Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38888587

RESUMO

Turtlegrass virus X, which infects the seagrass Thalassia testudinum, is the only potexvirus known to infect marine flowering plants. We investigated potexvirus distribution in seagrasses using a degenerate reverse transcription polymerase chain reaction (RT-PCR) assay originally designed to capture potexvirus diversity in terrestrial plants. The assay, which implements Potex-5 and Potex-2RC primers, successfully amplified a 584 nt RNA-dependent RNA polymerase (RdRp) fragment from TVX-infected seagrasses. Following validation, we screened 74 opportunistically collected, apparently healthy seagrass samples for potexviruses using this RT-PCR assay. The survey examined the host species T. testudinum, Halodule wrightii, Halophila stipulacea, Syringodium filiforme, Ruppia maritima, and Zostera marina. Potexvirus PCR products were successfully generated only from T. testudinum samples and phylogenetic analysis of sequenced PCR products revealed five distinct TVX sequence variants. Although the RT-PCR assay revealed limited potexvirus diversity in seagrasses, the expanded geographic distribution of TVX shown here emphasizes the importance of future studies to investigate T. testudinum populations across its native range and understand how the observed fine-scale genetic diversity affects host-virus interactions.


Assuntos
Variação Genética , Filogenia , Potexvirus , Potexvirus/genética , Potexvirus/isolamento & purificação , Potexvirus/classificação , Golfo do México , Doenças das Plantas/virologia , Hydrocharitaceae/virologia , RNA Polimerase Dependente de RNA/genética , RNA Viral/genética , Zosteraceae/virologia
2.
Arch Virol ; 168(10): 244, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676508

RESUMO

Here, we report the detection and complete genome sequence of a novel potexvirus, tentatively named "Adenium obesum virus X" (AobVX), isolated from Adenium obesum, that was sent for virus screening at Australian Government post-entry quarantine (PEQ) facilities after being imported into Australia from China. The AobVX genome is 6781 nucleotides in length excluding the poly(A) tail and is predicted to encode conserved potexvirus proteins and sequence motifs across five open reading frames. The RNA-dependent RNA polymerase of this virus shares the highest amino acid sequence similarity with that of nerine potexvirus 1 (58.7% identity) and nerine virus X (58.58% identity). This is the first report of a positive-sense single-stranded RNA virus in A. obesum related to members of the genus Potexvirus in the family Alphaflexiviridae.


Assuntos
Apocynaceae , Potexvirus , Apocynaceae/virologia , Potexvirus/classificação , Potexvirus/genética , Potexvirus/isolamento & purificação , Filogenia , Genoma Viral , RNA Polimerase Dependente de RNA/genética
3.
Arch Virol ; 166(8): 2343-2346, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34097143

RESUMO

Viola mottle virus (VMoV) was discovered in Viola odorata showing symptoms of reduced growth, leaf mottling, and whitish stripes on flowers in northern Italy in 1977. This virus has been provisionally classified as a member of the genus Potexvirus based on its morphological, serological, and biological characteristics. However, since genetic information of VMoV has never been reported, the taxonomic status of this virus is unclear. Here, we report the first complete genome sequence of VMoV to clarify its taxonomic position. Its genomic RNA is 6,052 nucleotides long, excluding the 3'-terminal poly(A) tail, and has five open reading frames (ORFs) typical of potexviruses. Among potexviruses, VMoV showed the most similarity to tulip virus X (TVX) with 81.1-81.2% nucleotide and 90.4-90.7% amino acid sequence identity in ORF1 and 82.9-83.5% nucleotide and 93.2-95.2% amino acid sequence identity in ORF5. These values are much higher than the species demarcation threshold for the genus. Phylogenetic analysis also indicated that VMoV is nested within the clade of TVX isolates. These data demonstrate that VMoV and TVX are members of the same species.


Assuntos
Doenças das Plantas/virologia , Potexvirus/classificação , Viola/virologia , Sequenciamento Completo do Genoma/métodos , Tamanho do Genoma , Genoma Viral , Itália , Fases de Leitura Aberta , Filogenia , Potexvirus/genética , Potexvirus/isolamento & purificação
4.
Arch Virol ; 166(5): 1427-1431, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33682071

RESUMO

Potato aucuba mosaic virus (PAMV), a positive single-strand RNA virus, has one of the longest genomes of the viruses in the genus Potexvirus. In 2019, potato samples with mottle and crinkling symptoms from Huzhou, Zhejiang province, China, were identified to be infected with PAMV, potato virus X (PVX), and potato virus Y (PVY) by transcriptome sequencing. To study the effects of single infection by PAMV, the full-length sequence of PAMV from Huzhou (MT193476) was determined and an infectious full-length cDNA clone was constructed. This cDNA clone was infectious by agro-infiltration, leading to systemic symptoms in Nicotiana benthamiana, tomato, pepper, and potato.


Assuntos
Potexvirus/genética , Potexvirus/patogenicidade , Clonagem Molecular , DNA Complementar , Genoma Viral/genética , Filogenia , Doenças das Plantas/virologia , Plantas/classificação , Plantas/virologia , Potexvirus/classificação , Potexvirus/isolamento & purificação , RNA Viral/genética , Genética Reversa , Solanum tuberosum/virologia
5.
Arch Virol ; 165(4): 923-935, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32128611

RESUMO

Strawberry mild yellow edge virus (SMYEV) is a member of the genus Potexvirus, family Alphaflexiviridae. It is one of the most common pathogenic viruses infecting cultivated strawberries worldwide. In this study, we investigated the genetic diversity of SMYEV in strawberry fields that were severely affected by strawberry decline disease in the eastern Canadian provinces of New Brunswick, Nova Scotia, Prince Edward Island and Quebec. A total of 134 SMYEV coat protein (CP) gene sequences, representing 85 nucleic acid haplotypes, were identified in 56 field samples. A highly divergent SMYEV population was found in all four provinces, but there was little genetic differentiation among the populations, and moreover, the Canadian SMYEV isolates formed a unique dissimilar, genetically divergent population group when compared to those reported in other countries. Phylogenetic analysis revealed three new SMYEV subclades that consisted mainly of Canadian variants and were composed of 76 sequence haplotypes (76/85, 88%). Mixed infections by different SMYEV variants were observed in 38 samples (38/56, 68%). Evolutionary analysis suggested that the SMYEV strains in eastern Canada possibly originated outside of Canada but adapted to conditions in the region through genetic mutations.


Assuntos
Fragaria/virologia , Variação Genética , Doenças das Plantas/virologia , Potexvirus/genética , Canadá , Proteínas do Capsídeo/genética , Evolução Molecular , Genoma Viral , Filogenia , Potexvirus/classificação , Potexvirus/isolamento & purificação
6.
Arch Virol ; 164(7): 1931-1935, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31011816

RESUMO

A flexuous virus was detected in a Cnidium officinale plant in Japan showing mosaic symptoms. The virus was assigned to the genus Potexvirus based on analysis of its complete nucleotide sequence. The genomic RNA of the virus was 5,964 nucleotides in length, excluding the 3'-terminal poly(A) tail. It contained five open reading frames (ORFs), consistent with other members of Potexvirus. The ORF sequences differ from those of previously reported potexviruses. Phylogenetic analysis indicated that the polymerase of the virus is closely related to that of strawberry mild yellow edge virus; and the CP, to those of both yam virus X and vanilla virus X. We propose that this virus be designated as "cnidium virus X" (CnVX).


Assuntos
Cnidium/virologia , Genoma Viral/genética , Doenças das Plantas/virologia , Potexvirus/classificação , Potexvirus/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas do Capsídeo/genética , Japão , Fases de Leitura Aberta/genética , Filogenia , Potexvirus/isolamento & purificação , RNA Viral/genética
7.
Mol Plant Microbe Interact ; 31(7): 707-723, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29424662

RESUMO

In plants, RNA silencing-based antiviral defense generates viral small RNAs (sRNAs) faithfully representing the viral genomes. We employed sRNA sequencing and bioinformatics (sRNA-omics) to characterize antiviral defense and to reconstruct the full genomic sequences and their variants in the evolving viral quasispecies in cultivated solanaceous plants carrying mixed infections. In naturally infected Solanum tuberosum (potato), one case study revealed a virome comprising Potato virus Y (genus Potyvirus) and Potato virus X (genus Potexvirus), which was reconstructed by de novo-assembling separate genome-size sRNA contigs. Another case study revealed a virome comprising NTN and O strains of Potato virus Y, whose sRNAs assembled in chimeric contigs, which could be disentangled on the basis of reference genome sequences. Both viromes were stable in vegetative potato progeny. In a cross-protection trial of Solanum lycopersicum (tomato), the supposedly protective mild strain CH2 of Pepino mosaic virus (genus Potexvirus) was tested for protection against strain LP of the same virus. Reciprocal mechanical inoculations eventually resulted in co-infection of all individual plants with CH2 and LP strains, reconstructed as separate sRNA contigs. LP invasions into CH2-preinfected plants and vice versa were accompanied by alterations of consensus genome sequences in viral quasispecies, indicating a potential risk of cross-protection measures. Additionally, the study also revealed, by reconstruction from sRNAs, the presence of the mechanically nontransmissible Southern tomato virus (genus Amalgavirus) in some plants. Our in-depth analysis of sRNA sizes, 5'-nucleotide frequencies and hotspot maps revealed similarities in sRNA-generating mechanisms in potato and tomato, differential silencing responses to virome components and potential for sRNA-directed cross-targeting between viral strains which could not, however, prevent the formation of stable viromes.


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Potexvirus/genética , Potyvirus/genética , Solanum , Coinfecção , Potexvirus/isolamento & purificação , Potyvirus/isolamento & purificação , Interferência de RNA , RNA Viral , Solanum/virologia
8.
Arch Virol ; 163(2): 563-566, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29079952

RESUMO

In August 2016, a yellow vein disease was observed on leaves of Euonymus bungeanus Maxim (Euonymus, Celastraceae) in Liaoning, China. Virions measuring 750 × 13 nm were observed in a sample from the diseased plant. A potexvirus was detected in the sample by small-RNA deep sequencing analysis and recovered by traditional cloning. The genome of this potexvirus consists of 7,279 nucleotides, excluding the poly(A) tail at the 3' end, and contains five open reading frames (ORFs). Based on the nucleotide and amino acid sequences of the coat protein gene, the virus shared the highest sequence similarity with white clover mosaic virus (WCMV, X16636) (40.1%) and clover yellow mosaic virus (ClYMV, D00485) (37.1%). Phylogenetic analysis showed that the virus clustered with potexviruses and is most closely related to strawberry mild yellow edge virus. These results indicate that this virus is a distinct member of the genus Potexvirus, for which the name euonymus yellow vein associated virus (EuYVAV) is proposed. To our knowledge, this is the first report of a potexvirus on E. bungeanus.


Assuntos
Euonymus/virologia , Flexiviridae/classificação , Flexiviridae/isolamento & purificação , Genoma Viral , Doenças das Plantas/virologia , Potexvirus/isolamento & purificação , Vírus Satélites/isolamento & purificação , Sequência de Bases , China , Flexiviridae/genética , Flexiviridae/imunologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Potexvirus/classificação , Potexvirus/genética , Vírus Satélites/classificação , Vírus Satélites/genética
9.
Mikrochim Acta ; 185(11): 506, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30328535

RESUMO

This article demonstrates a new kind of a highly sensitive lateral flow immunoassay (LFIA). It is based on the enlargement of the size of gold nanoparticles (GNPs) directly on the test strip after a conventional LFIA. Particle size enlargement is accomplished through the catalytic reduction of HAuCl4 in the presence of H2O2 and through the accumulation of additional gold on the surface of the GNPs. To attain maximal enhancement of the coloration of the zone in the test strip and to achieve a minimal background, the concentration of precursors, the pH value, and the incubation time were optimized. GNPs on the test strip are enlarged from 20 to 350 nm after a 1-min treatment at room temperature. The economically important and widespread phytopathogen potato virus X (PVX) was used as the target analyte. The use of the GNP enlargement method results in a 240-fold reduction in the limit of the detection of PVX, which can be as low as 17 pg·mL-1. The total duration of the assay, including virus extraction from the potato leaves, lateral flow, and the enhancement process, is only 12 min. The diagnostic efficiency of the technique was confirmed by its application to the analysis of potato leave samples. No false positives or false negatives were found. The technique does not depend on specific features of the target analyte, and it is conceivably applicable to numerous GNP-based LFIAs for important analytes. Graphical abstract An enlargement solution (containing HAuCl4 and H2O2) was dripped on the strip after common lateral flow immunoassay. Gold nanoparticles on the strip (20 nm) catalyze gold reduction and the formation of larger particles (up to 350 nm), resulting in a 240-fold lower detection limit within 1 min.


Assuntos
Ouro/química , Imunoensaio/métodos , Nanopartículas Metálicas/ultraestrutura , Potexvirus/isolamento & purificação , Limite de Detecção , Nanopartículas Metálicas/química , Tamanho da Partícula , Folhas de Planta/virologia , Solanum tuberosum/virologia
10.
Arch Virol ; 162(2): 505-510, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27743256

RESUMO

We characterised the virus-derived small interfering RNAs (vsiRNA) of bamboo mosaic virus (Ba-vsiRNAs) and its associated satellite RNA (satRNA)-derived siRNAs (satsiRNAs) in a bamboo plant (Dendrocalamus latiflorus) by deep sequencing. Ba-vsiRNAs and satsiRNAs of 21-22 nt in length, with both (+) and (-) polarity, predominated. The 5'-terminal base of Ba-vsiRNA was biased towards A, whereas a bias towards C/U was observed in sense satsiRNAs, and towards A in antisense satsiRNAs. A large set of bamboo genes were identified as potential targets of Ba-vsiRNAs and satsiRNAs, revealing RNA silencing-based virus-host interactions in plants. Moreover, we isolated and characterised new isolates of bamboo mosaic virus (BaMV; 6,350 nt) and BaMV-associated satRNA (satBaMV; 834 nt), designated BaMV-MAZSL1 and satBaMV-MAZSL1, respectively.


Assuntos
Bambusa/virologia , Genes de Plantas , Potexvirus/genética , RNA Satélite/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Fases de Leitura Aberta , Doenças das Plantas/virologia , Potexvirus/classificação , Potexvirus/isolamento & purificação , Interferência de RNA
11.
Arch Virol ; 162(5): 1335-1339, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28050737

RESUMO

Bamboo mosaic virus (BaMV) is a well-characterized virus and a model of virus-host interaction in plants. Here, we identified naturally occurring BaMV isolates from Fujian Province, China and furthermore describe a naturally occurring BaMV coinfection in bamboo (Bambusa xiashanensis) plants. Two different types of BaMV were identified, represented by isolates BaMV-XSNZHA7 (X7) and BaMV-XSNZHA10 (X10). The phylogenetic relationships between X7- and X10-like isolates and published BaMV isolates were determined based on genomic RNA and amino acid sequences. Three clusters were identified, indicating that BaMV is highly diverse. The in planta viral replication kinetics were determined for X7 and X10 in single infections and in an X7/X10 coinfection. The peak viral load during coinfection was significantly greater than that during single infection with either virus and contained a slightly higher proportion of X10 virus than X7, suggesting that X10-like viruses may have a fitness advantage when compared to X7-like viruses.


Assuntos
Bambusa/virologia , Doenças das Plantas/virologia , Potexvirus/classificação , Potexvirus/genética , RNA Viral/genética , Sequência de Aminoácidos/genética , Sequência de Bases , China , Coinfecção/virologia , Interações Hospedeiro-Patógeno , Filogenia , Potexvirus/isolamento & purificação , Análise de Sequência de RNA , Carga Viral
12.
Arch Virol ; 162(2): 581-584, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27743255

RESUMO

Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus and has an exceptionally wide host range. It causes severe damage to lilies. Here we report on the complete nucleotide sequences of two new Japanese PlAMV isolates, one from the eudicot weed Viola grypoceras (PlAMV-Vi), and the other from the eudicot shrub Nandina domestica Thunb. (PlAMV-NJ). Their genomes contain five open reading frames (ORFs), which is characteristic of potexviruses. Surprisingly, the isolates showed only 76.0-78.0 % sequence identity with each other and with other PlAMV isolates, including isolates from Japanese lily and American nandina. Amino acid alignments of the replicase coding region encoded by ORF1 showed that the regions between the methyltransferase and helicase domains were less conserved than other regions, with several insertions and/or deletions. Phylogenetic analyses of the full-length nucleotide sequences revealed a moderate correlation between phylogenetic clustering and the original host plants of the PlAMV isolates. This study revealed the presence of two highly divergent PlAMV isolates in Japan.


Assuntos
Genoma Viral , Vírus do Mosaico/genética , Filogenia , Potexvirus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , Sequência de Bases , Berberidaceae/virologia , Mapeamento Cromossômico , Mutação INDEL , Japão , Metiltransferases/genética , Vírus do Mosaico/classificação , Vírus do Mosaico/isolamento & purificação , Fases de Leitura Aberta , Potexvirus/classificação , Potexvirus/isolamento & purificação , RNA Helicases/genética , Alinhamento de Sequência , Viola/virologia
13.
Arch Virol ; 162(2): 529-533, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27796545

RESUMO

In this work, we report the complete genome sequence of, production of polyclonal antibodies against, and development of biological assays for a putative new potexvirus, named senna mosaic virus (SenMV), found infecting Senna occidentalis in the state of São Paulo, Brazil. The complete genome sequence of SenMV comprises 6775 nucleotides excluding the poly(A) tail. The genome organization is similar to those of other potexviruses, with five open reading frames coding for RNA-dependent RNA polymerase (RdRp), the triple gene block (TGB 1, 2, and 3) proteins, and coat protein (CP). The virus was transmitted to S. occidentalis by mechanical inoculation and trimming scissors, but not by seeds.


Assuntos
Genoma Viral , Vírus do Mosaico/genética , Potexvirus/genética , RNA Viral/genética , Senna/virologia , Proteínas Virais/genética , Brasil , Proteínas do Capsídeo/genética , Tamanho do Genoma , Vírus do Mosaico/classificação , Vírus do Mosaico/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Potexvirus/classificação , Potexvirus/isolamento & purificação , RNA Polimerase Dependente de RNA/genética
14.
Arch Virol ; 162(12): 3855-3861, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28864943

RESUMO

The genomes of two novel viruses were assembled from 454 pyrosequencing data obtained from vanilla leaves from La Réunion. Based on genome organization and homologies, one agent was unambiguously classified as a member of the genus Potexvirus and named vanilla virus X (VVX). The second one, vanilla latent virus (VLV), is phylogenetically close to three unclassified members of the family Alphaflexiviridae with similarity to allexiviruses, and despite the presence of an additional 8-kDa open reading frame, we propose to include VLV as a new member of the genus Allexivirus. Both VVX and VLV were mechanically transmitted to vanilla plants, resulting in asymptomatic infections.


Assuntos
Flexiviridae/classificação , Flexiviridae/isolamento & purificação , Potexvirus/classificação , Potexvirus/isolamento & purificação , Análise de Sequência de DNA , Vanilla/virologia , Flexiviridae/genética , Ordem dos Genes , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Folhas de Planta/virologia , Potexvirus/genética , Homologia de Sequência
15.
Mikrochim Acta ; 185(1): 25, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29594441

RESUMO

Alkaline phosphatase (ALP) was used as an amplification tool in lateral flow immunoassay (LFIA). Potato virus Ð¥ (PVX) was selected as a target analyte because of its high economic importance. Two conjugates of gold nanoparticles were applied, one with mouse monoclonal antibody against PVX and one with ALP-labeled antibody against mouse IgG. They were immobilized to two fiberglass membranes on the test strip for use in LFIA. After exposure to the sample, a substrate for ALP (5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium) was dropped on the test strip. The insoluble dark-violet diformazan produced by ALP precipitated on the membrane and significantly increased the color intensity of the control and test zones. The limit of detection (0.3 ng mL-1) was 27 times lower than that of conventional LFIA for both buffer and potato leaf extracts. The ALP-enhanced LFIA does not require additional preparation procedures or washing steps and may be used by nontrained persons in resource-limited conditions. The new method of enhancement is highly promising and may lead to application for routine LFIA in different areas. Graphical abstract Two gold nanoparticles (GNP) conjugates were used - the first with monoclonal antibodies (mAb) (GNP-mAb); the second - alkaline phosphatase-labeled antibody against mAb (GNP-anti-mAb-ALP). The immuno complexes are captured by the polyclonal antibodies (pAb) in the test zone. Addition of the substrate solution (BCIP/NBT) results in the accumulation of the insoluble colored product and in a significance increase in color intensity.


Assuntos
Fosfatase Alcalina/metabolismo , Imunoensaio/métodos , Limite de Detecção , Potexvirus/isolamento & purificação , Calibragem , Folhas de Planta/virologia , Potexvirus/fisiologia
16.
Acta Virol ; 61(4): 498-499, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29186970

RESUMO

In September 2011, the leaf samples of hosta cultivar 'Sum and substance' were collected from the collection of Gryshko' National Botanical Garden in Kyiv. The leaves showed dark green streaking and puckering along the leaf veins. Transmission electron microscopy revealed the presence of filamentous viral particles 13 nm in diameter and 470-580 nm in length. Reverse transcription PCR (RT-PCR) analysis confirmed the presence of Hosta virus X (HVX). The sequencing of the complete genome revealed 99% identity to HVX-37 and 97.5% identity to HVX-Kr. Notably, ORF4 initiation codon presented a non-conventional start codon (UUG) like it was previously identified in HVX-37.


Assuntos
Hosta/virologia , Doenças das Plantas/virologia , Potexvirus/isolamento & purificação , Sequência de Bases , Genoma Viral , Filogenia , Folhas de Planta/virologia , Proteínas de Plantas/genética , Potexvirus/classificação , Potexvirus/genética , Potexvirus/fisiologia , Ucrânia
17.
Arch Virol ; 161(2): 507-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26586329

RESUMO

A Ribes-infecting strain of the potexvirus Actinidia virus X (AVX-RV3124) was isolated from black currant plants (Ribes nigrum cv. Baldwin, accession 3124-03D1) showing symptoms of leaf chlorosis and deformity. This is the first description of the complete genome sequence of an isolate of this virus and the first detection of a potexvirus in Ribes. The genome of AVX-RV3124 consists of 6,888 nucleotides (nt) excluding the poly(A) tail at the 3' terminus. When AVX-RV3124 was compared to the available sequence of the AVX isolate in GenBank (accession no. KC568202), two large indel events (72 nt and 33 nt) were identified in the replicase coding region of RV3124. Evidence of recombination was detected upstream of the 3' terminus of the replicase gene of both virus isolates, providing further evidence of a common origin.


Assuntos
Genoma Viral , Doenças das Plantas/virologia , Potexvirus/genética , Potexvirus/isolamento & purificação , RNA Viral/genética , Ribes/virologia , Análise de Sequência de DNA , Mutação INDEL , Dados de Sequência Molecular , Potexvirus/classificação , Recombinação Genética
18.
Arch Virol ; 161(4): 1091-4, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26923929

RESUMO

The complete genome sequences of three isolates of bamboo mosaic virus (BaMV) from mainland China were determined and compared to those of BaMV isolates from Taiwan. Sequence analysis showed that isolate BaMV-JXYBZ1 from Fuzhou shares 98 % nucleotide sequence identity with BaMV-YTHSL14 from nucleotides 2586 to 6306, and more than 94 % nucleotide sequence identity with BaMV-MUZHUBZ2 in other regions. Recombination and phylogenetic analyses indicate that BaMV-JXYBZ1 is a recombinant with one recombination breakpoint. To our knowledge, this is the first report of a BaMV recombinant worldwide.


Assuntos
Doenças das Plantas/virologia , Poaceae/virologia , Potexvirus/genética , Vírus Reordenados , Bambusa/virologia , China , Filogenia , Potexvirus/isolamento & purificação
19.
J Virol ; 88(6): 3359-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24390328

RESUMO

UNLABELLED: Virus emergence is a complex phenomenon, which generally involves spread to a new host from a wild host, followed by adaptation to the new host. Although viruses account for the largest fraction of emerging crop pathogens, knowledge about their emergence is incomplete. We address here the question of whether Pepino Mosaic Virus (PepMV) emergence as a major tomato pathogen worldwide could have involved spread from wild to cultivated plant species and host adaptation. For this, we surveyed natural populations of wild tomatoes in southern Peru for PepMV infection. PepMV incidence, genetic variation, population structure, and accumulation in various hosts were analyzed. PepMV incidence in wild tomatoes was high, and a strain not yet reported in domestic tomato was characterized. This strain had a wide host range within the Solanaceae, multiplying efficiently in most assayed Solanum species and being adapted to wild tomato hosts. Conversely, PepMV isolates from tomato crops showed evidence of adaptation to domestic tomato, possibly traded against adaptation to wild tomatoes. Phylogenetic reconstructions indicated that the most probable ancestral sequence came from a wild Solanum species. A high incidence of PepMV in wild tomato relatives would favor virus spread to crops and its efficient multiplication in different Solanum species, including tomato, allowing its establishment as an epidemic pathogen. Later, adaptation to tomato, traded off against adaptation to other Solanum species, would isolate tomato populations from those in other hosts. IMPORTANCE: Virus emergence is a complex phenomenon involving multiple ecological and genetic factors and is considered to involve three phases: virus encounter with the new host, virus adaptation to the new host, and changes in the epidemiological dynamics. We analyze here if this was the case in the recent emergence of Pepino Mosaic Virus (PepMV) in tomato crops worldwide. We characterized a new strain of PepMV infecting wild tomato populations in Peru. Comparison of this strain with PepMV isolates from tomato crops, plus phylogenetic reconstructions, supports a scenario in which PepMV would have spread to crops from wild tomato relatives, followed by adaptation to the new host and eventually leading to population isolation. Our data, which derive from the analysis of field isolates rather than from experimental evolution approaches, significantly contribute to understanding of plant virus emergence, which is necessary for its anticipation and prevention.


Assuntos
Doenças das Plantas/virologia , Potexvirus/genética , Potexvirus/isolamento & purificação , Solanum lycopersicum/virologia , Sequência de Bases , Proteínas do Capsídeo/genética , Ecologia , Variação Genética , Dados de Sequência Molecular , Peru , Filogenia , Potexvirus/classificação , Potexvirus/fisiologia
20.
Appl Environ Microbiol ; 81(9): 3039-48, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25710366

RESUMO

Plant pathogens cause major economic losses in the agricultural industry because late detection delays the implementation of measures that can prevent their dissemination. Sensitive and robust procedures for the rapid detection of plant pathogens are therefore required to reduce yield losses and the use of expensive, environmentally damaging chemicals. Here we describe a simple and portable system for the rapid detection of viral pathogens in infected plants based on immunofiltration, subsequent magnetic detection, and the quantification of magnetically labeled virus particles. Grapevine fanleaf virus (GFLV) was chosen as a model pathogen. Monoclonal antibodies recognizing the GFLV capsid protein were immobilized onto immunofiltration columns, and the same antibodies were linked to magnetic nanoparticles. GFLV was quantified by immunofiltration with magnetic labeling in a double-antibody sandwich configuration. A magnetic frequency mixing technique, in which a two-frequency magnetic excitation field was used to induce a sum frequency signal in the resonant detection coil, corresponding to the virus concentration within the immunofiltration column, was used for high-sensitivity quantification. We were able to measure GFLV concentrations in the range of 6 ng/ml to 20 µg/ml in less than 30 min. The magnetic immunoassay could also be adapted to detect other plant viruses, including Potato virus X and Tobacco mosaic virus, with detection limits of 2 to 60 ng/ml.


Assuntos
Separação Imunomagnética/métodos , Nepovirus/isolamento & purificação , Doenças das Plantas/virologia , Carga Viral/métodos , Nanopartículas/química , Potexvirus/isolamento & purificação , Fatores de Tempo , Vírus do Mosaico do Tabaco/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA