Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 87, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877413

RESUMO

BACKGROUND: Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS: Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/ß-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/ß-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/ß-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS: S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1ß-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/ß-catenin signaling pathway. CONCLUSIONS: This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/ß-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.


Assuntos
Apoptose , Degeneração do Disco Intervertebral , Núcleo Pulposo , Proteína A6 Ligante de Cálcio S100 , Via de Sinalização Wnt , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Apoptose/genética , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Animais , Masculino , Feminino , Ratos , Adulto , Pessoa de Meia-Idade , beta Catenina/metabolismo , beta Catenina/genética , Ratos Sprague-Dawley , Modelos Animais de Doenças , Proteínas de Ciclo Celular
2.
Plant Physiol ; 191(2): 1052-1065, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461944

RESUMO

Fructokinase (FRK) activates fructose through phosphorylation, which sends the activated fructose into primary metabolism and regulates fructose signaling capabilities in plants. The apple (Malus × domestica) FRK gene MdFRK2 shows especially high affinity to fructose, and its overexpression decreases fructose levels in the leaves of young plants. However, in the current study of mature plants, fruits of transgenic apple trees overexpressing MdFRK2 accumulated a higher level of fructose than wild-type (WT) fruits (at both young and mature stages). Transgenic apple trees with high mRNA MdFRK2 expression showed no significant differences in MdFRK2 protein abundance or FRK enzyme activity compared to WT in mature leaves, young fruits, and mature fruits. Immunoprecipitation-mass spectrometry analysis identified an skp1, cullin, F-box (SCF) E3 ubiquitin ligase, calcyclin-binding protein (CacyBP), that interacted with MdFRK2. RNA-sequencing analysis provided evidence for ubiquitin-mediated post-transcriptional regulation of MdFRK2 protein for the maintenance of fructose homeostasis in mature leaves and fruits. Further analyses suggested an MdCacyBP-MdFRK2 regulatory module, in which MdCacyBP interacts with and ubiquitinates MdFRK2 to facilitate its degradation by the 26S proteasome, thus decreasing the FRK enzyme activity to elevate fructose concentration in transgenic apple trees. This result uncovered an important mechanism underlying plant fructose homeostasis in different organs through regulating the MdFRK2 protein level via ubiquitination and degradation. Our study provides usable data for the future improvement of apple flavor and expands our understanding of the molecular mechanisms underlying plant fructose content and signaling regulation.


Assuntos
Malus , Malus/metabolismo , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Homeostase , Frutose , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
J Cell Biochem ; 124(2): 205-220, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502516

RESUMO

Receptor for advanced glycation end products (RAGE), a member of the immunoglobulin family, interactions with its ligands trigger downstream signaling and induce an inflammatory response linked to diabetes, inflammation, carcinogenesis, cardiovascular disease, and a variety of other human disorders. The interaction of RAGE and S100A6 has been associated with a variety of malignancies. For the control of RAGE-related illnesses, there is a great demand for more specialized drug options. To identify the most effective target for combating human malignancies associated with RAGE-S100A6 complex, we conducted single and differential gene expression analyses of S100A6 and RAGE, comparing normal and malignant tissues. Further, a structure-based virtual screening was conducted using the ZINC15 database. The chosen compounds were then subjected to a molecular docking investigation on the RAGE active site region, recognized by the various cancer-related RAGE ligands. An optimized RAGE structure was screened against a library of drug-like molecules. The screening results suggested that three promising compounds were presented as the top acceptable drug-like molecules with a high binding affinity at the RAGE V-domain catalytic region. We depicted that these compounds may be potential RAGE inhibitors and could be used to produce a successful medication against human cancer and other RAGE-related diseases based on their various assorted parameters, binding energy, hydrogen bonding, ADMET characteristics, etc. MD simulation on a time scale of 50 ns was used to test the stability of the RAGE-inhibitor complexes. Therefore, targeting RAGE and its ligands using these drug-like molecules may be an effective therapeutic approach.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Ligantes , Perfilação da Expressão Gênica , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas de Ciclo Celular/genética
4.
Breast Cancer Res ; 25(1): 55, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217945

RESUMO

BACKGROUND: S100A6 and murine double minute 2 (MDM2) are important cancer-related molecules. A previous study identified an interaction between S100A6 and MDM2 by size exclusion chromatography and surface plasmon resonance experiments. The present study investigated whether S100A6 could bind to MDM2 in vivo and further explored its functional implication. METHODS: Co-immunoprecipitation, glutathione-S-transferase pull-down assay, and immunofluorescence were performed to determine the in vivo interaction between S100A6 and MDM2. Cycloheximide pulse-chase assay and ubiquitination assay were performed to clarify the mechanism by which S100A6 downregulated MDM2. In addition, clonogenic assay, WST-1 assay, and flow cytometry of apoptosis and the cell cycle were performed and a xenograft model was established to evaluate the effects of the S100A6/MDM2 interaction on growth and paclitaxel-induced chemosensitivity of breast cancer. The expressions of S100A6 and MDM2 in patients with invasive breast cancer were analyzed by immunohistochemistry. In addition, the correlation between the expression of S100A6 and the response to neoadjuvant chemotherapy was statistically analyzed. RESULTS: S100A6 promoted the MDM2 translocation from nucleus to cytoplasm, in which the S100A6 bound to the binding site of the herpesvirus-associated ubiquitin-specific protease (HAUSP) in MDM2, disrupted the MDM2-HAUSP-DAXX interactions, and induced the MDM2 self-ubiquitination and degradation. Furthermore, the S100A6-mediated MDM2 degradation suppressed the growth of breast cancer and enhanced its sensitivity to paclitaxel both in vitro and in vivo. For patients with invasive breast cancer who received epirubicin and cyclophosphamide followed by docetaxel (EC-T), expressions of S100A6 and MDM2 were negatively correlated, and high expression of S100A6 suggested a higher rate of pathologic complete response (pCR). Univariate and multivariate analyses showed that the high expression of S100A6 was an independent predictor of pCR. CONCLUSION: These results reveal a novel function for S100A6 in downregulating MDM2, which directly enhances sensitivity to chemotherapy.


Assuntos
Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitinação
5.
Exp Parasitol ; 246: 108475, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707015

RESUMO

Malaria remains as a global life-threatening disorder due to the emergence of resistance against standard antimalarials. Consequently, there is a serious need to better understand the biology of the malaria parasite in order to determine appropriate targets for new interventions. Calcyclin binding protein (CacyBP) is a multi-functional and multi-ligand protein that is not well characterized in malaria disease. In this study, we have cloned CacyBP from rodent species Plasmodium yoelii nigeriensis and purified the recombinant protein to carry out its detailed molecular, biophysical and immunological characterization. Molecular characterization indicates that PyCacyBP is a ∼27 kDa protein in parasite lysate and exists in monomer and dimer forms. Bioinformatic analysis of CacyBP showed significant sequence and structural similarities between rodent and human malaria parasites. CacyBP is expressed in all blood stages of P. yoelii nigeriensis parasite. In silico studies proposed the immunogenic potential of CacyBP. The rPyCacyBP immunized mice exhibited elevated levels of IgG1, IgG2a, IgG2b and IgG3 in their serum. Notably, cellular immune response in splenocytes from immunized mice showed increased expression of pro-inflammatory cytokines such as IL-12, IFN-γ and TNF-α. This CacyBP exhibited pro-inflammatory immune response in rodent host. These finding revealed that CacyBP may have the potential to boost the host immunity for protection against malaria infection. The present study provides basis for further exploration of the biological function of CacyBP in malaria parasite.


Assuntos
Antimaláricos , Malária , Parasitos , Plasmodium yoelii , Humanos , Animais , Camundongos , Parasitos/metabolismo , Proteína A6 Ligante de Cálcio S100 , Malária/tratamento farmacológico , Antimaláricos/uso terapêutico , Imunidade Celular , Plasmodium yoelii/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/uso terapêutico
6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674873

RESUMO

S100A6, also known as calcyclin, is a calcium-binding protein belonging to the S100 protein family. It was first identified and purified more than 30 years ago. Initial structural studies, focused mostly on the mode and affinity of Ca2+ binding and resolution of the resultant conformational changes, were soon complemented by research on its expression, localization and identification of binding partners. With time, the use of biophysical methods helped to resolve the structure and versatility of S100A6 complexes with some of its ligands. Meanwhile, it became clear that S100A6 expression was altered in various pathological states and correlated with the stage/progression of many diseases, including cancers, indicative of its important, and possibly causative, role in some of these diseases. This, in turn, prompted researchers to look for the mechanism of S100A6 action and to identify the intermediary signaling pathways and effectors. After all these years, our knowledge on various aspects of S100A6 biology is robust but still incomplete. The list of S100A6 ligands is growing all the time, as is our understanding of the physiological importance of these interactions. The present review summarizes available data concerning S100A6 expression/localization, interaction with intracellular and extracellular targets, involvement in Ca2+-dependent cellular processes and association with various pathologies.


Assuntos
Neoplasias , Proteínas S100 , Humanos , Proteína A6 Ligante de Cálcio S100/metabolismo , Ligantes , Proteínas S100/química , Proteínas de Ciclo Celular/metabolismo , Transdução de Sinais
7.
Mol Biol Evol ; 38(6): 2227-2239, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33528559

RESUMO

Some have hypothesized that ancestral proteins were, on average, less specific than their descendants. If true, this would provide a universal axis along which to organize protein evolution and suggests that reconstructed ancestral proteins may be uniquely powerful tools for protein engineering. Ancestral sequence reconstruction studies are one line of evidence used to support this hypothesis. Previously, we performed such a study, investigating the evolution of peptide-binding specificity for the paralogs S100A5 and S100A6. The modern proteins appeared more specific than their last common ancestor (ancA5/A6), as each paralog bound a subset of the peptides bound by ancA5/A6. In this study, we revisit this transition, using quantitative phage display to measure the interactions of 30,533 random peptides with human S100A5, S100A6, and ancA5/A6. This unbiased screen reveals a different picture. While S100A5 and S100A6 do indeed bind to a subset of the peptides recognized by ancA5/A6, they also acquired new peptide partners outside of the set recognized by ancA5/A6. Our previous work showed that ancA5/A6 had lower specificity than its descendants when measured against biological targets; our new work shows that ancA5/A6 has similar specificity to the modern proteins when measured against a random set of peptide targets. This demonstrates that altered biological specificity does not necessarily indicate altered intrinsic specificity, and sounds a cautionary note for using ancestral reconstruction studies with biological targets as a means to infer global evolutionary trends in specificity.


Assuntos
Proteínas de Ciclo Celular/genética , Evolução Molecular , Proteína A6 Ligante de Cálcio S100/genética , Proteínas S100/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Mapas de Interação de Proteínas , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo
8.
Acta Biochim Biophys Sin (Shanghai) ; 54(1): 137-147, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130629

RESUMO

The mechanism behind the aberrant expression of S100A6 in osteosarcoma is seldom reported so far. This study sought to explore the regulatory axis targeting S100A6 involved in osteosarcoma progression. Clinical samples collected from osteosarcoma patients were used to detect the expressions of SNHG1, miR-493-5p, and S100A6 by western bolt analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The effects of S100A6 on proliferation and osteogenic differentiation were investigated by the CCK-8 assay, colony formation assay, Ethynyl deoxyuridine staining, matrix mineralization assay, and alkaline phosphatase assay. The potential of lncRNAs/miRNAs targeting S100A6 was identified by the bioinformatics approach, and the results were verified by the dual luciferase assay and RNA immunoprecipitation assay. Both and rescue experiments were performed to investigate the regulatory relationship between the identified lncRNAs and S100A6. The results showed that S100A6 is highly expressed in osteosarcoma. S100A6 overexpression not only increases the proliferation but also reduces the osteogenic differentiation of osteosarcoma cells, while S1006A silence exerts the opposite effects. Then, SNHG1 is identified to directly interact with miR-493-5p to attenuate miR-493-5p binding to the 3'-untranslated region of S100A6. Notably, S100A6 silence partially rescues the effect of SNHG1 overexpression on proliferation and osteogenic differentiation of osteosarcoma cells. Furthermore, the suppressive role of SNHG1 silence in the growth of osteosarcoma xenograft tumors is countered by S100A6 overexpression. Collectively, this study reveals that S100A6 plays an important role in osteosarcoma progression, and SNHG1 promotes S100A6 expression by competitively sponging miR-493-5p.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , RNA Longo não Codificante/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese , Osteossarcoma/genética , Osteossarcoma/patologia , RNA Longo não Codificante/genética , Proteína A6 Ligante de Cálcio S100/genética
9.
Osteoarthritis Cartilage ; 29(8): 1147-1154, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33933586

RESUMO

OBJECTIVE: We aimed to provide a model to predict the prospective development of radiographic KOA (rKOA). METHOD: Baseline sera from 333 non-radiographic KOA subjects belonging to OA Initiative (OAI) who developed or not, rKOA during a follow-up period of 96 months were used in this study. The exploratory cohort included 200 subjects, whereas the replication cohort included 133. The levels of inter-alpha trypsin inhibitor heavy chain 1 (ITIH1), complement C3 (C3) and calcyclin (S100A6), identified in previous large proteomic analysis, were analyzed by using sandwich immunoassays on suspension bead arrays. The association of protein levels and clinical covariates with rKOA incidence was assessed by combining logistic regression analysis, Receiver Operating Characteristic (ROC) analysis, Integrated Discrimination Improvement (IDI) analysis and Kaplan-Meier curves. RESULTS: Levels of ITIH1, C3 and S100A6 were significantly associated with the prospective development of rKOA, showing an area under the curve (AUC) of 0.713 (0.624-0.802), 0.708 (0.618-0.799) and 0.654 (0.559-0.749), respectively to predict rKOA in the replication cohort. The inclusion of ITIH1 in the clinical model (age, gender, BMI, previous knee injury and WOMAC pain) improved the predictive capacity of the clinical covariates (AUC = 0.754 [0.670-0.838]) producing the model with the highest AUC (0.786 [0.705-0.867]) and the highest IDI index (9%). High levels of ITIH1 were also associated with an earlier onset of the disease. CONCLUSION: A clinical model including protein biomarkers that predicts incident rKOA has been developed. Among the tested biomarkers, ITIH1 showed potential to improve the capacity to predict rKOA incidence in clinical practice.


Assuntos
Modelos Teóricos , Osteoartrite do Joelho/diagnóstico por imagem , alfa-Globulinas/análise , Biomarcadores/sangue , Complemento C3/análise , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Radiografia , Proteína A6 Ligante de Cálcio S100/sangue
10.
Mol Vis ; 27: 243-261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012227

RESUMO

Purpose: This paper examines the tear concentration of cystatin S (CST4), calcyclin (S100A6), calgranulin A (S100A8), and matrix metalloproteinase 9 (MMP9), and the correlation between biomarker expression, clinical parameters, and disease severity in patients suffering from dry eye (DE). A comparison of the results is obtained via ELISA tests and customized antibody microarrays for protein quantification. Methods: This single-center, observational study recruited 59 participants (45 DE and 14 controls). Clinical evaluation included an Ocular Surface Disease Index (OSDI) questionnaire, a tear osmolarity (OSM) test, the Schirmer test (SCH), tear breakup time (TBUT), fluorescein (FLUO) and lissamine green (LG) corneal staining, and meibomian gland evaluation (MGE). Tear concentrations of CST4, S100A6, S100A8, and MMP9 were measured using standard individual ELISA assays. The levels of CST4, S100A6, and MMP9 were also measured using customized multiplexed antibody microarrays. Correlations between variables were evaluated, and a significance level was p value <0.05. Results: The quantification of tear protein biomarkers with ELISA showed that the concentration of CST4 was significantly (2.14-fold) reduced in tears of DE patients in comparison with control (CT) subjects (p < 0.001). S100A6 and S100A8 concentrations were significantly higher in the tears of DE patients (1.36- and 2.29-fold; p < 0.001 and 0.025, respectively) in comparison with CT. The MMP9 level was also higher in DE patients (5.83-fold), but not significantly (p = 0.22). The changes in CST4 and S100A6 concentrations were significantly correlated with dry eye disease (DED) severity. Quantification of CST4, S100A6, and MMP9, using antibody microarrays, confirmed the ELISA results. Similar trends were observed: 1.83-fold reduction for CST4 (p value 0.01), 8.63-fold increase for S100A6 (p value <0.001) and 9.67-fold increase for MMP9 (p value 0.94), but with higher sensitivity. The biomarker concentrations were significantly associated with the signs and symptoms related with DED. Conclusions: S100A6, S100A8, and CST4 diagnostic biomarkers strongly correlate with DED clinical parameters. S100A6 and CST4 are also useful for grading DE severity. The multiplexed antibody microarray technique, used here for tear multi-marker quantification, appears more sensitive than standard ELISA tests.


Assuntos
Biomarcadores/metabolismo , Síndromes do Olho Seco/metabolismo , Proteínas do Olho/metabolismo , Lágrimas/metabolismo , Adulto , Idoso , Calgranulina A/metabolismo , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Análise em Microsséries , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Proteína A6 Ligante de Cálcio S100/metabolismo , Cistatinas Salivares/metabolismo
11.
BMC Cancer ; 21(1): 1039, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530774

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a treatment-refractory malignancy with poor prognosis. It is urgent to identify novel and valid biomarkers to predict the progress and prognosis of PDAC. The S100A family have been identified as being involved in cell proliferation, migration and differentiation progression of various cancer types. However, the expression patterns and prognostic values of S100As in PDAC remain to be analyzed. METHODS: We investigated the transcriptional expressions, methylation level and prognostic value of S100As in PDAC patients from the Oncomine, GEPIA2, Linkedomics and cBioPortal databases. Real-time PCR was used to detect the expressions of S100A2/4/6/10/14/16 in four pancreatic cancer cell lines and pancreatic cancer tissues from PDAC patients undergoing surgery. To verify the results further, immunohistochemistry was used to measure the expression of S100A2/4/6/10/14/16 in 43 PDAC patients' tissue samples. The drug relations of S100As were analyzed by using the Drugbank database. RESULTS: The results suggested that, the expression levels of S100A2/4/6/10/14/16 were elevated to PDAC tissues than in normal pancreatic tissues, and the promoter methylation levels of S100A S100A2/4/6/10/14/16 in PDAC (n = 10) were lower compared with normal tissue (n = 184) (P < 0.05). In addition, their expressions were negatively correlated with PDAC patient survival. CONCLUSIONS: Taken together, these results suggest that S100A2/4/6/10/14/16 might be served as prognostic biomarkers for survivals of PDAC patients.


Assuntos
Adenocarcinoma/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas S100/metabolismo , Adenocarcinoma/mortalidade , Anexina A2/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Fatores Quimiotáticos/metabolismo , Bases de Dados Genéticas , Progressão da Doença , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/mortalidade , Prognóstico , RNA Mensageiro/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteínas S100/genética , Transcrição Gênica
12.
FASEB J ; 34(2): 3179-3196, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31916625

RESUMO

ISOC is a cation current permeating the ISOC channel. In pulmonary endothelial cells, ISOC activation leads to formation of inter-endothelial cell gaps and barrier disruption. The immunophilin FK506-binding protein 51 (FKBP51), in conjunction with the serine/threonine protein phosphatase 5C (PPP5C), inhibits ISOC . Free PPP5C assumes an autoinhibitory state, which has low "basal" catalytic activity. Several S100 protein family members bind PPP5C increasing PPP5C catalytic activity in vitro. One of these family members, S100A6, exhibits a calcium-dependent translocation to the plasma membrane. The goal of this study was to determine whether S100A6 activates PPP5C in pulmonary endothelial cells and contributes to ISOC inhibition by the PPP5C-FKBP51 axis. We observed that S100A6 activates PPP5C to dephosphorylate tau T231. Following ISOC activation, cytosolic S100A6 translocates to the plasma membrane and interacts with the TRPC4 subunit of the ISOC channel. Global calcium entry and ISOC are decreased by S100A6 in a PPP5C-dependent manner and by FKBP51 in a S100A6-dependent manner. Further, calcium entry-induced endothelial barrier disruption is decreased by S100A6 dependent upon PPP5C, and by FKBP51 dependent upon S100A6. Overall, these data reveal that S100A6 plays a key role in the PPP5C-FKBP51 axis to inhibit ISOC and protect the endothelial barrier against calcium entry-induced disruption.


Assuntos
Sinalização do Cálcio , Proteínas de Ciclo Celular/metabolismo , Células Endoteliais/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Animais , Células Cultivadas , Endotélio Vascular/citologia , Pulmão/irrigação sanguínea , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Canais de Cátion TRPC/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
13.
Cell Biochem Funct ; 39(6): 771-779, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34008212

RESUMO

S100 calcium binding protein A6 (S100A6) has been reported to involve in many kinds of cancers through regulating intracellular calcium homeostasis. Previous studies found that S100A6 increased in lung cancer patients' plasma and pleural effusion. This study focused on its function in Calu-6 lung cancer cells. S100A6 gene was transferred into Calu-6 lung cancer cell line by lentivirus vector, the empty vector transfected cells and the blank cells were set as control groups. MTT was evaluating cell proliferation. The transwell assay was reflecting cell migration and cell invasion. The flow cytometric analysis was detecting cell apoptosis and cell cycle of three groups (Calu-6, Calu-6/neo, Calu-6/S100A6). Nude mouse tumorigenicity was then applied to evaluate S100A6's effect on cellular tumorigenicity. Compared with control groups, Calu-6/S100A6 cells showed a weakening trend in the cell behaviours of proliferation, migration and invasiveness, while had an enhancement of cell apoptosis, with all P < .05. The cell cycle of Calu-6/S100A6 cells had a reduction of S phase and an increase of G1 phase (P < .05). In animal study, after 5 weeks of cell injection, the tumour bulk of Calu-6/S100A6 group was smaller than controls, with P < .05. Our results demonstrate S100A6 inhibits the growth of Calu-6 lung cancer cells, as well as impairs Calu-6's ability in tumorigenesis. At cellular level, S100A6 is supposed to act as a tumour suppressor gene in lung cancer.


Assuntos
Apoptose , Proteínas de Ciclo Celular/metabolismo , Neoplasias Pulmonares/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Células Tumorais Cultivadas
14.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466593

RESUMO

S100 proteins are involved in the pathogenesis of sporadic colorectal carcinoma through different mechanisms. The aim of our study was to assess tissue mRNA encoding S100 proteins in patients with non-advanced and advanced colorectal adenoma. Mucosal biopsies were taken from the caecum, transverse colon and rectum during diagnostic and/or therapeutic colonoscopy. Another biopsy was obtained from adenomatous tissue in the advanced adenoma group. The tissue mRNA for each S100 protein (S100A4, S100A6, S100A8, S100A9, S100A11 and S100P) was investigated. Eighteen biopsies were obtained from the healthy mucosa in controls and the non-advanced adenoma group (six individuals in each group) and thirty biopsies in the advanced adenoma group (ten patients). Nine biopsies were obtained from advanced adenoma tissue (9/10 patients). Significant differences in mRNA investigated in the healthy mucosa were identified between (1) controls and the advanced adenoma group for S100A6 (p = 0.012), (2) controls and the non-advanced adenoma group for S100A8 (p = 0.033) and (3) controls and the advanced adenoma group for S100A11 (p = 0.005). In the advanced adenoma group, differences between the healthy mucosa and adenomatous tissue were found in S100A6 (p = 0.002), S100A8 (p = 0.002), S100A9 (p = 0.021) and S100A11 (p = 0.029). Abnormal mRNA expression for different S100 proteins was identified in the pathological adenomatous tissue as well as in the morphologically normal large intestinal mucosa.


Assuntos
Adenoma/patologia , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/patologia , RNA Mensageiro/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo , Adenoma/genética , Adenoma/metabolismo , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Calgranulina A/genética , Calgranulina B/genética , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Projetos Piloto , Prognóstico , RNA Mensageiro/genética , Proteína A6 Ligante de Cálcio S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteínas S100/genética
15.
Biochem Biophys Res Commun ; 533(3): 332-337, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958253

RESUMO

The Ca2+-mediated S100 family protein S100A6 has a crucial task in various intracellular and extracellular activities thereby demonstrating a possible involvement in the advancement and development of malignant tumors. S100A6 has been found to associate with receptor for advanced glycation end products, RAGE, through its extracellular extension. This extension is famously identified as a prominent receptor for many S100 family associates. Additionally, S100A6 binds to S100B protein and forms a heterodimer. Thus, we consider the S100B protein to be a prospective drug molecule to obstruct the interacting regions amongst S100A6 and RAGE V domain. We applied the NMR spectroscopy method to locate the binding area amid the S100A6m (mutant S100A6, cysteine at 3rd position of S100A6 is replaced with serine, C3S) and S100B proteins. The 1H-15N HSQC NMR titrations revealed the probable requisite dynamics of S100A6m and S100B interfaces. Utilizing data from the NMR titrations as input parameters, we ran the HADDOCK program and created a S100A6m-S100B heterodimer complex. The obtained complex was then superimposed with the reported complex of S100A6m-RAGE V domain. This superimposition displayed the possibility of S100B to be a potential antagonist that can block the interface area of the S100A6m and the RAGE V domain. Moreover, an in vitro cancer model using SW480 cells in water-soluble tetrazolium-1 assay (WST-1) showed a noticeable change in the cell proliferation as an effect of these proteins. Our study indicates the possibility to develop a S100B-like competitor that could play a key role in the treatment of S100- and RAGE-mediated human diseases.


Assuntos
Proteínas de Ciclo Celular/química , Regulação Neoplásica da Expressão Gênica , Receptor para Produtos Finais de Glicação Avançada/química , Proteína A6 Ligante de Cálcio S100/química , Subunidade beta da Proteína Ligante de Cálcio S100/química , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Clonagem Molecular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Proteína A6 Ligante de Cálcio S100/genética , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A6 Ligante de Cálcio S100/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/farmacologia
16.
Scand J Clin Lab Invest ; 80(3): 173-178, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31856598

RESUMO

S100 proteins are involved in biological events related to colorectal carcinogenesis. Aim of this prospective study was to assess serum concentration of S100A6, A8, A9 and A11 proteins in patients with colorectal neoplasia. Eighty-four subjects were enrolled: 20 controls (average risk population with normal findings on colonoscopy; 7 men, 13 women, age 23-74, mean 55 ± 14), 20 patients with non-advanced colorectal adenoma (non-AA, 10 men, 10 women, age 41-82, mean 62 ± 11), 22 with advanced colorectal adenoma (AA, 15 men, 7 women, age 49-80, mean 64 ± 8) and 22 with colorectal cancer (CRC, 12 men, 10 women, age 49-86, mean 69 ± 10). Peripheral venous blood was obtained. Serum S100 proteins were investigated by enzyme immunoassay technique. Serum S100A6 was significantly lower in CRC (mean 8530 ± 4743 ng/L), p = .035 compared to controls (mean 11308 ± 2968 ng/L). Serum S100A8 was significantly higher in AA (median 11955 ng/L, IQR 2681-34756 ng/L), p = .009 and in CRC (median 27532 ng/L, IQR 6794-35092 ng/L), p < .001 compared to controls (median 2513 ng/L, IQR 2111-4881 ng/L). Serum S100A9 concentrations did not differ between any tested group and controls, p > .05. Serum concentration of S100A11 was significantly lower in non-AA (mean 3.5 ± 2.4 µg/L), p = .004 and in CRC (mean 3.4 ± 2.4 µg/L), p = .002 compared to controls (mean 5.9 ± 2.5 µg/L). Sensitivity and specificity for S100A8 protein in patients with CRC were 94% and 73%; positive predictive value 68% and negative predictive value 95%. Patients with colorectal neoplasia have significantly lower serum S100A6 and S100A11 levels, significantly higher S100A8 and unaltered serum S100A9 levels.


Assuntos
Adenoma/diagnóstico , Biomarcadores Tumorais/genética , Calgranulina A/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/diagnóstico , Proteína A6 Ligante de Cálcio S100/genética , Proteínas S100/genética , Adenoma/sangue , Adenoma/genética , Adenoma/patologia , Adulto , Idoso , Biomarcadores Tumorais/sangue , Calgranulina A/sangue , Calgranulina B/sangue , Calgranulina B/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Estudos de Casos e Controles , Proteínas de Ciclo Celular/sangue , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Proteína A6 Ligante de Cálcio S100/sangue , Proteínas S100/sangue , Sensibilidade e Especificidade
17.
Int J Mol Sci ; 21(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422974

RESUMO

In the western world, colorectal cancer (CRC) is the third most common cause of cancer-related deaths. Survival is closely related to the stage of cancer at diagnosis striking the clinical need for biomarkers capable of early detection. To search for possible biological parameters for early diagnosis of CRC we evaluated protein expression for three CREC (acronym: Cab45, reticulocalbin, ERC-55, calumenin) proteins: reticulocalbin, calumenin, and ERC-55 in a cellular model consisting of a normal derived colon mucosa cell line, NCM460, and a primary adenocarcinoma cell line of the colon, SW480. Furthermore, this cellular model was analyzed by a top-down proteomic approach, 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for novel putative diagnostic markers by identification of differentially expressed proteins between the two cell lines. A different colorectal carcinoma cell line, HCT 116, was used in a bottom-up proteomic approach with label-free quantification (LFQ) LC-MS/MS. The two cellular models gave sets of putative diagnostic CRC biomarkers. Various of these novel putative markers were verified with increased expression in CRC patient neoplastic tissue compared to the expression in a non-involved part of the colon, including reticulocalbin, calumenin, S100A6 and protein SET. Characterization of these novel identified biological features for CRC patients may have diagnostic potential and therapeutic relevance in this malignancy characterized by a still unmet clinical need.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Mucosa Intestinal/metabolismo , Proteoma/genética , Idoso , Idoso de 80 Anos ou mais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Chaperonas de Histonas/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteína A6 Ligante de Cálcio S100/genética
18.
Int J Mol Sci ; 21(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322098

RESUMO

Interferon-ß (IFN-ß) is a pleiotropic cytokine used for therapy of multiple sclerosis, which is also effective in suppression of viral and bacterial infections and cancer. Recently, we reported a highly specific interaction between IFN-ß and S100P lowering IFN-ß cytotoxicity to cancer cells (Int J Biol Macromol. 2020; 143: 633-639). S100P is a member of large family of multifunctional Ca2+-binding proteins with cytokine-like activities. To probe selectivity of IFN-ß-S100 interaction with respect to S100 proteins, we used surface plasmon resonance spectroscopy, chemical crosslinking, and crystal violet assay. Among the thirteen S100 proteins studied S100A1, S100A4, and S100A6 proteins exhibit strictly Ca2+-dependent binding to IFN-ß with equilibrium dissociation constants, Kd, of 0.04-1.5 µM for their Ca2+-bound homodimeric forms. Calcium depletion abolishes the S100-IFN-ß interactions. Monomerization of S100A1/A4/A6 decreases Kd values down to 0.11-1.0 nM. Interferon-α is unable of binding to the S100 proteins studied. S100A1/A4 proteins inhibit IFN-ß-induced suppression of MCF-7 cells viability. The revealed direct influence of specific S100 proteins on IFN-ß activity uncovers a novel regulatory role of particular S100 proteins, and opens up novel approaches to enhancement of therapeutic efficacy of IFN-ß.


Assuntos
Cálcio/metabolismo , Interferon beta/metabolismo , Proteínas S100/metabolismo , Sequência de Aminoácidos , Cálcio/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dimerização , Humanos , Cinética , Células MCF-7 , Modelos Químicos , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteína A6 Ligante de Cálcio S100/química , Proteína A6 Ligante de Cálcio S100/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/química , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Proteínas S100/química , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície
19.
Int J Mol Sci ; 21(11)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492924

RESUMO

The S100A6 protein is present in different mammalian cells and tissues including the brain. It binds Ca2+ and Zn2+ and interacts with many target proteins/ligands. The best characterized ligands of S100A6, expressed at high level in the brain, include CacyBP/SIP and Sgt1. Research concerning the functional role of S100A6 and these two ligands indicates that they are involved in various signaling pathways that regulate cell proliferation, differentiation, cytoskeletal organization, and others. In this review, we focused on the expression/localization of these proteins in the brain and on their possible role in neurodegenerative diseases. Published results demonstrate that S100A6, CacyBP/SIP, and Sgt1 are expressed in various brain structures and in the spinal cord and can be found in different cell types including neurons and astrocytes. When it comes to their possible involvement in nervous system pathology, it is evident that their expression/level and/or subcellular localization is changed when compared to normal conditions. Among diseases in which such changes have been observed are Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), epileptogenesis, Parkinson's disease (PD), Huntington's disease (HD), and others.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Proteína A6 Ligante de Cálcio S100/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Epilepsia/metabolismo , Regulação da Expressão Gênica , Humanos , Doença de Huntington/metabolismo , Ligantes , Camundongos , Doença de Parkinson/metabolismo , Conformação Proteica , Transdução de Sinais
20.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182705

RESUMO

We determined whether plasma concentrations of the receptor for advanced glycation end products (RAGE) and the soluble (s) form of RAGE (sRAGE) in healthy individuals and patients with type 2 diabetes (T2D) modulate vascular remodeling. Healthy individuals and patients with T2D were divided into two age groups: young = <35 years old or middle-aged (36-64 years old) and stratified based on normal glucose tolerance (NGT), impaired (IGT), and T2D. Plasma titers of sRAGE, the RAGE ligands, AGEs, S100B, S100A1, S100A6, and the apoptotic marker Fas ligand Fas(L) were measured by enzyme-linked immunosorbent assay (ELISA). The apoptotic potential of the above RAGE ligands and sRAGE were assessed in cultured adult rat aortic smooth muscle cells (ASMC). In NGT individuals, aging increased the circulating levels of AGEs and S100B and decreased sRAGE, S100A1 and S100A6. Middle-aged patients with T2D presented higher levels of circulating S100B, AGEs and FasL, but lower levels of sRAGE, S100A1 and S100A6 than individuals with NGT or IGT. Treatment of ASMC with either AGEs or S100B at concentrations detected in T2D patients increased markers of inflammation and apoptosis. Responses attenuated by concomitant administration of sRAGE. In middle-aged patients with T2D, lower circulating plasma levels of sRAGE may limit decoy and exogenous trapping of deleterious pro-apoptotic/pro-inflammatory RAGE ligands AGEs and S100B, increasing the risk for diabetic complications.


Assuntos
Apoptose , Diabetes Mellitus Tipo 2/sangue , Ligantes , Receptor para Produtos Finais de Glicação Avançada/sangue , Receptor para Produtos Finais de Glicação Avançada/química , Adulto , Fatores Etários , Idoso , Animais , Antropometria , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Endotélio Vascular/metabolismo , Proteína Ligante Fas/metabolismo , Feminino , Teste de Tolerância a Glucose , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso , Ratos , Proteína A6 Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Proteínas S100/metabolismo , Transdução de Sinais , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA