 was mutated to examine the effects of temporal and spatial dysregulation of phosphorylation on i) the interactions between CP and viral RNA and ii) the regulation of cell-to-cell movement. Replacement of S241 with alanine did not affect RNA binding affinity but moderately impaired cell-to-cell movement. A negative charge at position 241 reduced the ability of CP to bind RNA and severely interfered with cell-to-cell movement. Deletion of residues 240 to 242 increased the affinity of CP to viral RNA and dramatically impaired cell-to-cell movement. A threonine at position 241 changed the binding preference of CP toward genomic RNA and inhibited cell-to-cell movement. Together, these results reveal a fine regulatory mechanism for the cell-to-cell movement of BaMV, which involves the modulation of RNA binding affinity through appropriate phosphorylation of CP by NbCK2α.


Assuntos
Proteínas do Capsídeo/metabolismo , Caseína Quinase II/metabolismo , Nicotiana/enzimologia , Doenças das Plantas/virologia , Potexvirus/fisiologia , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Caseína Quinase II/genética , Genes Reporter , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fosforilação , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmodesmos/virologia , Potexvirus/genética , Potexvirus/ultraestrutura , Ligação Proteica , RNA Viral/genética , Proteínas Recombinantes de Fusão , Nicotiana/citologia , Nicotiana/genética , Nicotiana/virologia
17.
Mol Plant Microbe Interact ; 26(9): 1016-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23656331

RESUMO

ß-1,3-Glucanases (BG) have been implicated in enhancing virus spread by degrading callose at plasmodesmata (Pd). Here, we investigate the role of Arabidopsis BG in tobamovirus spread. During Turnip vein clearing virus infection, the transcription of two pathogenesis-related (PR)-BG AtBG2 and AtBG3 increased but that of Pd-associated BG AtBG_pap did not change. In transgenic plants, AtBG2 was retained in the endoplasmic reticulum (ER) network and was not secreted. As a stress response mediated by salicylic acid, AtBG2 was secreted and appeared as a free extracellular protein localized in the entire apoplast but did not accumulate at Pd sites. At the leading edge of Tobacco mosaic virus spread, AtBG2 co-localized with the viral movement protein in the ER-derived bodies, similarly to other ER proteins, but was not secreted to the cell wall. In atbg2 mutants, callose levels at Pd and virus spread were unaffected. Likewise, AtBG2 overexpression had no effect on virus spread. However, in atbg_pap mutants, callose at Pd was increased and virus spread was reduced. Our results demonstrate that the constitutive Pd-associated BG but not the stress-regulated extracellular PR-BG are directly involved in regulation of callose at Pd and cell-to-cell transport in Arabidopsis, including the spread of viruses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glucana 1,3-beta-Glucosidase/metabolismo , Doenças das Plantas/virologia , Plasmodesmos/enzimologia , Tobamovirus/fisiologia , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Transporte Biológico , Retículo Endoplasmático/enzimologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Mutação , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmodesmos/virologia , RNA de Plantas/genética , Ácido Salicílico/farmacologia , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Vírus do Mosaico do Tabaco/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
18.
J Gen Virol ; 94(Pt 3): 682-686, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23152372

RESUMO

Fig mosaic virus (FMV), a member of the newly formed genus Emaravirus, is a segmented negative-strand RNA virus. Each of the six genomic FMV segments contains a single ORF: that of RNA4 encodes the protein p4. FMV-p4 is presumed to be the movement protein (MP) of the virus; however, direct experimental evidence for this is lacking. We assessed the intercellular distribution of FMV-p4 in plant cells by confocal laser scanning microscopy and we found that FMV-p4 was localized to plasmodesmata and to the plasma membrane accompanied by tubule-like structures. A series of experiments designed to examine the movement functions revealed that FMV-p4 has the capacity to complement viral cell-to-cell movement, prompt GFP diffusion between cells, and spread by itself to neighbouring cells. Altogether, our findings demonstrated that FMV-p4 shares several properties with other viral MPs and plays an important role in cell-to-cell movement.


Assuntos
Proteínas do Movimento Viral em Plantas/fisiologia , Vírus de Plantas/fisiologia , Agrobacterium tumefaciens , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , Genes Virais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmodesmos/virologia , RNA Viral/genética , Nicotiana/virologia
19.
J Gen Virol ; 94(Pt 9): 2117-2128, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23761405

RESUMO

Emaravirus is a recently described genus of negative-strand RNA plant viruses. Emaravirus P4 protein localizes to plasmodesmata, suggesting that it could be a viral movement protein (MP). In the current study, we showed that the P4 protein of raspberry leaf blotch emaravirus (RLBV) rescued the cell-to-cell movement of a defective potato virus X (PVX) that had a deletion mutation in the triple gene block 1 movement-associated protein. This demonstrated that RLBV P4 is a functional MP. Sequence analyses revealed that P4 is a distant member of the 30K superfamily of MPs. All MPs of this family contain two highly conserved regions predicted to form ß-strands, namely ß1 and ß2. We explored by alanine mutagenesis the role of two residues of P4 (Ile106 and Asp127) located in each of these strands. We also made the equivalent substitutions in the 29K MP of tobacco rattle virus, another member of the 30K superfamily. All substitutions abolished the ability to complement PVX movement, except for the I106A substitution in the ß1 region of P4. This region has been shown to mediate membrane association of 30K MPs; our results show that it is possible to make non-conservative substitutions of a well-conserved aliphatic residue within ß1 without preventing the membrane association or movement function of P4.


Assuntos
Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética , Vírus de RNA/genética , Rosaceae/virologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Biologia Computacional , Análise Mutacional de DNA , Teste de Complementação Genética , Dados de Sequência Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/isolamento & purificação , Plasmodesmos/virologia , Potexvirus/genética , Potexvirus/crescimento & desenvolvimento , Vírus de RNA/isolamento & purificação , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Cultura de Vírus
20.
J Gen Virol ; 94(Pt 5): 1145-1150, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23364193

RESUMO

Mirafiori lettuce big-vein virus (MiLBVV) is a member of the genus Ophiovirus, which is a segmented negative-stranded RNA virus. In microprojectile bombardment experiments to identify a movement protein (MP) gene of ophioviruses that can trans-complement intercellular movement of an MP-deficient heterologous virus, a plasmid containing an infectious clone of a tomato mosaic virus (ToMV) derivative expressing the GFP was co-bombarded with plasmids containing one of three genes from MiLBVV RNAs 1, 2 and 4 onto Nicotiana benthamiana. Intercellular movement of the movement-defective ToMV was restored by co-expression of the 55 kDa protein gene, but not with the two other genes. Transient expression in epidermal cells of N. benthamiana and onion showed that the 55 kDa protein with GFP was localized on the plasmodesmata. The 55 kDa protein encoded in the MiLBVV RNA2 can function as an MP of the virus. This report is the first to describe an ophiovirus MP.


Assuntos
Lactuca/virologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de RNA/genética , Expressão Gênica , Teste de Complementação Genética , Proteínas de Fluorescência Verde , Lactuca/metabolismo , Cebolas/metabolismo , Cebolas/virologia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/virologia , Vírus de RNA/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo , Nicotiana/virologia , Tobamovirus/genética , Tobamovirus/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA