RESUMO
Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 µm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Incêndios Florestais , Humanos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Poluição do Ar/legislação & jurisprudência , Poluição do Ar/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Material Particulado/análise , Material Particulado/química , Fumaça/análise , Estados Unidos , Incêndios Florestais/estatística & dados numéricos , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendênciasRESUMO
Wildfires are thought to be increasing in severity and frequency as a result of climate change1-5. Air pollution from landscape fires can negatively affect human health4-6, but human exposure to landscape fire-sourced (LFS) air pollution has not been well characterized at the global scale7-23. Here, we estimate global daily LFS outdoor fine particulate matter (PM2.5) and surface ozone concentrations at 0.25° × 0.25° resolution during the period 2000-2019 with the help of machine learning and chemical transport models. We found that overall population-weighted average LFS PM2.5 and ozone concentrations were 2.5 µg m-3 (6.1% of all-source PM2.5) and 3.2 µg m-3 (3.6% of all-source ozone), respectively, in 2010-2019, with a slight increase for PM2.5, but not for ozone, compared with 2000-2009. Central Africa, Southeast Asia, South America and Siberia experienced the highest LFS PM2.5 and ozone concentrations. The concentrations of LFS PM2.5 and ozone were about four times higher in low-income countries than in high-income countries. During the period 2010-2019, 2.18 billion people were exposed to at least 1 day of substantial LFS air pollution per year, with each person in the world having, on average, 9.9 days of exposure per year. These two metrics increased by 6.8% and 2.1%, respectively, compared with 2000-2009. Overall, we find that the global population is increasingly exposed to LFS air pollution, with socioeconomic disparities.
Assuntos
Poluição do Ar , Incêndios , Ozônio , Material Particulado , Humanos , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Incêndios/estatística & dados numéricos , Ozônio/análise , Ozônio/provisão & distribuição , Material Particulado/análise , Material Particulado/provisão & distribuição , Incêndios Florestais/estatística & dados numéricos , Disparidades Socioeconômicas em SaúdeRESUMO
A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 µm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1ß. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for PM2.5 air pollutants and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.
Assuntos
Adenocarcinoma de Pulmão , Poluentes Atmosféricos , Poluição do Ar , Transformação Celular Neoplásica , Neoplasias Pulmonares , Animais , Camundongos , Adenocarcinoma de Pulmão/induzido quimicamente , Adenocarcinoma de Pulmão/genética , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Exposição Ambiental , Receptores ErbB/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Material Particulado/efeitos adversos , Material Particulado/análise , Tamanho da Partícula , Estudos de Coortes , Macrófagos Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologiaRESUMO
Air pollution contributes to the global burden of disease, with ambient exposure to fine particulate matter of diameters smaller than 2.5 µm (PM2.5) being identified as the fifth-ranking risk factor for mortality globally1. Racial/ethnic minorities and lower-income groups in the USA are at a higher risk of death from exposure to PM2.5 than are other population/income groups2-5. Moreover, disparities in exposure to air pollution among population and income groups are known to exist6-17. Here we develop a data platform that links demographic data (from the US Census Bureau and American Community Survey) and PM2.5 data18 across the USA. We analyse the data at the tabulation area level of US zip codes (N is approximately 32,000) between 2000 and 2016. We show that areas with higher-than-average white and Native American populations have been consistently exposed to average PM2.5 levels that are lower than areas with higher-than-average Black, Asian and Hispanic or Latino populations. Moreover, areas with low-income populations have been consistently exposed to higher average PM2.5 levels than areas with high-income groups for the years 2004-2016. Furthermore, disparities in exposure relative to safety standards set by the US Environmental Protection Agency19 and the World Health Organization20 have been increasing over time. Our findings suggest that more-targeted PM2.5 reductions are necessary to provide all people with a similar degree of protection from environmental hazards. Our study is observational and cannot provide insight into the drivers of the identified disparities.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Etnicidade , Humanos , Renda , Material Particulado/efeitos adversos , Material Particulado/análiseRESUMO
Climate change is considered the greatest threat to global health. Greenhouse gases as well as global surface temperatures have increased causing more frequent and intense heat and cold waves, wildfires, floods, drought, altered rainfall patterns, hurricanes, thunderstorms, air pollution, and windstorms. These extreme weather events have direct and indirect effects on the immune system, leading to allergic disease due to exposure to pollen, molds, and other environmental pollutants. In this review, we will focus on immune mechanisms associated with allergy and asthma-related health risks induced by climate change events. We will review current understanding of the molecular and cellular mechanisms by which the changing environment mediates these effects.
Assuntos
Poluição do Ar , Asma , Mudança Climática , Hipersensibilidade , Asma/imunologia , Hipersensibilidade/imunologia , Sistema Imunitário , Desastres , Humanos , AnimaisRESUMO
Improving urban air quality is a pressing challenge in the Global South. A key source of air pollution is the informal burning of household waste. Reducing informal burning requires governments to develop formal systems for waste disposal and for residents to adopt new disposal behaviors. Using a randomized experiment, we show that social competitions between pairs of neighborhoods in Nansana municipality, Uganda, galvanized leadership and inspired collective action to reduce informal burning. All 44 neighborhoods in the study received a public health campaign, while 22 treated neighborhoods were paired and competed to reduce waste burning over an 8-mo period. Treated neighborhoods showed a 24 percent reduction (95% CI: 11 to 35 percent) in waste burning relative to control neighborhoods at the end of the competition period. There is no evidence that treated neighborhoods experienced a rebound in waste burning several months after the competitions. Community leaders reported greater effort in coordinating residents and more pride in their neighborhood when assigned to the competition treatment. These results suggest that creating focal points for leadership and collective action can be an effective and low-cost strategy to address policy problems that require broad participation and costly behavior change.
Assuntos
Poluição do Ar , Uganda , Humanos , Poluição do Ar/prevenção & controle , Eliminação de Resíduos/métodos , LiderançaRESUMO
California faces several serious direct and indirect climate exposures that can adversely affect public health, some of which are already occurring. The public health burden now and in the future will depend on atmospheric greenhouse gas concentrations, underlying population vulnerabilities, and adaptation efforts. Here, we present a structured review of recent literature to examine the leading climate risks to public health in California, including extreme heat, extreme precipitation, wildfires, air pollution, and infectious diseases. Comparisons among different climate-health pathways are difficult due to inconsistencies in study design regarding spatial and temporal scales and health outcomes examined. We find, however, that the current public health burden likely affects thousands of Californians each year, depending on the exposure pathway and health outcome. Further, while more evidence exists for direct and indirect proximal health effects that are the focus of this review, distal pathways (e.g., impacts of drought on nutrition) are more uncertain but could add to this burden. We find that climate adaptation measures can provide significant health benefits, particularly in disadvantaged communities. We conclude with priority recommendations for future analyses and solution-driven policy actions.
Assuntos
Mudança Climática , Saúde Pública , Humanos , California , Populações Vulneráveis/estatística & dados numéricos , Poluição do Ar/análise , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Incêndios FlorestaisRESUMO
Although it is well documented that exposure to fine particulate matter (PM2.5) increases the risk of several adverse health outcomes, less is known about its relationship with economic opportunity. Previous studies have relied on regression modeling, which implied strict assumptions regarding confounding adjustments and did not explore geographical heterogeneity. We obtained data for 63,165 US census tracts (86% of all census tracts in the United States) on absolute upward mobility (AUM) defined as the mean income rank in adulthood of children born to families in the 25th percentile of the national income distribution. We applied and compared several state-of-the-art confounding adjustment methods to estimate the overall and county-specific associations of childhood exposure to PM2.5 and AUM controlling for many census tract-level confounders. We estimate that census tracts with a 1 µg/m3 higher PM2.5 concentrations in 1982 are associated with a statistically significant 1.146% (95% CI: 0.834, 1.458) lower AUM in 2015, on average. We also showed evidence that this relationship varies spatially between counties, exhibiting a more pronounced negative relationship in the Midwest and the South.
Assuntos
Exposição Ambiental , Material Particulado , Material Particulado/análise , Estados Unidos , Humanos , Exposição Ambiental/efeitos adversos , Criança , Poluentes Atmosféricos/análise , Renda , Poluição do Ar/análise , Poluição do Ar/efeitos adversos , FemininoRESUMO
Future climate change can cause more days with poor air quality. This could trigger more alerts telling people to stay inside to protect themselves, with potential consequences for health and health equity. Here, we study the change in US air quality alerts over this century due to fine particulate matter (PM2.5), who they may affect, and how they may respond. We find air quality alerts increase by over 1 mo per year in the eastern United States by 2100 and quadruple on average. They predominantly affect areas with high Black populations and leakier homes, exacerbating existing inequalities and impacting those less able to adapt. Reducing emissions can offer significant annual health benefits ($5,400 per person) by mitigating the effect of climate change on air pollution and its associated risks of early death. Relying on people to adapt, instead, would require them to stay inside, with doors and windows closed, for an extra 142 d per year, at an average cost of $11,000 per person. It appears likelier, however, that people will achieve minimal protection without policy to increase adaptation rates. Boosting adaptation can offer net benefits, even alongside deep emission cuts. New adaptation policies could, for example: reduce adaptation costs; reduce infiltration and improve indoor air quality; increase awareness of alerts and adaptation; and provide measures for those working or living outdoors. Reducing emissions, conversely, lowers everyone's need to adapt, and protects those who cannot adapt. Equitably protecting human health from air pollution under climate change requires both mitigation and adaptation.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Estados Unidos , Modelos Teóricos , Poluição do Ar/análise , Material Particulado/análise , Mudança Climática , Poluentes Atmosféricos/análiseRESUMO
Future climate change may bring local benefits or penalties to surface air pollution, resulting from changing temperature, precipitation, and transport patterns, as well as changes in climate-sensitive natural precursor emissions. Here, we estimate the climate penalties and benefits at the end of this century with regard to surface ozone and fine particulate matter (PM[Formula: see text]; excluding dust and smoke) using a one-way offline coupling between a general circulation model and a global 3-D chemical-transport model. We archive meteorology for the present day (2005 to 2014) and end of this century (2090 to 2099) for seven future scenarios developed for Phase 6 of the Coupled Model Intercomparison Project. The model isolates the impact of forecasted anthropogenic precursor emission changes versus that of climate-only driven changes on surface ozone and PM[Formula: see text] for scenarios ranging from extreme mitigation to extreme warming. We then relate these changes to impacts on human mortality and crop production. We find ozone penalties over nearly all land areas with increasing warming. We find net benefits due to climate-driven changes in PM[Formula: see text] in the Northern Extratropics, but net penalties in the Tropics and Southern Hemisphere, where most population growth is forecast for the coming century.
Assuntos
Poluição do Ar , Mudança Climática , Produtos Agrícolas , Ozônio , Poluição do Ar/análise , Poluição do Ar/efeitos adversos , Humanos , Ozônio/análise , Ozônio/efeitos adversos , Produtos Agrícolas/crescimento & desenvolvimento , Material Particulado/análise , Material Particulado/efeitos adversos , Mortalidade/tendências , PrevisõesRESUMO
Following a sustainable development pathway designed to keep warming below 2 °C will benefit human health. We quantify premature deaths attributable to fine particulate matter (PM2.5) air pollution and heat exposures for China, South Asia, and the United States using projections from multiple climate models under high- and low-emission scenarios. Projected changes in premature deaths are typically dominated by population aging, primarily reflecting increased longevity leading to greater sensitivity to environmental risks. Changes in PM2.5 exposure typically have small impacts on premature deaths under a high-emission scenario but provide substantial benefits under a low-emission scenario. PM2.5-attributable deaths increase in South Asia throughout the century under both scenarios but shift to decreases by late century in China, and US values decrease throughout the century. In contrast, heat exposure increases under both scenarios and combines with population aging to drive projected increases in deaths in all countries. Despite population aging, combined PM2.5- and heat-related deaths decrease under the low-emission scenario by ~2.4 million per year by midcentury and ~2.9 million by century's end, with ~3% and ~21% of these reductions from heat, respectively. Intermodel variations in exposure projections generally lead to uncertainties of <40% except for US and China heat impacts. Health benefits of low emissions are larger from reduced heat exposure than improved air quality by the late 2090s in the United States. In contrast, in South and East Asia, the PM2.5-related benefits are largest throughout the century, and their valuation exceeds the cost of decarbonization, especially in China, over the next 30 y.
Assuntos
Poluição do Ar , Mortalidade Prematura , Humanos , Estados Unidos/epidemiologia , Temperatura Alta , China/epidemiologia , Ásia Meridional , Material ParticuladoRESUMO
Despite the substantial evidence on the health effects of short-term exposure to ambient fine particles (PM2.5), including increasing studies focusing on those from wildland fire smoke, the impacts of long-term wildland fire smoke PM2.5 exposure remain unclear. We investigated the association between long-term exposure to wildland fire smoke PM2.5 and nonaccidental mortality and mortality from a wide range of specific causes in all 3,108 counties in the contiguous United States, 2007 to 2020. Controlling for nonsmoke PM2.5, air temperature, and unmeasured spatial and temporal confounders, we found a nonlinear association between 12-mo moving average concentration of smoke PM2.5 and monthly nonaccidental mortality rate. Relative to a month with the long-term smoke PM2.5 exposure below 0.1 µg/m3, nonaccidental mortality increased by 0.16 to 0.63 and 2.11 deaths per 100,000 people per month when the 12-mo moving average of PM2.5 concentration was of 0.1 to 5 and 5+ µg/m3, respectively. Cardiovascular, ischemic heart disease, digestive, endocrine, diabetes, mental, and chronic kidney disease mortality were all found to be associated with long-term wildland fire smoke PM2.5 exposure. Smoke PM2.5 contributed to approximately 11,415 nonaccidental deaths/y (95% CI: 6,754, 16,075) in the contiguous United States. Higher smoke PM2.5-related increases in mortality rates were found for people aged 65 and above. Positive interaction effects with extreme heat were also observed. Our study identified the detrimental effects of long-term exposure to wildland fire smoke PM2.5 on a wide range of mortality outcomes, underscoring the need for public health actions and communications that span the health risks of both short- and long-term exposure.
Assuntos
Exposição Ambiental , Material Particulado , Fumaça , Humanos , Estados Unidos/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Fumaça/efeitos adversos , Fumaça/análise , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Feminino , Masculino , Incêndios Florestais , Mortalidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , IdosoRESUMO
Electric school buses have been proposed as an alternative to reduce the health and climate impacts of the current U.S. school bus fleet, of which a substantial share are highly polluting old diesel vehicles. However, the climate and health benefits of electric school buses are not well known. As they are substantially more costly than diesel buses, assessing their benefits is needed to inform policy decisions. We assess the health benefits of electric school buses in the United States from reduced adult mortality and childhood asthma onset risks due to exposure to ambient fine particulate matter (PM2.5). We also evaluate climate benefits from reduced greenhouse-gas emissions. We find that replacing the average diesel bus in the U.S. fleet in 2017 with an electric bus yields $84,200 in total benefits. Climate benefits amount to $40,400/bus, whereas health benefits amount to $43,800/bus due to 4.42*10-3 fewer PM2.5-attributable deaths ($40,000 of total) and 7.42*10-3 fewer PM2.5-attributable new childhood asthma cases ($3,700 of total). However, health benefits of electric buses vary substantially by driving location and model year (MY) of the diesel buses they replace. Replacing old, MY 2005 diesel buses in large cities yields $207,200/bus in health benefits and is likely cost-beneficial, although other policies that accelerate fleet turnover in these areas deserve consideration. Electric school buses driven in rural areas achieve small health benefits from reduced exposure to ambient PM2.5. Further research assessing benefits of reduced exposure to in-cabin air pollution among children riding buses would be valuable to inform policy decisions.
Assuntos
Poluição do Ar , Veículos Automotores , Material Particulado , Instituições Acadêmicas , Emissões de Veículos , Humanos , Estados Unidos , Emissões de Veículos/prevenção & controle , Material Particulado/efeitos adversos , Asma/epidemiologia , Asma/etiologia , Asma/mortalidade , Criança , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Eletricidade , AdultoRESUMO
Air pollution is a complex mixture of gases and particulate matter, with adsorbed organic and inorganic contaminants, to which exposure is lifelong. Epidemiological studies increasingly associate air pollution with multiple neurodevelopmental disorders and neurodegenerative diseases, findings supported by experimental animal models. This breadth of neurotoxicity across these central nervous system diseases and disorders likely reflects shared vulnerability of their inflammatory and oxidative stress-based mechanisms and a corresponding ability to produce brain metal dyshomeo-stasis. Future research to define the responsible contaminants of air pollution underlying this neurotoxicity is critical to understanding mechanisms of these diseases and disorders and protecting public health.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Síndromes Neurotóxicas , Animais , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Longevidade , Poluição do Ar/efeitos adversos , Material Particulado/toxicidade , Encéfalo , Síndromes Neurotóxicas/etiologiaRESUMO
We review current knowledge on the trends and drivers of global wildfire activity, advances in the measurement of wildfire smoke exposure, and evidence on the health effects of this exposure. We describe methodological issues in estimating the causal effects of wildfire smoke exposures on health and quantify their importance, emphasizing the role of nonlinear and lagged effects. We conduct a systematic review and meta-analysis of the health effects of wildfire smoke exposure, finding positive impacts on all-cause mortality and respiratory hospitalizations but less consistent evidence on cardiovascular morbidity. We conclude by highlighting priority areas for future research, including leveraging recently developed spatially and temporally resolved wildfire-specific ambient air pollution data to improve estimates of the health effects of wildfire smoke exposure.
Assuntos
Poluição do Ar , Incêndios Florestais , Humanos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Hospitalização , Fumaça/efeitos adversos , Fumaça/análiseRESUMO
BACKGROUND: Black Americans are exposed to higher annual levels of air pollution containing fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) than White Americans and may be more susceptible to its health effects. Low-income Americans may also be more susceptible to PM2.5 pollution than high-income Americans. Because information is lacking on exposure-response curves for PM2.5 exposure and mortality among marginalized subpopulations categorized according to both race and socioeconomic position, the Environmental Protection Agency lacks important evidence to inform its regulatory rulemaking for PM2.5 standards. METHODS: We analyzed 623 million person-years of Medicare data from 73 million persons 65 years of age or older from 2000 through 2016 to estimate associations between annual PM2.5 exposure and mortality in subpopulations defined simultaneously by racial identity (Black vs. White) and income level (Medicaid eligible vs. ineligible). RESULTS: Lower PM2.5 exposure was associated with lower mortality in the full population, but marginalized subpopulations appeared to benefit more as PM2.5 levels decreased. For example, the hazard ratio associated with decreasing PM2.5 from 12 µg per cubic meter to 8 µg per cubic meter for the White higher-income subpopulation was 0.963 (95% confidence interval [CI], 0.955 to 0.970), whereas equivalent hazard ratios for marginalized subpopulations were lower: 0.931 (95% CI, 0.909 to 0.953) for the Black higher-income subpopulation, 0.940 (95% CI, 0.931 to 0.948) for the White low-income subpopulation, and 0.939 (95% CI, 0.921 to 0.957) for the Black low-income subpopulation. CONCLUSIONS: Higher-income Black persons, low-income White persons, and low-income Black persons may benefit more from lower PM2.5 levels than higher-income White persons. These findings underscore the importance of considering racial identity and income together when assessing health inequities. (Funded by the National Institutes of Health and the Alfred P. Sloan Foundation.).
Assuntos
Poluição do Ar , Suscetibilidade a Doenças , Desigualdades de Saúde , Material Particulado , Grupos Raciais , Fatores Socioeconômicos , Idoso , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Negro ou Afro-Americano/estatística & dados numéricos , Suscetibilidade a Doenças/economia , Suscetibilidade a Doenças/epidemiologia , Suscetibilidade a Doenças/etnologia , Suscetibilidade a Doenças/mortalidade , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Medicare/estatística & dados numéricos , Material Particulado/efeitos adversos , Material Particulado/análise , Pobreza/estatística & dados numéricos , Fatores Raciais/estatística & dados numéricos , Grupos Raciais/estatística & dados numéricos , Classe Social , Estados Unidos/epidemiologia , Brancos/estatística & dados numéricosRESUMO
The steady increase in human population and a rising standard of living heighten global demand for energy. Fossil fuels account for more than three-quarters of energy production, releasing enormous amounts of carbon dioxide (CO2) that drive climate change effects as well as contributing to severe air pollution in many countries. Hence, drastic reduction of CO2 emissions, especially from fossil fuels, is essential to tackle anthropogenic climate change. To reduce CO2 emissions and to cope with the ever-growing demand for energy, it is essential to develop renewable energy sources, of which biofuels will form an important contribution. In this Essay, liquid biofuels from first to fourth generation are discussed in detail alongside their industrial development and policy implications, with a focus on the transport sector as a complementary solution to other environmentally friendly technologies, such as electric cars.
Assuntos
Poluição do Ar , Biocombustíveis , Humanos , Biocombustíveis/análise , Dióxido de Carbono , Combustíveis Fósseis/análise , Mudança ClimáticaRESUMO
There has been increased awareness of the linkage between environmental exposures and cardiovascular health and disease. Atrial fibrillation is the most common sustained cardiac arrhythmia, affecting millions of people worldwide and contributing to substantial morbidity and mortality. Although numerous studies have explored the role of genetic and lifestyle factors in the development and progression of atrial fibrillation, the potential impact of environmental determinants on this prevalent condition has received comparatively less attention. This review aims to provide a comprehensive overview of the current evidence on environmental determinants of atrial fibrillation, encompassing factors such as air pollution, temperature, humidity, and other meteorologic conditions, noise pollution, greenspace, and the social environment. We discuss the existing evidence from epidemiological and mechanistic studies, critically evaluating the strengths and limitations of these investigations and the potential underlying biological mechanisms through which environmental exposures may affect atrial fibrillation risk. Furthermore, we address the potential implications of these findings for public health and clinical practice and identify knowledge gaps and future research directions in this emerging field.
Assuntos
Poluição do Ar , Fibrilação Atrial , Sistema Cardiovascular , Expossoma , Humanos , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/etiologia , Exposição Ambiental/efeitos adversosRESUMO
Poor air quality accounts for more than 9 million deaths a year globally according to recent estimates. A large portion of these deaths are attributable to cardiovascular causes, with evidence indicating that air pollution may also play an important role in the genesis of key cardiometabolic risk factors. Air pollution is not experienced in isolation but is part of a complex system, influenced by a host of other external environmental exposures, and interacting with intrinsic biologic factors and susceptibility to ultimately determine cardiovascular and metabolic outcomes. Given that the same fossil fuel emission sources that cause climate change also result in air pollution, there is a need for robust approaches that can not only limit climate change but also eliminate air pollution health effects, with an emphasis of protecting the most susceptible but also targeting interventions at the most vulnerable populations. In this review, we summarize the current state of epidemiologic and mechanistic evidence underpinning the association of air pollution with cardiometabolic disease and how complex interactions with other exposures and individual characteristics may modify these associations. We identify gaps in the current literature and suggest emerging approaches for policy makers to holistically approach cardiometabolic health risk and impact assessment.
Assuntos
Poluição do Ar , Doenças Cardiovasculares , Exposição Ambiental , Humanos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Fatores de Risco Cardiometabólico , Expossoma , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Material Particulado/efeitos adversosRESUMO
Ubiquitous environmental exposures increase cardiovascular disease risk via diverse mechanisms. This review examines personal strategies to minimize this risk. With regard to fine particulate air pollution exposure, evidence exists to recommend the use of portable air cleaners and avoidance of outdoor activity during periods of poor air quality. Other evidence may support physical activity, dietary modification, omega-3 fatty acid supplementation, and indoor and in-vehicle air conditioning as viable strategies to minimize adverse health effects. There is currently insufficient data to recommend specific personal approaches to reduce the adverse cardiovascular effects of noise pollution. Public health advisories for periods of extreme heat or cold should be observed, with limited evidence supporting a warm ambient home temperature and physical activity as strategies to limit the cardiovascular harms of temperature extremes. Perfluoroalkyl and polyfluoroalkyl substance exposure can be reduced by avoiding contact with perfluoroalkyl and polyfluoroalkyl substance-containing materials; blood or plasma donation and cholestyramine may reduce total body stores of perfluoroalkyl and polyfluoroalkyl substances. However, the cardiovascular impact of these interventions has not been examined. Limited utilization of pesticides and safe handling during use should be encouraged. Finally, vasculotoxic metal exposure can be decreased by using portable air cleaners, home water filtration, and awareness of potential contaminants in ground spices. Chelation therapy reduces physiological stores of vasculotoxic metals and may be effective for the secondary prevention of cardiovascular disease.