Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Sleep Res ; 33(5): e14167, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38356375

RESUMO

The aim of this study was to investigate the additional effect of transcutaneous electrical nerve stimulation (TENS) on the control of the symptoms of restless legs syndrome (RLS). A total of 46 randomly selected patients diagnosed with RLS were divided into two groups in a single-blind study to either receive pramipexole (0.25 mg daily) plus 10 sessions of TENS or only pramipexole (0.25 mg daily) for 4 weeks. The severity of the symptoms was determined according to the International Restless Legs Syndrome Rating Scale (IRLSRS) and the Pittsburgh sleep quality index (PSQI) at the beginning of the treatment, post-treatment, and at an 8 week follow-up. A significant time interaction was observed between the groups for all measurement outcomes, revealing differences in favour of the experimental group's IRLSRS and PSQI scores. A notable improvement was also observed in the IRLSRS and PSQI scores in both groups at the end of treatment and during the 8 week follow-up period. In comparison with pramipexole monotherapy, the results of this study showed that the use of TENS therapy combined with a low dose of pramipexole (0.25 mg daily) is therapeutically beneficial in the treatment of RLS over an 8 week follow-up period.


Assuntos
Pramipexol , Síndrome das Pernas Inquietas , Estimulação Elétrica Nervosa Transcutânea , Humanos , Síndrome das Pernas Inquietas/terapia , Estimulação Elétrica Nervosa Transcutânea/métodos , Pramipexol/uso terapêutico , Pramipexol/farmacologia , Método Simples-Cego , Feminino , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Benzotiazóis/uso terapêutico , Agonistas de Dopamina/uso terapêutico , Adulto , Índice de Gravidade de Doença , Idoso , Terapia Combinada
2.
Brain ; 146(12): 4949-4963, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37403195

RESUMO

Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Ratos , Animais , alfa-Sinucleína/metabolismo , Levodopa/farmacologia , Pramipexol/farmacologia , Hipocampo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurotransmissores/metabolismo , Cognição
3.
J Allergy Clin Immunol ; 152(5): 1121-1130.e10, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37277072

RESUMO

BACKGROUND: There is a need for new and effective oral asthma therapies. Dexpramipexole, an oral eosinophil-lowering drug, has not previously been studied in asthma. OBJECTIVE: We sought to evaluate the safety and efficacy of dexpramipexole in lowering blood and airway eosinophilia in subjects with eosinophilic asthma. METHODS: We performed a randomized, double-blind, placebo-controlled proof-of-concept trial in adults with inadequately controlled moderate to severe asthma and blood absolute eosinophil count (AEC) greater than or equal to 300/µL. Subjects were randomly assigned (1:1:1:1) to dexpramipexole 37.5, 75, or 150 mg BID (twice-daily) or placebo. The primary end point was the relative change in AEC from baseline to week 12. Prebronchodilator FEV1 week-12 change from baseline was a key secondary end point. Nasal eosinophil peroxidase was an exploratory end point. RESULTS: A total of 103 subjects were randomly assigned to dexpramipexole 37.5 mg BID (N = 22), 75 mg BID (N = 26), 150 mg BID (N = 28), or placebo (N = 27). Dexpramipexole significantly reduced placebo-corrected AEC week-12 ratio to baseline, in both the 150-mg BID (ratio, 0.23; 95% CI, 0.12-0.43; P < .0001) and the 75-mg BID (ratio, 0.34; 95% CI, 0.18-0.65; P = .0014) dose groups, corresponding to 77% and 66% reductions, respectively. Dexpramipexole reduced the exploratory end point of nasal eosinophil peroxidase week-12 ratio to baseline in the 150-mg BID (median, 0.11; P = .020) and the 75-mg BID (median, 0.17; P = .021) groups. Placebo-corrected FEV1 increases were observed starting at week 4 (nonsignificant). Dexpramipexole displayed a favorable safety profile. CONCLUSIONS: Dexpramipexole demonstrated effective eosinophil lowering and was well tolerated. Additional larger clinical trials are needed to understand the clinical efficacy of dexpramipexole in asthma.


Assuntos
Antiasmáticos , Asma , Eosinofilia Pulmonar , Adulto , Humanos , Pramipexol/farmacologia , Pramipexol/uso terapêutico , Peroxidase de Eosinófilo , Asma/tratamento farmacológico , Eosinofilia Pulmonar/tratamento farmacológico , Eosinófilos , Resultado do Tratamento , Método Duplo-Cego , Antiasmáticos/uso terapêutico
4.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201535

RESUMO

In patients with Parkinson's disease (PD), dopamine replacement therapy with dopamine D2/D3 receptor agonists induces impairments in decision-making, including pathological gambling. The neurobiological mechanisms underlying these adverse effects remain elusive. Here, in a mouse model of PD, we investigated the effects of the dopamine D3 receptor (D3R)-preferring agonist pramipexole (PPX) on decision-making. PD model mice were generated using a bilateral injection of the toxin 6-hydroxydopamine into the dorsolateral striatum. Subsequent treatment with PPX increased disadvantageous choices characterized by a high-risk/high-reward in the touchscreen-based Iowa Gambling Task. This effect was blocked by treatment with the selective D3R antagonist PG-01037. In model mice treated with PPX, the number of c-Fos-positive cells was increased in the external globus pallidus (GPe), indicating dysregulation of the indirect pathway in the corticothalamic-basal ganglia circuitry. In accordance, chemogenetic inhibition of the GPe restored normal c-Fos activation and rescued PPX-induced disadvantageous choices. These findings demonstrate that the hyperactivation of GPe neurons in the indirect pathway impairs decision-making in PD model mice. The results provide a candidate mechanism and therapeutic target for pathological gambling observed during D2/D3 receptor pharmacotherapy in PD patients.


Assuntos
Tomada de Decisões , Modelos Animais de Doenças , Globo Pálido , Doença de Parkinson , Pramipexol , Receptores de Dopamina D3 , Animais , Pramipexol/farmacologia , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Tomada de Decisões/efeitos dos fármacos , Globo Pálido/metabolismo , Globo Pálido/efeitos dos fármacos , Masculino , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/agonistas , Agonistas de Dopamina/farmacologia , Benzotiazóis/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo
5.
Int J Mol Sci ; 25(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39408798

RESUMO

Biased agonists of G-protein-coupled receptors (GPCRs) have emerged as promising selective modulators of signaling pathways by offering therapeutic advantages over unbiased agonists to minimize side effects. The dopamine D3 receptor (D3R), a pivotal GPCR in the central nervous system, has gained significant attention as a therapeutic target for neurological diseases, including Parkinson's disease (PD), addiction, psychosis, depression, and anxiety. We have recently designed and tested SK609, a G-protein biased D3R selective agonist, and demonstrated its efficacy in reducing motor impairment and improving cognitive effects in a rodent model of PD. The molecular mechanism by which SK609 recruits G-protein but not ß-arrestin pathways is poorly understood. Utilizing all-atom molecular dynamics simulations, we investigated the distinct conformational dynamics imparted by SK609 and the reference unbiased agonist Pramipexole (PRX). Results from these studies show that the flexibility of transmembrane 3 is key to unbiased signaling, with a ~30° and ~17° shift in tilt angle in the D3R-Gi and D3R-ßarrestin2 complexes, respectively. Additionally, untargeted phosphoproteomics analysis reveals unique phosphorylation sites by SK609 and PRX in D3R. These results suggest that SK609 induces conformational changes and unique phosphorylation patterns that promote interactions with G-proteins and are not conducive for ß-arrestin2 recruitment and signaling.


Assuntos
Agonistas de Dopamina , Simulação de Dinâmica Molecular , Receptores de Dopamina D3 , Transdução de Sinais , Receptores de Dopamina D3/agonistas , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/química , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/química , Conformação Proteica , Pramipexol/farmacologia , beta-Arrestinas/metabolismo , Ligação Proteica , Proteínas de Ligação ao GTP/metabolismo , Animais
6.
Acta Pharmacol Sin ; 44(1): 32-43, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35896696

RESUMO

Inflammation is one of the pathogenic processes in Parkinson's disease (PD). Dopamine receptor agonist pramipexole (PPX) is extensively used for PD treatment in clinics. A number of studies show that PPX exerts neuroprotection on dopaminergic (DA) neurons, but the molecular mechanisms underlying the protective effects of PPX on DA neurons are not fully elucidated. In the present study, we investigated whether PPX modulated PD-related neuroinflammation and underlying mechanisms. PD model was established in mice by bilateral striatum injection of lipopolyssaccharide (LPS). The mice were administered PPX (0.5 mg·kg-1·d-1, i.p.) 3 days before LPS injection, and for 3 or 21 days after surgery, respectively, for biochemical and histological analyses. We showed that PPX administration significantly alleviated the loss of DA neurons, and suppressed the astrocyte activation and levels of proinflammatory cytokine IL-1ß in the substantia nigra of LPS-injected mice. Furthermore, PPX administration significantly decreased the expression of NLRP3 inflammasome-associated proteins, i.e., cleaved forms of caspase-1, IL-1ß, and apoptosis-associated speck-like protein containing a caspase recruit domain (ASC) in the striatum. These results were validated in LPS+ATP-stimulated primary mouse astrocytes in vitro. Remarkably, we showed that PPX (100-400 µM) dose-dependently enhanced the autophagy activity in the astrocytes evidenced by the elevations in LC3-II and BECN1 protein expression, as well as the increase of GFP-LC3 puncta formation. The opposite effects of PPX on astrocytic NLRP3 inflammasome and autophagy were eliminated by Drd3 depletion. Moreover, we demonstrated that both pretreatment of astrocytes with autophagy inhibitor chloroquine (40 µM) in vitro and astrocyte-specific Atg5 knockdown in vivo blocked PPX-caused inhibition on NLRP3 inflammasome and protection against DA neuron damage. Altogether, this study demonstrates an anti-neuroinflammatory activity of PPX via a Drd3-dependent enhancement of autophagy activity in astrocytes, and reveals a new mechanism for the beneficial effect of PPX in PD therapy.


Assuntos
Doença de Parkinson , Camundongos , Animais , Pramipexol/uso terapêutico , Pramipexol/metabolismo , Pramipexol/farmacologia , Doença de Parkinson/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Astrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Autofagia , Camundongos Endogâmicos C57BL
7.
J Stroke Cerebrovasc Dis ; 32(7): 107142, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105127

RESUMO

OBJECTIVE: To explore the effects of different doses of dopamine receptor agonist pramipexole on neurobehaviors and changes of mitochondrial membrane potential in rats with global cerebral ischemia-reperfusion injury. METHODS: A total of 75 SPF Sprague-Dawley male rats were randomly divided into sham group (n=20), model group (n=20), pramipexole administration group (n=35). The rat model of global cerebral ischemia-reperfusion injury was prepared by the modified Pulsinelli's four-vessel occlusion method. Pramipexole administration group was administered intraperitoneally in rats with global cerebral ischemia-reperfusion injury at different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, 2 mg/kg, once a day for 14 consecutive days. Based on the results of modified neurological severity scores, open field test and morphology by Nissl's staining to determine the optimal dose of pramipexole. Mitochondrial membrane potential in the optimal dose of pramipexole administration group were measured by the JC-1 fluorescent probe staining method. RESULTS: 1. Different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, and 2 mg/kg, were used as drug administration in rats with global cerebral ischemia-reperfusion injury for 14 consecutive days, and we found that all four doses of pramipexole could improve the modified neurological severity scores of rats with global cerebral ischemia-reperfusion injury to varying degrees, but only 0.5 mg/kg pramipexole at 1, 3, 7 and 14 days consistently reduced modified neurological severity scores and improved neurological function in rats with global cerebral ischemia-reperfusion injury. In the open-field test, only 0.5 mg/kg pramipexole increased the number of entries into the central zone, duration spent in the central zone, total distance travelled in the open field and average velocity, which improved the spontaneous activities and reduced anxiety and depression of rats with global cerebral ischemia-reperfusion injury. 2. Different doses of pramipexole 0.25 mg/kg, 0.5 mg/kg, 1 mg/kg, and 2 mg/kg for 14 consecutive days significantly increased the number of surviving neurons in the hippocampal CA1 subfield in rats with global cerebral ischemia-reperfusion injury to varying degrees. Based on these results, we tentatively found that 0.5 mg/kg pramipexole may be the optimal dose in all of the above. 3. We found that 0.5 mg/kg pramipexole significantly increased the mitochondrial membrane potential in rats after global cerebral ischemia-reperfusion injury. CONCLUSION: Different doses of dopamine receptor agonist pramipexole improved neurological function of rats with global cerebral ischemia-reperfusion injury to varying degrees, and 0.5 mg/kg pramipexole may be the optimal dose in all of the above. Pramipexole may produce neuroprotective effects by protecting neurons in the hippocampus and improving the mitochondrial membrane potential after global cerebral ischemia-reperfusion injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Masculino , Animais , Pramipexol/farmacologia , Ratos Sprague-Dawley , Agonistas de Dopamina/farmacologia , Potencial da Membrana Mitocondrial , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral , Traumatismo por Reperfusão/tratamento farmacológico
8.
Int J Neuropsychopharmacol ; 24(11): 867-878, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34197589

RESUMO

BACKGROUND: Drug-induced alterations to the dopamine system in stimulant use disorder (SUD) are hypothesized to impair reinforcement learning (RL). Computational modeling enables the investigation of the latent processes of RL in SUD patients, which could elucidate the nature of their impairments. METHODS: We investigated RL in 44 SUD patients and 41 healthy control participants using a probabilistic RL task that assesses learning from reward and punishment separately. In an independent sample, we determined the modulatory role of dopamine in RL following a single dose of the dopamine D2/3 receptor antagonist amisulpride (400 mg) and the agonist pramipexole (0.5 mg) in a randomised, double-blind, placebo-controlled, crossover design. We analyzed task performance using computational modelling and hypothesized that RL impairments in SUD patients would be differentially modulated by a dopamine D2/3 receptor antagonist and agonist. RESULTS: Computational analyses in both samples revealed significantly reduced learning rates from punishment in SUD patients compared with healthy controls, whilst their reward learning rates were not measurably impaired. In addition, the dopaminergic receptor agents modulated RL parameters differentially in both groups. Both amisulpride and pramipexole impaired RL parameters in healthy participants, but ameliorated learning from punishment in SUD patients. CONCLUSION: Our findings suggest that RL impairments seen in SUD patients are associated with altered dopamine function.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Dopamina/metabolismo , Reforço Psicológico , Adulto , Estimulantes do Sistema Nervoso Central/farmacologia , Simulação por Computador , Corpo Estriado/metabolismo , Estudos Cross-Over , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/uso terapêutico , Método Duplo-Cego , Retroalimentação , Humanos , Masculino , Pramipexol/farmacologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Recompensa
9.
Pharmacol Res ; 165: 105434, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33484816

RESUMO

The dopamine transporter (DAT) is a membrane glycoprotein in dopaminergic neurons, which modulates extracellular and intracellular dopamine levels. DAT is regulated by different presynaptic proteins, including dopamine D2 (D2R) and D3 (D3R) receptors. While D2R signalling enhances DAT activity, some data suggest that D3R has a biphasic effect. However, despite the extensive therapeutic use of D2R/D3R agonists in neuropsychiatric disorders, this phenomenon has been little studied. In order to shed light on this issue, DAT activity, expression and posttranslational modifications were studied in mice and DAT-D3R-transfected HEK cells. Consistent with previous reports, acute treatment with D2R/D3R agonists promoted DAT recruitment to the plasma membrane and an increase in DA uptake. However, when the treatment was prolonged, DA uptake and total striatal DAT protein declined below basal levels. These effects were inhibited in mice by genetic and pharmacological inactivation of D3R, but not D2R, indicating that they are D3R-dependent. No changes were detected in mesostriatal tyrosine hydroxylase (TH) protein expression and midbrain TH and DAT mRNAs, suggesting that the dopaminergic system is intact and DAT is posttranslationally regulated. The use of immunoprecipitation and cell surface biotinylation revealed that DAT is phosphorylated at serine residues, ubiquitinated and released into late endosomes through a PKCß-dependent mechanism. In sum, the results indicate that long-term D3R activation promotes DAT down-regulation, an effect that may underlie neuroprotective and antidepressant actions described for some D2R/D3R agonists.


Assuntos
Agonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteína Quinase C/metabolismo , Proteólise/efeitos dos fármacos , Receptores de Dopamina D3/metabolismo , Ubiquitinação/fisiologia , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pramipexol/farmacologia , Receptores de Dopamina D3/agonistas , Ubiquitinação/efeitos dos fármacos
10.
Mol Biol Rep ; 48(4): 3079-3087, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33891271

RESUMO

Neuroinflammation is the key factor associated with the progression of Parkinson's disease (PD). Pramipexole (PPX) has anti-inflammatory and antioxidant properties. This study explored the effects of PPX on PD and its related mechanisms. A PD rat model was established using 6-hydroxydopamine (6-OHDA). Thirty rats were divided into the following three groups: control, PD, and PD + PPX. The rats in the PD and PD + PPX groups were first administered 6-OHDA and then respectively treated with saline and PPX. Afterward, rotational behavior tests were performed to evaluate the efficiency of PPX. The level of tyrosine hydroxylase (TH) was measured using immunohistochemical staining. Subsequently, real-time quantitative PCR (RT-qPCR) and western blot were used to determine the expression of α-synuclein (α-syn), nuclear receptor subfamily 4 group A member 2 (Nurr1), and nuclear factor kappa B (NF-κB). PPX improved the motor behavior of PD rats caused by 6-OHDA. The number of TH-positive neurons in the PD group was significantly lower than that in the control group (P < 0.05), while PPX could rescue 6-OHDA-induced TH loss. RT-qPCR and western blot showed that Nurr1 expression was significantly downregulated in the PD group compared to that of the control group (P < 0.05), while after PPX treatment, its expression was significantly upregulated (P < 0.05). For α-syn and NF-κB, 6-OHDA significantly upregulated their expressions (P < 0.05), whereas PPX reversed them. PPX improved the motor behavior of PD through mediating the inflammatory response and regulating the Nurr1/NF-κB signaling pathway.


Assuntos
NF-kappa B/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Doença de Parkinson/tratamento farmacológico , Pramipexol/farmacologia , Animais , Antiparkinsonianos/farmacologia , Modelos Animais de Doenças , Oxidopamina , Ratos , Transdução de Sinais/efeitos dos fármacos , alfa-Sinucleína/metabolismo
11.
Brain ; 143(2): 701-710, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32040562

RESUMO

The efficacy of dopamine agonists in treating major depressive disorder has been hypothesized to stem from effects on ventrostriatal dopamine and reward function. However, an important question is whether dopamine agonists are most beneficial for patients with reward-based deficits. This study evaluated whether measures of reward processing and ventrostriatal dopamine function predicted response to the dopamine agonist, pramipexole (ClinicalTrials.gov Identifier: NCT02033369). Individuals with major depressive disorder (n = 26) and healthy controls (n = 26) (mean ± SD age = 26.5 ± 5.9; 50% female) first underwent assessments of reward learning behaviour and ventrostriatal prediction error signalling (measured using functional MRI). 11C-(+)-PHNO PET before and after oral amphetamine was used to assess ventrostriatal dopamine release. The depressed group then received open-label pramipexole treatment for 6 weeks (0.5 mg/day titrated to a maximum daily dose of 2.5 mg). Symptoms were assessed weekly, and reward learning was reassessed post-treatment. At baseline, relative to controls, the depressed group showed lower reward learning (P = 0.02), a trend towards blunted reward-related prediction error signals (P = 0.07), and a trend towards increased amphetamine-induced dopamine release (P = 0.07). Despite symptom improvements following pramipexole (Cohen's d ranging from 0.51 to 2.16 across symptom subscales), reward learning did not change after treatment. At a group level, baseline reward learning (P = 0.001) and prediction error signalling (P = 0.004) were both associated with symptom improvement, albeit in a direction opposite to initial predictions: patients with stronger pretreatment reward learning and reward-related prediction error signalling improved most. Baseline D2/3 receptor availability (P = 0.02) and dopamine release (P = 0.05) also predicted improvements in clinical functioning, with lower D2/3 receptor availability and lower dopamine release predicting greater improvements. Although these findings await replication, they suggest that measures of reward-related mesolimbic dopamine function may hold promise for identifying depressed individuals likely to respond favourably to dopaminergic pharmacotherapy.


Assuntos
Depressão/tratamento farmacológico , Transtorno Depressivo Maior/tratamento farmacológico , Pramipexol/farmacologia , Recompensa , Adulto , Transtorno Depressivo Maior/fisiopatologia , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Feminino , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade
12.
J Neurophysiol ; 123(2): 645-657, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851560

RESUMO

Gain-of-function variants in voltage-gated sodium channel NaV1.7 that increase firing frequency and spontaneous firing of dorsal root ganglion (DRG) neurons have recently been identified in 5-10% of patients with idiopathic small fiber neuropathy (I-SFN). Our previous in vitro observations suggest that enhanced sodium channel activity can contribute to a decrease in length of peripheral sensory axons. We have hypothesized that sustained sodium influx due to the expression of SFN-associated sodium channel variants may trigger an energetic deficit in neurons that contributes to degeneration and loss of nerve fibers in SFN. Using an ATP FRET biosensor, we now demonstrate reduced steady-state levels of ATP and markedly faster ATP decay in response to membrane depolarization in cultured DRG neurons expressing an SFN-associated variant NaV1.7, I228M, compared with wild-type neurons. We also observed that I228M neurons show a significant reduction in mitochondrial density and size, indicating dysfunctional mitochondria and a reduced bioenergetic capacity. Finally, we report that exposure to dexpramipexole, a drug that improves mitochondrial energy metabolism, increases the neurite length of I228M-expressing neurons. Our data suggest that expression of gain-of-function variants of NaV1.7 can damage mitochondria and compromise cellular capacity for ATP production. The resulting bioenergetic crisis can consequently contribute to loss of axons in SFN. We suggest that, in addition to interventions that reduce ionic disturbance caused by mutant NaV1.7 channels, an alternative therapeutic strategy might target the bioenergetic burden and mitochondrial damage that occur in SFN associated with NaV1.7 gain-of-function mutations.NEW & NOTEWORTHY Sodium channel NaV1.7 mutations that increase dorsal root ganglion (DRG) neuron excitability have been identified in small fiber neuropathy (SFN). We demonstrate reduced steady-state ATP levels, faster depolarization-evoked ATP decay, and reduced mitochondrial density and size in cultured DRG neurons expressing SFN-associated variant NaV1.7 I228M. Dexpramipexole, which improves mitochondrial energy metabolism, has a protective effect. Because gain-of-function NaV1.7 variants can compromise bioenergetics, therapeutic strategies that target bioenergetic burden and mitochondrial damage merit study in SFN.


Assuntos
Trifosfato de Adenosina/metabolismo , Gânglios Espinais , Mitocôndrias , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Neuritos , Neurônios , Fármacos Neuroprotetores/farmacologia , Pramipexol/farmacologia , Neuropatia de Pequenas Fibras/metabolismo , Animais , Técnicas Biossensoriais , Células Cultivadas , Mutação com Ganho de Função , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
13.
Biochem Biophys Res Commun ; 529(4): 1080-1085, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32819568

RESUMO

Morphine is routinely used for pain management in heart failure patients. However, extended morphine exposure associates with major adverse cardiovascular events. Reports link the dopamine receptor D2-family with morphine-induced nociception modulation. This study first assessed whether morphine induces cardiac remodeling in healthy mice, then whether DRD3 agonist (DRD3ag, D2-family member) adjunct therapy prevents morphine-induced cardiac remodeling. Mice received morphine (2 mg/kg/day i. p.) for 7 days (D7) and were either euthanized at D7 or kept 7 more days without morphine (i.e. withdrawal period, D8-D14): G1, morphine; G2, morphine/DRD3ag; G3, morphine + withdrawal; G4, morphine/DRD3ag + withdrawal; G5, morphine + withdrawal/DRD3ag. A separate cohort of animals were used as naïve tissues. We evaluated functional and molecular parameters of cardiac remodeling. Although we did not observe significant differences in systolic function, morphine induced both interstitial fibrosis and cardiomyocyte hypertrophy. Interestingly, DRD3ag abolished these effects. Compared to naïve tissues, collagen 1 increased after withdrawal in G3 and G4 and collagen 3 increased in G1-G4 but at higher levels in G1 and G2. Only G5 did not show collagen differences compared to naïve, suggesting DRD3ag treatment during withdrawal may be beneficial and prevent morphine-induced fibrosis. Smad2/3 phosphorylation increased during withdrawal, indicating a likely upstream pathway for the observed morphine-induced fibrosis. Overall, our data suggest that DRD3ag adjunct therapy decreases morphine-induced adverse cardiac remodeling.


Assuntos
Morfina/efeitos adversos , Miocárdio/patologia , Pramipexol/farmacologia , Receptores de Dopamina D3/agonistas , Animais , Colágeno/metabolismo , Fibrose , Hipertrofia , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Sístole/efeitos dos fármacos
14.
Mov Disord ; 35(2): 296-305, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31737954

RESUMO

BACKGROUND: Pramipexole is a dopamine agonist used as a treatment in PD and restless legs syndrome to reduce motor symptoms, but it often induces impulse control disorders. In particular, patients with impulse control disorders tend to make more impulsive choices in the delay discounting task, that is, they choose small immediate rewards over larger delayed ones more often than patients without impulse control disorders and healthy subjects do. Yet the site of action of pramipexole that produces these impulsive choices remains unknown. Based on the heterogeneity of corticostriatal projections and the massive dopamine innervation of the striatum, we hypothesized that impulsive choices triggered by dopamine treatments may be supported by a specific striatal territory. OBJECTIVES: This study aims to determine by which anteriorstriatum territory the Pramipexole trigger impulsive choices; the caudate nucleus, the ventral striatum or the putamen. METHODS: We compared pramipexole intramuscular injections to intracerebral microinjections within the three striatal territories in healthy monkeys trained to execute the delay discounting task, a behavioral paradigm typically used to evaluate impulsive choices. RESULTS: We found that pramipexole intramuscular injections induced impulsive choices in all monkeys. Local microinjections were performed inside the anterior caudate nucleus, ventral striatum, and anterior putamen and reproduced those impulsive choices when pramipexole was directly injected into the caudate nucleus, whereas injections into the ventral striatum or putamen had no effect on monkeys' choices. CONCLUSIONS: These results, consistent with clinical studies, suggest that impulsive choices triggered by pramipexole are supported by the caudate nucleus, allowing us to emphasize the importance of dopamine modulation inside this striatal territory in decision processes underlying impulsive behaviors. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Agonistas de Dopamina/uso terapêutico , Comportamento Impulsivo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Pramipexol/farmacologia , Animais , Benzotiazóis/uso terapêutico , Haplorrinos , Recompensa , Estriado Ventral/efeitos dos fármacos
15.
Neurochem Res ; 45(2): 268-277, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31811458

RESUMO

Pramipexole (PPX) is a common drug for the treatment of Parkinson's disease. However, the mechanism allows PPX in the progression of Parkinson's disease remains largely unknown. This study aimed to investigate the role of PPX in 1-Methyl-4-phenylpyridinium (MPP+)-treated neuroblastoma cells and explore the interaction between PPX and miR-494-3p/brain derived neurotrophic factor (BDNF) axis. SK-N-SH and CHP 212 cells challenged by MPP+ were used as cellular model of Parkinson's disease and incubated with PPX. The expression levels of miR-494-3p and BDNF were measured by quantitative real-time polymerase chain reaction or western blot. Neurotoxicity was investigated by cell apoptosis, inflammatory response and oxidative stress. The target association between miR-494-3p and BDNF was confirmed by luciferase reporter and RNA immunoprecipitation assays. miR-494-3p expression was increased and BDNF level was decreased in MPP+-treated SK-N-SH and CHP 212 cells, which were reversed by introduction of PPX. Pramipexole attenuated cell apoptosis, inflammatory response and oxidative stress in MPP+-treated SK-N-SH and CHP 212 cells. Knockdown of miR-494-3p also suppressed neurotoxicity induced by MPP+ in SK-N-SH and CHP 212 cells. BDNF was validated as a target of miR-494-3p and its silence abated the suppressive effect of miR-494-3p on MPP+-induced neurotoxicity. Moreover, addition of miR-494-3p and silence of BDNF mitigated the effect of PPX on MPP+-induced neurotoxicity. PPX inhibited MPP+-induced neurotoxicity in SK-N-SH and CHP 212 cells by decreasing miR-494-3p and increasing BDNF, indicating the potential therapeutic effect of PPX on Parkinson's disease.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Antiparkinsonianos/farmacologia , Pramipexol/farmacologia , Apoptose/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
16.
Neurochem Res ; 45(7): 1518-1525, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32172399

RESUMO

Essential tremor is one of the most common neurological disorders, however, it is not sufficiently controlled with currently available pharmacotherapy. Our recent study has shown that pramipexole, a drug efficient in inhibiting parkinsonian tremor, reduced the harmaline-induced tremor in rats, generally accepted to be a model of essential tremor. The aim of the present study was to investigate brain targets for the tremorolytic effect of pramipexole by determination of the early activity-dependent gene zif-268 mRNA expression. Tremor in rats was induced by harmaline administered at a dose of 15 mg/kg ip. Pramipexole was administered at a low dose of 0.1 mg/kg sc. Tremor was measured by Force Plate Actimeters where four force transducers located below the corners of the plate tracked the animal's position on a Cartesian plane. The zif-268 mRNA expression was analyzed by in situ hybridization in brain slices. Harmaline induced tremor and increased zif-268 mRNA levels in the inferior olive, cerebellar cortex, ventroanterior/ventrolateral thalamic nuclei and motor cortex. Pramipexole reversed both the harmaline-induced tremor and the increase in zif-268 mRNA expression in the inferior olive, cerebellar cortex and motor cortex. Moreover, the tremor intensity correlated positively with zif-268 mRNA expression in the above structures. The present results seem to suggest that the tremorolytic effect of pramipexole is related to the modulation of the harmaline-increased neuronal activity in the tremor network which includes the inferior olive, cerebellar cortex and motor cortex. Potential mechanisms underlying the above pramipexole action are discussed.


Assuntos
Encéfalo/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Harmalina/toxicidade , Pramipexol/uso terapêutico , RNA Mensageiro/biossíntese , Tremor/metabolismo , Animais , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/toxicidade , Proteína 1 de Resposta de Crescimento Precoce/genética , Expressão Gênica , Masculino , Pramipexol/farmacologia , RNA Mensageiro/genética , Ratos , Ratos Wistar , Tremor/induzido quimicamente , Tremor/tratamento farmacológico
17.
Int J Mol Sci ; 20(20)2019 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635133

RESUMO

Regenerative capacity varies greatly between species. Mammals are limited in their ability to regenerate damaged cells, tissues and organs compared to organisms with robust regenerative responses, such as zebrafish. The regeneration of zebrafish tissues including the heart, spinal cord and retina requires foxp3a+ zebrafish regulatory T cells (zTregs). However, it remains unclear whether the muted regenerative responses in mammals are due to impaired recruitment and/or function of homologous mammalian regulatory T cell (Treg) populations. Here, we explore the possibility of enhancing zTreg recruitment with pharmacological interventions using the well-characterized zebrafish tail amputation model to establish a high-throughput screening platform. Injury-infiltrating zTregs were transgenically labelled to enable rapid quantification in live animals. We screened the NIH Clinical Collection (727 small molecules) for modulators of zTreg recruitment to the regenerating tissue at three days post-injury. We discovered that the dopamine agonist pramipexole, a drug currently approved for treating Parkinson's Disease, specifically enhanced zTreg recruitment after injury. The dopamine antagonist SCH-23390 blocked pramipexole activity, suggesting that peripheral dopaminergic signaling may regulate zTreg recruitment. Similar pharmacological approaches for enhancing mammalian Treg recruitment may be an important step in developing novel strategies for tissue regeneration in humans.


Assuntos
Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Regeneração , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/fisiologia , Peixe-Zebra/fisiologia , Animais , Dopamina/metabolismo , Pramipexol/farmacologia , Transdução de Sinais
18.
Stroke ; 49(9): 2200-2210, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30354980

RESUMO

Background and Purpose- Although intracellular zinc accumulation has been shown to contribute to neuronal death after cerebral ischemia, the mechanism by which zinc keeps on accumulating to cause severe brain damage remains unclear. Herein the dynamic cause-effect relationships between zinc accumulation and reactive oxygen species (ROS) production during cerebral ischemia/reperfusion are investigated. Methods- Rats were treated with zinc chelator, ROS scavenger, mitochondria-targeted ROS inhibitor, or NADPH oxidase inhibitor during a 90-minute middle cerebral artery occlusion. Cytosolic labile zinc, ROS level, cerebral infarct volume, and neurological functions were assessed after ischemia/reperfusion. Results- Zinc and ROS were colocalized in neurons, leading to neuronal apoptotic death. Chelating zinc reduced ROS production at 6 and 24 hours after reperfusion, whereas eliminating ROS reduced zinc accumulation only at 24 hours. Furthermore, suppression of mitochondrial ROS production reduced the total ROS level and brain damage at 6 hours after reperfusion but did not change zinc accumulation, indicating that ROS is produced mainly from mitochondria during early reperfusion and the initial zinc release is upstream of ROS generation after ischemia. Suppression of NADPH oxidase decreased ROS generation, zinc accumulation, and brain damage only at 24 hours after reperfusion, indicating that the majority of ROS is produced by NADPH oxidase at later reperfusion time. Conclusions- This study provides the direct evidence that there exists a positive feedback loop between zinc accumulation and NADPH oxidase-induced ROS production, which greatly amplifies the damaging effects of both. These findings reveal that different ROS-generating source contributes to ischemia-generated ROS at different time, underscoring the critical importance of spatial and temporal factors in the interaction between ROS and zinc accumulation, and the consequent brain injury, after cerebral ischemia/reperfusion.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Quelantes/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Neurônios/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo , Animais , Compostos de Bifenilo/farmacologia , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Etilenodiaminas/farmacologia , NADPH Oxidases/antagonistas & inibidores , Neurônios/metabolismo , Oniocompostos/farmacologia , Compostos Organometálicos/farmacologia , Pramipexol/farmacologia , Ratos , Salicilatos/farmacologia
19.
Int J Neuropsychopharmacol ; 21(5): 448-460, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390063

RESUMO

Background: The altered expression and function of dopamine receptor D3 (D3R) in patients and animal models have been correlated with depression disease severity. However, the morphological alterations and biological effects of D3R in the brain after inflammation-induced depressive-like behavior remain elusive. Methods: In the present study, we ascertained the changes of D3R expression in the brain regions after depressive-like behavior induced by peripheral administration of lipopolysaccharide (LPS). Protein levels of proinflammatory cytokines, brain-derived neurotrophic factor (BDNF), and extracellular signal-regulated kinase (ERK1/2)-cAMP-response element-binding protein (CREB) signaling pathway after activation or inhibition of D3R in the brain of depressive mice were also investigated. Results: LPS caused a significant reduction of D3R in the ventral tegmental area (VTA), medial prefrontal cortex (mPFC), and nucleus accumbens (NAc), which are areas related to the mesolimbic dopaminergic system. Pretreatment with pramipexole (PPX), a preferential D3R agonist, showed antidepressant effects on LPS-induced depression-like behavior through preventing changes in LPS-induced proinflammatory cytokines (tumour necrosis factor-α, interleukin-1ß, and interleukin-6), BDNF, and ERK1/2-CREB signaling pathway in the VTA and NAc. In opposition, treatment with a D3R selective antagonist NGB 2904 alone made mice susceptible to depression-like effects and caused changes in accordance with the LPS-induced alterations in proinflammatory cytokines, BDNF, and the ERK1/2-CREB signaling pathway in the mPFC and NAc. Conclusions: These findings provide a relevant mechanism for D3R in LPS-induced depressive-like behavior via its mediation of proinflammatory cytokines and potential cross-effects between BDNF and the ERK1/2-CREB signaling pathway.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/metabolismo , Depressão , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Lipopolissacarídeos/farmacologia , Receptores de Dopamina D3/metabolismo , Transdução de Sinais/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Depressão/induzido quimicamente , Depressão/imunologia , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Agonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/administração & dosagem , Fluorenos/farmacologia , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Piperazinas/farmacologia , Pramipexol/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
20.
J Pharmacol Sci ; 138(1): 31-37, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30241783

RESUMO

Parkinson's disease (PD) is characterized by the selective death of dopaminergic neurons. To avoid inconvenience of frequent administration caused by short half life and recurrence of symptoms such as tremor and bradykinesia incurred by drug elimination, a novel long-acting pramipexole transdermal patch has been made. In the present study, we evaluated the neuroprotective effects and underlying mechanisms of pramipexole patch (PPX patch) in a subacute PD mouse model induced by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results showed that PPX patch treatment improved dyskinesia. MPTP-induced reduction of DA as well as its metabolites DOPAC and HVA in the striatum were prevented by PPX patch in a dose-dependent manner. PPX patch also restored the activity of antioxidant enzymes including SOD, GSH-Px and CAT in the striatum while reduced the content of MDA. Furthermore, PPX patch upregulated Nrf2/HO-1 expression. The protective effects of PPX patch was also associated with downregulation of the Bax/Bcl-2 ratio and Apaf-1, inhibition of cytochrome c release and inactivation of caspase-9 and caspase-3. In conclusion, our studies demonstrated that the long-acting pramipexole patch exerts its neuroprotective effects, at least in part, by inhibiting oxidative stress and mitochondrial apoptosis pathway and holds promise as a candidate drug.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacologia , Fármacos Neuroprotetores , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Pramipexol/administração & dosagem , Pramipexol/farmacologia , Adesivo Transdérmico , Administração Cutânea , Animais , Apoptose/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA