Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicology ; 33(3): 281-295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478139

RESUMO

Platinum group element levels have increased in natural aquatic environments in the last few decades, in particular as a consequence of the use of automobile catalytic converters on a global scale. Concentrations of Pt over tens of µg L-1 have been observed in rivers and effluents. This raises questions regarding its possible impacts on aquatic ecosystems, as Pt natural background concentrations are extremely low to undetectable. Primary producers, such as microalgae, are of great ecological importance, as they are at the base of the food web. The purpose of this work was to better understand the impact of Pt on a cellular level for freshwater unicellular algae. Two species with different characteristics, a green alga C. reinhardtii and a diatom N. palea, were studied. The bioaccumulation of Pt as well as its effect on growth were quantified. Moreover, the induction or repression factors of 16 specific genes were determined and allowed for the determination of possible intracellular effects and pathways of Pt. Both species seemed to be experiencing copper deficiency as suggested by inductions of genes linked to copper transporters. This is an indication that Pt might be internalized through the Cu(I) metabolic pathway. Moreover, Pt could possibly be excreted using an efflux pump. Other highlights include a concentration-dependent negative impact of Pt on mitochondrial metabolism for C. reinhardtii which is not observed for N. palea. These findings allowed for a better understanding of some of the possible impacts of Pt on freshwater primary producers, and also lay the foundations for the investigation of pathways for Pt entry at the base of the aquatic food web.


Assuntos
Chlamydomonas reinhardtii , Diatomáceas , Microalgas , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Platina/toxicidade , Platina/metabolismo , Ecossistema , Água Doce , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 23(3)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35163014

RESUMO

The human organic cation transporter 2 (hOCT2) mediates renal and neuronal cellular cisplatin and oxaliplatin uptake, and therefore plays a significant role in the development of side effects associated with these chemotherapeutic drugs. Autophagy is induced by cisplatin and oxaliplatin treatment and is believed to promote cell survival under stressful conditions. We examined in vitro the role of hOCT2 on autophagy induced by cisplatin and oxaliplatin. We also explored the effect of autophagy on toxicities of these platinum derivatives. Our results indicate that autophagy, measured as LC3 II accumulation and reduction in p62 expression level, is induced in response to cisplatin and oxaliplatin in HEK293-hOCT2 but not in wild-type HEK293 cells. Furthermore, inhibition of autophagy is associated with higher toxicity of platinum derivatives, and starvation was found to offer protection against cisplatin-associated toxicity. In conclusion, activation of autophagy could be a potential strategy to protect against unwanted toxicities induced by treatment with platinum derivatives.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Transportador 2 de Cátion Orgânico/genética , Platina/toxicidade , Proteína Sequestossoma-1/metabolismo , Autofagia , Biomarcadores/metabolismo , Cisplatino/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Mutação , Oxaliplatina/toxicidade
3.
J Nanobiotechnology ; 19(1): 358, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34736483

RESUMO

Sonodynamic therapy (SDT), presenting spatial and temporal control of ROS generation triggered by ultrasound field, has attracted considerable attention in tumor treatment. However, its therapeutic efficacy is severely hindered by the intrinsic hypoxia of solid tumor and the lack of smart design in material band structure. Here in study, fine α-Fe2O3 nanoparticles armored with Pt nanocrystals (α-Fe2O3@Pt) was investigated as an alternative SDT agent with ingenious bandgap and structural design. The Schottky barrier, due to its unique heterostructure, suppresses the recombination of sono-induced electrons and holes, enabling superior ROS generation. More importantly, the composite nanoparticles may effectively trigger a reoxygenation phenomenon to supply sufficient content of oxygen, favoring the ROS induction under the hypoxic condition and its extra role played for ultrasound imaging. In consequence, α-Fe2O3@Pt appears to enable effective tumor inhibition with imaging guidance, both in vitro and in vivo. This study has therefore demonstrated a highly potential platform for ultrasound-driven tumor theranostic, which may spark a series of further explorations in therapeutic systems with more rational material design.


Assuntos
Antineoplásicos , Nanopartículas de Magnetita , Platina , Nanomedicina Teranóstica/métodos , Terapia por Ultrassom/métodos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/farmacocinética , Feminino , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Platina/química , Platina/toxicidade , Ultrassonografia
4.
Ecotoxicol Environ Saf ; 227: 112924, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34715499

RESUMO

Platinum (Pt) is considered an emerging environmental micro-contaminant due to its increasing use in anthropogenic activities during the past decades. However, there are still important gaps in the understanding of its biogeochemical behavior in the aquatic environment - e.g. its speciation, reactivity and fate - mainly as a result of the analytical challenge of the determination of its typical ultra-trace environmental concentrations. Also, Pt is a kinetically-hindered metal displaying slow reaction kinetics, which has important implications regarding eco-toxicological studies. That is, investigation of its toxicity under laboratory-controlled conditions may therefore require ensuring that equilibrium speciation conditions are reached before starting the experiments. In order to shed further light on this issue, in this study we have monitored the speciation changes during aging of the Pt(IV) spikes in controlled media (seawater) using an UV-Vis spectrophotometry. Platinum toxicity to the green microalgae Dunaliella salina was then compared, using standardized tests, with fresh and aged Pt(IV) spikes at the mg L-1 concentration range. Following 96-hour exposure, ecotoxicological assays consisting in spectrometric measurements of chlorophyll-a concentrations and Effective Concentrations (EC) of Pt resulting in the inhibition of 10% and 50% of algae growth rate were calculated (EC10 and EC50, respectively). Daily monitoring of Pt speciation reflected the transition from PtCl62- (spike) to hydrolyzed species, probably in the form [PtCl3-n(OH)3+n]2-, n = 0-3. Exposure experiments showed that after a short period of aging (10 days), Pt(IV) toxicity increased one order of magnitude compared to freshly spiked media. These results confirm the relevance of considering spike aging to ensure that speciation equilibrium conditions are attained in order to produce environmental realistic eco-toxicological data.


Assuntos
Microalgas , Poluentes Químicos da Água , Ecotoxicologia , Platina/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Parasitol Res ; 119(9): 2783-2798, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32683559

RESUMO

Due to the increasing consumption of platinum (Pt), especially in automobile exhaust catalysts, environmental concentrations of Pt are of emerging concern worldwide. Limited information exists on environmental concentrations, particularly in Pt mining regions, while South Africa is the world's main supplier of Pt. Moreover, other metals are also released as by-products of Pt mining, which might also cause environmental concern. Certain fish parasite taxa have the ability to accumulate metals orders of magnitude higher than their hosts and can be used to reliably detect metals with naturally low abundance. Studies on Pt accumulation in parasite-host systems are limited. Therefore, the aims of the present study were (1) to determine the accumulation of a variety of metals (cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), platinum (Pt), and zinc (Zn)) in helminth fish parasites compared with their hosts from a reference site and an impoundment impacted by Pt mining activities; (2) to assess whether there is a difference between bioaccumulation of metals in infected and uninfected hosts, as well as between hosts with different infection intensities; and (3) to compare the biomarker responses (acetylcholine esterase activity (AChE), metallothionein content (MT), catalase activity (CAT), reduced glutathione content (GSH), malondialdehyde content (MDA), protein carbonyls induction (PC), superoxide dismutase activity (SOD), and cellular energy allocation (CEA)) between infected and uninfected hosts. The cestode Atractolytocestus huronensis accumulated significantly higher concentrations of Cr, Ni, and Pt than their host Cyprinus carpio, while the nematode Contracaecum sp. accumulated significantly higher concentrations of Pt and Zn than their host Clarias gariepinus. Infected fish showed lower metal concentrations compared to uninfected fish, while the parasites had no significant effects on their hosts' biomarker responses. The parasites demonstrated the bioavailability of metals derived from Pt mining activities and their ability to resist its toxic effects. Thus, these parasites are promising sensitive accumulation indicators for Cr, Ni, Pb, and Pt contaminations from Pt mining activities.


Assuntos
Bioacumulação/fisiologia , Cestoides/química , Metais Pesados/análise , Nematoides/química , Emissões de Veículos/análise , Poluentes Químicos da Água/análise , Acetilcolinesterase/metabolismo , Animais , Cádmio/análise , Cádmio/toxicidade , Carpas/parasitologia , Catalase/metabolismo , Peixes-Gato/parasitologia , Cobre/análise , Cobre/toxicidade , Ecossistema , Monitoramento Ambiental , Glutationa/análise , Malondialdeído/análise , Metalotioneína/análise , Metais Pesados/toxicidade , Parasitos , Platina/análise , Platina/toxicidade , África do Sul , Superóxido Dismutase/metabolismo , Emissões de Veículos/toxicidade , Poluentes Químicos da Água/toxicidade
6.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947930

RESUMO

Neuroblastoma is the most common extracranial solid tumor in childhood. The different treatments available for neuroblastoma are challenged by high rates of resistance, recurrence, and progression, most notably in advanced cases and highly malignant tumors. Therefore, the development of more targeted therapies, which are biocompatible and without undesired side effects, is highly desirable. The mechanisms of actions of platinum nanoparticles (PtNPs) and retinoic acid (RA) in neuroblastoma have remained unclear. In this study, the anticancer effects of PtNPs and RA on neuroblastoma were assessed. We demonstrated that treatment of SH-SY5Y cells with the combination of PtNPs and RA resulted in improved anticancer effects. The anticancer effects of the two compounds were mediated by cytotoxicity, oxidative stress (OS), mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and apoptosis-associated networks. Cytotoxicity was confirmed by leakage of lactate dehydrogenase (LDH) and intracellular protease, and oxidative stress increased the level of reactive oxygen species (ROS), 4-hydroxynonenal (HNE), malondialdehyde (MDA), and nitric oxide (NO), and protein carbonyl content (PCC). The combination of PtNPs and RA caused mitochondrial dysfunction by decreasing the mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, number of mitochondria, and expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Endoplasmic reticulum-mediated stress and apoptosis were confirmed by upregulation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), activating transcription factor 4 (ATF4), p53, Bax, and caspase-3 and down regulation of B-cell lymphoma 2 (BCl-2). PtNPs and RA induced apoptosis, and oxidative DNA damage was evident by the accumulation of 8-hydroxy-2-deoxyguanosine (8-OHdG) and 8-hydroxyguanosine (8-OHG). Finally, PtNPs and RA increased the differentiation and expression of differentiation markers. Differentiated SH-SY5Y cells pre-treated with PtNPs or RA or the combination of both were more sensitive to the cytotoxic effect of cisplatin than undifferentiated cells. To our knowledge, this is the first study to demonstrate the effect of the combination of PtNPs and RA in neuroblastoma cells. PtNPs may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. The results of this study provide a rationale for clinical evaluation of the combination of PtNPs and RA for the treatment of children suffering from high-risk neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas Metálicas/uso terapêutico , Neuroblastoma/tratamento farmacológico , Platina/farmacologia , Tretinoína/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/análise , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Proteínas de Neoplasias/metabolismo , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos , Peptídeo Hidrolases/análise , Platina/administração & dosagem , Platina/toxicidade , Tretinoína/administração & dosagem , beta Caroteno/farmacologia
7.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936679

RESUMO

The thermoplasmonic properties of platinum nanoparticles (PtNPs) render them desirable for use in diagnosis, detection, therapy, and surgery. However, their toxicological effects and impact at the molecular level remain obscure. Nanotoxicology is mainly focused on the interactions of nanostructures with biological systems, particularly with an emphasis on elucidating the relationship between the physical and chemical properties such as size and shape. Therefore, we hypothesized whether these unique anisotropic nanoparticles could induce cytotoxicity similar to that of spherical nanoparticles and the mechanism involved. Thus, we synthesized unique and distinct anisotropic PtNPs using lycopene as a biological template and investigated their biological activities in model human acute monocytic leukemia (THP-1) macrophages. Exposure to PtNPs for 24 h dose-dependently decreased cell viability and proliferation. Levels of the cytotoxic markers lactate dehydrogenase and intracellular protease significantly and dose-dependently increased with PtNP concentration. Furthermore, cells incubated with PtNPs dose-dependently produced oxidative stress markers including reactive oxygen species (ROS), malondialdehyde, nitric oxide, and carbonylated protein. An imbalance in pro-oxidants and antioxidants was confirmed by significant decreases in reduced glutathione, thioredoxin, superoxide dismutase, and catalase levels against oxidative stress. The cell death mechanism was confirmed by mitochondrial dysfunction and decreased ATP levels, mitochondrial copy numbers, and PGC-1α expression. To further substantiate the mechanism of cell death mediated by endoplasmic reticulum stress (ERS), we determined the expression of the inositol-requiring enzyme (IRE1), (PKR-like ER kinase) PERK, activating transcription factor 6 (ATF6), and activating transcription factor 4 ATF4, the apoptotic markers p53, Bax, and caspase 3, and the anti-apoptotic marker Bcl-2. PtNPs could activate ERS and apoptosis mediated by mitochondria. A proinflammatory response to PtNPs was confirmed by significant upregulation of interleukin-1-beta (IL-1ß), interferon γ (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin (IL-6). Transcriptomic and molecular pathway analyses of THP-1 cells incubated with the half maximal inhibitory concentration (IC50) of PtNPs revealed the altered expression of genes involved in protein misfolding, mitochondrial function, protein synthesis, inflammatory responses, and transcription regulation. We applied transcriptomic analyses to investigate anisotropic PtNP-induced toxicity for further mechanistic studies. Isotropic nanoparticles are specifically used to inhibit non-specific cellular uptake, leading to enhanced in vivo bio-distribution and increased targeting capabilities due to the higher radius of curvature. These characteristics of anisotropic nanoparticles could enable the technology as an attractive platform for nanomedicine in biomedical applications.


Assuntos
Apoptose/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Leucemia Monocítica Aguda/patologia , Nanopartículas Metálicas/toxicidade , Platina/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/genética , Trifosfato de Adenosina/metabolismo , Anisotropia , Antioxidantes/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Leucemia Monocítica Aguda/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Licopeno/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
Exp Dermatol ; 28(9): 1025-1028, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260134

RESUMO

Palladium (Pd) is a common metal found in jewellery and dental appliances, but it has been shown to be likely to cause metal allergy. We previously reported that platinum (nPt) and palladium (nPd) nanoparticle-containing mixture (PAPLAL) has both superoxide dismutase and catalase activities and that the topical application of PAPLAL improved skin atrophy induced by chronic oxidative damage in an ageing mouse model. However, the safety of PAPLAL for preventing Pd allergy remains unclear. In the present study, we investigated whether or not PAPLAL induces Pd allergy. We found that PAPLAL treatment caused no skin inflammation, while nPd administration caused only slight skin inflammation compared to the palladium chloride-induced severe reaction in an experimental metal allergy model. A gene expression analysis revealed that PAPLAL treatment significantly suppressed the expression of Inf-γ, Il-1ß and Tnfα genes. Even in human clinical trials using patches containing metal nanoparticles, nPd and PAPLAL failed to induce significant skin inflammation. These results suggest that mixing with nPt in PAPLAL suppresses the inflammation response of nPd. PAPLAL can be expected to be applied to various skin treatments as a safe topical substance.


Assuntos
Dermatite Alérgica de Contato/etiologia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Paládio/toxicidade , Platina/toxicidade , Pele/efeitos dos fármacos , Administração Cutânea , Adulto , Animais , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/prevenção & controle , Orelha Externa , Feminino , , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Injeções Intradérmicas , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Paládio/administração & dosagem , Testes do Emplastro , Platina/administração & dosagem , Soluções , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
9.
Analyst ; 144(17): 5179-5185, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31343648

RESUMO

The development of noble ultra-small biocompatible Pt nanoclusters (Pt NCs) for glucose detection has been drawing great attention. Herein, ultra-small biocompatible jujube polysaccharide (JP) stabilized platinum nanoclusters (Ptn-JP NCs) are prepared using natural JP as a reducing and solubilizing agent. Ptn-JP NCs were studied for the colorimetric detection of glucose. Ptn-JP NCs (n = 50, 200 and 400) had an average particle diameter of 1-2 nm. Particularly, the measurements of hydrodynamic sizes of Ptn-JP NCs indicated that they maintained good stability in solution for one week. Pt200-JP NCs showed good biocompatibility, and were not toxic against HeLa cells at a high concentration of 400 µg mL-1. Furthermore, Pt200-JP NCs catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) with H2O2 to produce blue oxidized TMB (oxTMB). This reaction followed typical Michaelis-Menten kinetics. More importantly, the glucose concentration could be sensitively detected by the color change, and this process was not interfered by other sugars. The linear range for glucose concentration was from 0.01 to 1 mM with a detection limit of 5.47 µM. The glucose concentrations of real samples of serum using Pt200-JP NCs were 9.2, 4.9 and 6.5 mM, respectively. The prepared Ptn-JP NCs have great potential in various biomedical detection methods.


Assuntos
Glicemia/análise , Nanopartículas Metálicas/química , Polissacarídeos/química , Ziziphus/química , Benzidinas/química , Glicemia/química , Catálise , Colorimetria/métodos , Glucose Oxidase/química , Células HeLa , Humanos , Peróxido de Hidrogênio/química , Cinética , Limite de Detecção , Nanopartículas Metálicas/toxicidade , Oxirredução , Tamanho da Partícula , Platina/química , Platina/toxicidade , Polissacarídeos/toxicidade , Saliva/química
10.
Biometals ; 32(1): 33-47, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367340

RESUMO

A series of palladium(II) (1-3) and platinum(II) chloride complexes (4 and 5) with 2,2':6',2″-terpyridine (terpy) derivatives substituted at the 4' position, was synthesized and fully characterized. Single crystal X-ray diffraction analysis of complexes 2, 3 and 5 showed tridentate coordination of the 4'-substituted terpyridine (terpy) ligands to the metal center. Moreover, in vitro cytotoxic activity of these complexes toward a panel of human cancer cell lines (lung cancer A549, colorectal cancer HCT116, ovarian cancer IGROV-1) and toward normal cell line HDF (dermal fibroblast) was determined by Trypan Blue exclusion assay. Overall, the tested compounds manifested a relevant cytotoxicity for the selected cancer cell lines with complex 4 also showing a modest cytotoxicity on the normal cell lines. To better understand the mode of action of these metal complexes, their reactivity with three model proteins, i.e. hen egg white lysozyme (HEWL), cytochrome c (cyt c) and ribonuclease A (RNase A) were comparatively investigated through ESI-MS analysis. The results highlighted a different behavior between the two series of complexes being platinum compounds more reactive toward RNase and cyt c than palladium compounds. Based on the obtained results, it is proposed that in presence of RNase A and cyt c, the platinum complexes undergo activation through release of labile ligands followed by binding to the protein. In contrast, palladium complexes revealed a far lower reactivity implying the likely occurrence of a different mechanism of action.


Assuntos
Complexos de Coordenação/farmacologia , Paládio/farmacologia , Paládio/toxicidade , Platina/farmacologia , Platina/toxicidade , Piridinas/farmacologia , Piridinas/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Cisplatino/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Paládio/química , Platina/química , Piridinas/química , Relação Estrutura-Atividade
11.
Adv Exp Med Biol ; 1130: 17-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30915699

RESUMO

Hair cells are specialized sensory epithelia cells that receive mechanical sound waves and convert them into neural signals for hearing, and these cells can be killed or damaged by ototoxic drugs, including many aminoglycoside antibiotics, platinum-based anticancer agents, and loop diuretics, leading to drug-induced hearing loss. Studies of therapeutic approaches to drug-induced hearing loss have been hampered by the limited understanding of the biological mechanisms that protect and regenerate hair cells. This review briefly discusses some of the most common ototoxic drugs and describes recent research concerning the mechanisms of ototoxic drug-induced hearing loss. It also highlights current developments in potential therapies and explores current clinical treatments for patients with hearing impairments.


Assuntos
Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Perda Auditiva/prevenção & controle , Aminoglicosídeos/toxicidade , Antineoplásicos/toxicidade , Diuréticos/toxicidade , Humanos , Platina/toxicidade
12.
Neuro Endocrinol Lett ; 39(6): 465-472, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30796797

RESUMO

OBJECTIVES: The aim of this study was to clarify the influence of three different sizes of platinum nanoparticles on aquatic ecosystem and assess the toxic effect in term of particle size. Tests were conducted on organisms representing all trophic levels of the aquatic ecosystem, namely producers (duckweed Lemna minor), consumers (water fleas Daphnia magna) and decomposers (bacteria Vibrio fischeri). DESIGN: Experiments were carried out methodologically in accordance with the following standards: OECD 221 guideline (Lemna sp. Growth Inhibition test), OECD 202 guideline (Inhibition of the mobility of Daphnia magna) and ISO 11348-2 (Inhibitory effect of platinum nanoparticles on the light emission of Vibrio fischeri). RESULTS: The most toxic have been the smallest sized platinum nanoparticles for all tested organisms. The highest toxicity of all tested samples (Pt1, Pt2, Pt3) was observed in bacteria (30´EC50 = 135.47; 167.94; 254.64 µg.L-1), respectively. The lowest toxicity was recorded for Daphnia (48hEC50 = 405.74; 413.24; 514.07 µg.L-1), respectively. CONCLUSION: The ecotoxicity of platinum nanoparticles varies considerably according to the test organisms and particle size.


Assuntos
Nanopartículas Metálicas/toxicidade , Platina/toxicidade , Aliivibrio fischeri , Animais , Biota , Daphnia , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/química , Platina/química , Poluentes da Água/toxicidade
13.
Mutagenesis ; 33(1): 77-85, 2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29529313

RESUMO

Metallic nanoparticles (NPs) are promising nanomaterials used in different technological solutions as well as in consumer products. Silver (Ag), gold (Au) and platinum (Pt) represent three metallic NPs with current or suggested use in different applications. Pt is also used as vehicle exhaust catalyst leading to a possible exposure via inhalation. Despite their use, there is limited data on their genotoxic potential and possible size-dependent effects, particularly for Pt NPs. The aim of this study was to explore size-dependent genotoxicity of these NPs (5 and 50 nm) following exposure of human bronchial epithelial cells. We characterised the NPs and assessed the viability (Alamar blue assay), formation of DNA strand breaks (mini-gel comet assay) and induction of micronucleus (MN) analysed using flow cytometry (in vitro microflow kit). The results confirmed the primary size (5 and 50 nm) but showed agglomeration of all NPs in the serum free medium used. Slight reduced cell viability (tested up to 50 µg/ml) was observed following exposure to the Ag NPs of both particle sizes as well as to the smallest (5 nm) Au NPs. Similarly, at non-cytotoxic concentrations, both 5 and 50 nm-sized Ag NPs, as well as 5 nm-sized Au NPs, increased DNA strand breaks whereas for Pt NPs only the 50 nm size caused a slight increase in DNA damage. No clear induction of MN was observed in any of the doses tested (up to 20 µg/ml). Taken together, by using the comet assay our study shows DNA strand breaks induced by Ag NPs, without any obvious differences in size, whereas effects from Au and Pt NPs were size-dependent in the sense that the 5 nm-sized Au NPs and 50 nm-sized Pt NPs particles were active. No clear induction of MN was observed for the NPs.


Assuntos
Dano ao DNA/efeitos dos fármacos , Citometria de Fluxo/métodos , Ouro , Nanopartículas Metálicas/toxicidade , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Platina , Prata , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa/métodos , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Ouro/toxicidade , Nanopartículas Metálicas/ultraestrutura , Testes para Micronúcleos , Testes de Mutagenicidade/métodos , Tamanho da Partícula , Platina/toxicidade , Prata/toxicidade
14.
Ecotoxicol Environ Saf ; 147: 982-989, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29976010

RESUMO

Platinum (Pt) occurs at very low levels in parent rock and soils in unpolluted areas, however concentrations of this element in urban areas is steadily increasing. At the levels recorded in urban environments, Pt is not yet phytotoxic, but it already poses a threat to human health, particularly when present in airborne particulate matter. In this study an attempt was made to evaluate Pt(II) uptake, distribution and toxicity in Arabidopsis thaliana L. plants. Arabidopsis thaliana plants were hydroponically grown with increasing Pt(II) concentrations in the range of 0.025-100µM. Pt(II) was taken up by the roots and translocated to the rosette. At lower Pt(II) concentrations (≤ 2.5µM) hormesis was recorded, plant growth was stimulated, the efficiency of the photosynthetic apparatus improved and biomass accumulation increased. Higher Pt(II) concentrations were phytotoxic, causing growth inhibition, impairment of the photosynthetic apparatus, membrane injuries and a reduction in biomass accumulation. Exposure of A. thaliana to Pt(II) also resulted in an increased content of phytochelatins throughout the plant and glutathione in the rosette. Uptake and translocation of Pt(II) to harvestable organs of A. thaliana suggests that species of higher biomass accumulation from the Brassicaceae family can probably be used for the phytoextraction of Pt-polluted sites.


Assuntos
Arabidopsis/metabolismo , Platina/toxicidade , Poluentes do Solo/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Transporte Biológico/efeitos dos fármacos , Biomassa , Glutationa/metabolismo , Fotossíntese/efeitos dos fármacos , Fitoquelatinas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Platina/metabolismo , Solo/química , Poluentes do Solo/metabolismo
15.
J Obstet Gynaecol Res ; 43(4): 758-762, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28418211

RESUMO

AIM: The aim of this study was to evaluate whether frequency of complete blood count (CBC) testing during chemotherapy for gynecologic cancer impacts hospital admissions or rates of neutropenic fever. METHODS: A retrospective cohort study was performed at a single academic institution. Patients undergoing platinum-based chemotherapy for endometrial or ovarian cancer from January 2010 to December 2014 were identified from a clinical database. Patients receiving dose-dense chemotherapy or on a clinical trial were excluded. Electronic chart review collected demographic and clinical characteristics. The primary outcome was the rate of febrile neutropenia or hospital admission. RESULTS: A total of 174 patients were identified, 63 (36%) with endometrial and 111 (64%) with ovarian cancer. Fifty-four percent of patients received multiple CBC per cycle compared with 46% who only had one CBC per cycle. The majority of patients were treated with a platinum-based doublet (85%). Dose reductions, addition of granulocyte colony stimulating factor, and rates of grade 3 or 4 anemia and neutropenia were significantly associated with more frequent testing. There was no difference in rates of neutropenic fever (5.3 vs 3.8%, P = 0.45) or hospital admission (22.3 vs 21.3%, P = 0.86) for multiple versus single CBC monitoring. CONCLUSION: More frequent laboratory testing detected more cases of grade 3 or 4 hematopoietic toxicities and was associated with more interventions. There were no differences in number of hospitalizations or cases of neutropenic fever by frequency of laboratory testing, suggesting that it may be appropriate to decrease routine laboratory tests for select patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Contagem de Células Sanguíneas/economia , Contagem de Células Sanguíneas/normas , Neutropenia Febril Induzida por Quimioterapia/sangue , Neoplasias do Endométrio/tratamento farmacológico , Hospitalização/economia , Neoplasias Ovarianas/tratamento farmacológico , Platina/toxicidade , Idoso , Neutropenia Febril Induzida por Quimioterapia/economia , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos
16.
Pharmazie ; 72(1): 10-16, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29441891

RESUMO

Nanomaterials are frequently used in microelectronics, cosmetics, and sunscreens. Platinum reagents are commonly used in disease diagnosis, cosmetics, and the food industry. Although research into the development of nanomaterialbased drug delivery systems has yielded promising results, the toxicity of these materials is not fully understood. We investigated the toxicity and drug interactions of 1- and 8-nm diameter platinum nanoparticles (nPt1 and nPt8, respectively) in mice. Acute hepato-renal toxicity of intravenously administered platinum nanoparticles was evaluated biochemically and histologically. Dose-dependent increases in serum markers of hepato-renal function (serum aminotransferases and blood urea nitrogen) were observed following administration of nPt1, whereas nPt8 had no effect, even at 20 mg/kg. Moreover, nPt1 induced interleukin (IL)-6 and IL-1ß production 3 and 6 hours after administration. The effect of nPts on drug-induced toxicity was evaluated in mice injected intraperitoneally with carbon tetrachloride or cisplatin, with or without intravenous administration of platinum nanoparticles. All treatments in the absence of nanoparticles were non-lethal and resulted in moderate toxicity. However, exacerbated toxicity was observed in mice injected with carbon tetrachloride or cisplatin together with nPt1, but not in mice co-injected with nPt8. We found that nPt1 cause hepato-renal damage, and the effect is enhanced by chemical inducers of hepatotoxicity and nephrotoxicity. This is the first report demonstrating that nPt1 not only are hepatotoxic and nephrotoxic but also exacerbate drug toxicity. These findings will be useful for future nanotechnology and nanoscience research.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/patologia , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nanopartículas Metálicas/toxicidade , Platina/toxicidade , Alanina Transaminase/sangue , Animais , Antineoplásicos/toxicidade , Aspartato Aminotransferases/sangue , Nitrogênio da Ureia Sanguínea , Tetracloreto de Carbono/toxicidade , Cisplatino/toxicidade , Relação Dose-Resposta a Droga , Interações Medicamentosas , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Interleucina-6/biossíntese , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula
17.
J Biol Inorg Chem ; 20(7): 1081-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26323351

RESUMO

The platinum drugs cisplatin, carboplatin, and oxaliplatin are highly utilized in the clinic and as a consequence have been extensively studied in the laboratory setting, sometimes by generating fluorophore-tagged analogs. Here, we synthesized two Pt(II) complexes containing ethane-1,2-diamine ligands linked to a BODIPY fluorophore, and compared their biological activity with previously reported Pt(II) complexes conjugated to carboxyfluorescein and carboxyfluorescein diacetate. The cytotoxicity and DNA damage capacity of Pt-fluorophore complexes was compared to cisplatin, and the Pt-BODIPY complexes were found to be more cytotoxic with reduced cytotoxicity in cisplatin-resistant cells. Microscopy revealed a predominately cytosolic localization, with nuclear distribution at higher concentrations. Spheroids grown from parent and resistant cells revealed penetration of Pt-BODIPY into spheroids, and retention of the cisplatin-resistant spheroid phenotype. While most activity profiles were retained for the Pt-BODIPY complexes, accumulation in resistant cells was only slightly affected, suggesting that some aspects of Pt-fluorophore cellular pharmacology deviate from cisplatin.


Assuntos
Cisplatino/análogos & derivados , Complexos de Coordenação/síntese química , Dano ao DNA/efeitos dos fármacos , Corantes Fluorescentes/química , Platina/química , Platina/toxicidade , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos de Boro/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Microscopia Confocal
18.
Chemistry ; 21(47): 16990-7001, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26439874

RESUMO

We have developed six dihydroxidoplatinum(IV) compounds with cytotoxic potential. Each derived from active platinum(II) species, these complexes consist of a heterocyclic ligand (HL) and ancillary ligand (AL) in the form [Pt(HL)(AL)(OH)2](2+), where HL is a methyl-functionalised variant of 1,10-phenanthroline and AL is the S,S or R,R isomer of 1,2-diaminocyclohexane. NMR characterisation and X-ray diffraction studies clearly confirmed the coordination geometry of the octahedral platinum(IV) complexes. The self-stacking of these complexes was determined using pulsed gradient stimulated echo nuclear magnetic resonance. The self-association behaviour of square planar platinum(II) complexes is largely dependent on concentration, whereas platinum(IV) complexes do not aggregate under the same conditions, possibly due to the presence of axial ligands. The cytotoxicity of the most active complex, exhibited in several cell lines, has been retained in the platinum(IV) form.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Cicloexilaminas/química , Compostos Organoplatínicos/análise , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/toxicidade , Fenantrolinas/química , Platina/química , Platina/toxicidade , Linhagem Celular , Cristalografia por Raios X , Ligantes , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Difração de Raios X
19.
Am J Ind Med ; 58(9): 1008-11, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26010732

RESUMO

We present the case of a 52-year-old woman with a topic dermatitis since adolescence who developed work-related hand eczema, cough and runny nose 12 years after she had started working as a laboratory technician at a precious metals refinery. While skin prick test with sodium hexachloroplatinate (SPTPt ) was negative, patch testing with ammonium tetrachloroplatinate was positive after 24, 48, 72, and 96 hr. Inhalation challenge with sodium hexachloroplatinate yielded cough, mild shortness of breath, and a maximal decrease of FEV1 of 8% from baseline 24 hr after the challenge. Significant increases of bronchial hyperresponsiveness, exhaled nitric monoxide and sputum eosinophils were documented after the challenge. We conclude that eosinophilic airway disease due to platinum salts may occur in SPTPt negative subjects. Both, patch testing and inhalation challenge with platinum salts should be considered in SPT negative subjects with occupational exposure to precious metal salts and work-related allergic symptoms.


Assuntos
Eczema/diagnóstico , Metalurgia , Doenças Profissionais/diagnóstico , Exposição Ocupacional/efeitos adversos , Eosinofilia Pulmonar/diagnóstico , Eczema/etiologia , Feminino , Mãos , Humanos , Pessoa de Meia-Idade , Doenças Profissionais/etiologia , Testes do Emplastro , Platina/toxicidade , Eosinofilia Pulmonar/etiologia , Sais/toxicidade , Testes Cutâneos
20.
Bull Environ Contam Toxicol ; 94(5): 554-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25742926

RESUMO

The growing use of nanoparticles in a wide range of products has resulted in their release into the aquatic environment; therefore, an understanding of the toxic effects of nanoparticles on aquatic organisms is of permanent importance. The aim of this study was to evaluate the toxicity of silver and platinum nanoparticles toward the freshwater microalga, Pseudokirchneriella subcapitata. Algal growth and photosynthetic pigments were determined to quantitate the effects of varying concentrations of Ag and Pt nanoparticles. The silver nanoparticles were much more toxic than the platinum ones. The concentrations causing total inhibition of algal growth were 5.0 and 22.2 mg L(-1), respectively. Similar results were obtained by analyzing the concentration of photosynthetic pigments in P. subcapitata exposed to nanoparticles. Thus, simple spectrophotometric determination of chlorophyll is a convenient tool for the analysis of nanoparticle toxicity to algae.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Clorófitas/efeitos dos fármacos , Nanopartículas/toxicidade , Platina/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/fisiologia , Clorofila/metabolismo , Clorófitas/metabolismo , Clorófitas/fisiologia , Água Doce/química , Fotossíntese/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA