Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 63(10): 1246-1256, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38662574

RESUMO

Guanylate cyclase activating protein-5 (GCAP5) in zebrafish photoreceptors promotes the activation of membrane receptor retinal guanylate cyclase (GC-E). Previously, we showed the R22A mutation in GCAP5 (GCAP5R22A) abolishes dimerization of GCAP5 and activates GC-E by more than 3-fold compared to that of wild-type GCAP5 (GCAP5WT). Here, we present ITC, NMR, and functional analysis of GCAP5R22A to understand how R22A causes a decreased dimerization affinity and increased cyclase activation. ITC experiments reveal GCAP5R22A binds a total of 3 Ca2+, including two sites in the nanomolar range followed by a single micromolar site. The two nanomolar sites in GCAP5WT were not detected by ITC, suggesting that R22A may affect the binding of Ca2+ to these sites. The NMR-derived structure of GCAP5R22A is overall similar to that of GCAP5WT (RMSD = 2.3 Å), except for local differences near R22A (Q19, W20, Y21, and K23) and an altered orientation of the C-terminal helix near the N-terminal myristate. GCAP5R22A lacks an intermolecular salt bridge between R22 and D71 that may explain the weakened dimerization. We present a structural model of GCAP5 bound to GC-E in which the R22 side-chain contacts exposed hydrophobic residues in GC-E. Cyclase assays suggest that GC-E binds to GCAP5R22A with ∼25% higher affinity compared to GCAP5WT, consistent with more favorable hydrophobic contact by R22A that may help explain the increased cyclase activation.


Assuntos
Proteínas Ativadoras de Guanilato Ciclase , Guanilato Ciclase , Peixe-Zebra , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/química , Animais , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Guanilato Ciclase/química , Peixe-Zebra/metabolismo , Multimerização Proteica , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Cálcio/metabolismo , Modelos Moleculares , Ativação Enzimática , Ressonância Magnética Nuclear Biomolecular , Mutação , Conformação Proteica , Retina/metabolismo
2.
Cell Mol Life Sci ; 80(12): 371, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001384

RESUMO

Inherited retinal dystrophies are often associated with mutations in the genes involved in the phototransduction cascade in photoreceptors, a paradigmatic signaling pathway mediated by G protein-coupled receptors. Photoreceptor viability is strictly dependent on the levels of the second messengers cGMP and Ca2+. Here we explored the possibility of modulating the phototransduction cascade in mouse rods using direct or liposome-mediated administration of a recombinant protein crucial for regulating the interplay of the second messengers in photoreceptor outer segments. The effects of administration of the free and liposome-encapsulated human guanylate cyclase-activating protein 1 (GCAP1) were compared in biological systems of increasing complexity (in cyto, ex vivo, and in vivo). The analysis of protein biodistribution and the direct measurement of functional alteration in rod photoresponses show that the exogenous GCAP1 protein is fully incorporated into the mouse retina and photoreceptor outer segments. Furthermore, only in the presence of a point mutation associated with cone-rod dystrophy in humans p.(E111V), protein delivery induces a disease-like electrophysiological phenotype, consistent with constitutive activation of the retinal guanylate cyclase. Our study demonstrates that both direct and liposome-mediated protein delivery are powerful complementary tools for targeting signaling cascades in neuronal cells, which could be particularly important for the treatment of autosomal dominant genetic diseases.


Assuntos
Lipossomos , Retina , Camundongos , Humanos , Animais , Distribuição Tecidual , Retina/metabolismo , Transdução de Sinal Luminoso , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Cálcio/metabolismo
3.
J Biol Chem ; 296: 100619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812995

RESUMO

In murine and bovine photoreceptors, guanylate cyclase-activating protein 2 (GCAP2) activates retinal guanylate cyclases (GCs) at low Ca2+ levels, thus contributing to the Ca2+/cGMP negative feedback on the cyclase together with its paralog guanylate cyclase-activating protein 1, which has the same function but different Ca2+ sensitivity. In humans, a GCAP2 missense mutation (G157R) has been associated with inherited retinal degeneration (IRD) via an unknown molecular mechanism. Here, we characterized the biochemical properties of human GCAP2 and the G157R variant, focusing on its dimerization and the Ca2+/Mg2+-binding processes in the presence or absence of N-terminal myristoylation. We found that human GCAP2 and its bovine/murine orthologs significantly differ in terms of oligomeric properties, cation binding, and GC regulation. Myristoylated GCAP2 endothermically binds up to 3 Mg2+ with high affinity and forms a compact dimer that may reversibly dissociate in the presence of Ca2+. Conversely, nonmyristoylated GCAP2 does not bind Mg2+ over the physiological range and remains as a monomer in the absence of Ca2+. Both myristoylated and nonmyristoylated GCAP2 bind Ca2+ with high affinity. At odds with guanylate cyclase-activating protein 1 and independently of myristoylation, human GCAP2 does not significantly activate retinal GC1 in a Ca2+-dependent fashion. The IRD-associated G157R variant is characterized by a partly misfolded, molten globule-like conformation with reduced affinity for cations and prone to form aggregates, likely mediated by hydrophobic interactions. Our findings suggest that GCAP2 might be mostly implicated in processes other than phototransduction in human photoreceptors and suggest a possible molecular mechanism for G157R-associated IRD.


Assuntos
Cálcio/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Magnésio/metabolismo , Mutação , Distrofias Retinianas/genética , Proteínas Ativadoras de Guanilato Ciclase/química , Humanos , Conformação Proteica , Multimerização Proteica
4.
J Biol Chem ; 296: 100362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33539922

RESUMO

Retinal degeneration-3 protein (RD3) deficiency causes photoreceptor dysfunction and rapid degeneration in the rd3 mouse strain and in human Leber's congenital amaurosis, a congenital retinal dystrophy that results in early vision loss. However, the mechanisms responsible for photoreceptor death remain unclear. Here, we tested two hypothesized biochemical events that may underlie photoreceptor death: (i) the failure to prevent aberrant activation of retinal guanylyl cyclase (RetGC) by calcium-sensor proteins (GCAPs) versus (ii) the reduction of GMP phosphorylation rate, preventing its recycling to GDP/GTP. We found that GMP converts to GDP/GTP in the photoreceptor fraction of the retina ∼24-fold faster in WT mice and ∼400-fold faster in rd3 mice than GTP conversion to cGMP by RetGC. Adding purified RD3 to the retinal extracts inhibited RetGC 4-fold but did not affect GMP phosphorylation in wildtype or rd3 retinas. RD3-deficient photoreceptors rapidly degenerated in rd3 mice that were reared in constant darkness to prevent light-activated GTP consumption via RetGC and phosphodiesterase 6. In contrast, rd3 degeneration was alleviated by deletion of GCAPs. After 2.5 months, only ∼40% of photoreceptors remained in rd3/rd3 retinas. Deletion of GCAP1 or GCAP2 alone preserved 68% and 57% of photoreceptors, respectively, whereas deletion of GCAP1 and GCAP2 together preserved 86%. Taken together, our in vitro and in vivo results support the hypothesis that RD3 prevents photoreceptor death primarily by suppressing activation of RetGC by both GCAP1 and GCAP2 but do not support the hypothesis that RD3 plays a significant role in GMP recycling.


Assuntos
Guanilato Ciclase/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , GMP Cíclico/metabolismo , Feminino , Guanosina Monofosfato/metabolismo , Guanilato Ciclase/fisiologia , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Células Fotorreceptoras de Vertebrados/fisiologia , Ligação Proteica , Retina/metabolismo , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
5.
J Biol Chem ; 297(4): 101201, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34537244

RESUMO

Different forms of photoreceptor degeneration cause blindness. Retinal degeneration-3 protein (RD3) deficiency in photoreceptors leads to recessive congenital blindness. We proposed that aberrant activation of the retinal membrane guanylyl cyclase (RetGC) by its calcium-sensor proteins (guanylyl cyclase-activating protein [GCAP]) causes this retinal degeneration and that RD3 protects photoreceptors by preventing such activation. We here present in vivo evidence that RD3 protects photoreceptors by suppressing activation of both RetGC1 and RetGC2 isozymes. We further suggested that insufficient inhibition of RetGC by RD3 could contribute to some dominant forms of retinal degeneration. The R838S substitution in RetGC1 that causes autosomal-dominant cone-rod dystrophy 6, not only impedes deceleration of RetGC1 activity by Ca2+GCAPs but also elevates this isozyme's resistance to inhibition by RD3. We found that RD3 prolongs the survival of photoreceptors in transgenic mice harboring human R838S RetGC1 (R838S+). Overexpression of GFP-tagged human RD3 did not improve the calcium sensitivity of cGMP production in R838S+ retinas but slowed the progression of retinal blindness and photoreceptor degeneration. Fluorescence of the GFP-tagged RD3 in the retina only partially overlapped with immunofluorescence of RetGC1 or GCAP1, indicating that RD3 separates from the enzyme before the RetGC1:GCAP1 complex is formed in the photoreceptor outer segment. Most importantly, our in vivo results indicate that, in addition to the abnormal Ca2+ sensitivity of R838S RetGC1 in the outer segment, the mutated RetGC1 becomes resistant to inhibition by RD3 in a different cellular compartment(s) and suggest that RD3 overexpression could be utilized to reduce the severity of cone-rod dystrophy 6 pathology.


Assuntos
Guanilato Ciclase/metabolismo , Proteínas Nucleares/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Mutação , Proteínas Nucleares/genética , Receptores de Superfície Celular/genética , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
6.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328663

RESUMO

The cone-specific guanylate cyclase-activating protein 3 (GCAP3), encoded by the GUCA1C gene, has been shown to regulate the enzymatic activity of membrane-bound guanylate cyclases (GCs) in bovine and teleost fish photoreceptors, to an extent comparable to that of the paralog protein GCAP1. To date, the molecular mechanisms underlying GCAP3 function remain largely unexplored. In this work, we report a thorough characterization of the biochemical and biophysical properties of human GCAP3, moreover, we identified an isolated case of retinitis pigmentosa, in which a patient carried the c.301G>C mutation in GUCA1C, resulting in the substitution of a highly conserved aspartate residue by a histidine (p.(D101H)). We found that myristoylated GCAP3 can activate GC1 with a similar Ca2+-dependent profile, but significantly less efficiently than GCAP1. The non-myristoylated form did not induce appreciable regulation of GC1, nor did the p.D101H variant. GCAP3 forms dimers under physiological conditions, but at odds with its paralogs, it tends to form temperature-dependent aggregates driven by hydrophobic interactions. The peculiar properties of GCAP3 were confirmed by 2 ms molecular dynamics simulations, which for the p.D101H variant highlighted a very high structural flexibility and a clear tendency to lose the binding of a Ca2+ ion to EF3. Overall, our data show that GCAP3 has unusual biochemical properties, which make the protein significantly different from GCAP1 and GCAP2. Moreover, the newly identified point mutation resulting in a substantially unfunctional protein could trigger retinitis pigmentosa through a currently unknown mechanism.


Assuntos
Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Retinose Pigmentar , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Bovinos , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/química , Humanos , Células Fotorreceptoras Retinianas Cones/metabolismo , Retinose Pigmentar/genética
7.
Biochemistry ; 60(41): 3058-3070, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34609135

RESUMO

Retinal guanylate cyclases (RetGCs) are regulated by a family of guanylate cyclase-activating proteins (called GCAP1-7). GCAPs form dimers that bind to Ca2+ and confer Ca2+ sensitive activation of RetGC during visual phototransduction. The GCAP5 homologue from zebrafish contains two nonconserved cysteine residues (Cys15 and Cys17) that bind to ferrous ion, which stabilizes GCAP5 dimerization and diminishes its ability to activate RetGC. Here, we present NMR and EPR-DEER structural analysis of a GCAP5 dimer in the Mg2+-bound, Ca2+-free, Fe2+-free activator state. The NMR-derived structure of GCAP5 is similar to the crystal structure of Ca2+-bound GCAP1 (root-mean-square deviation of 2.4 Å), except that the N-terminal helix of GCAP5 is extended by two residues, which allows the sulfhydryl groups of Cys15 and Cys17 to become more solvent exposed in GCAP5 to facilitate Fe2+ binding. Nitroxide spin-label probes were covalently attached to particular cysteine residues engineered in GCAP5: C15, C17, T26C, C28, N56C, C69, C105, N139C, E152C, and S159C. The intermolecular distance of each spin-label probe in dimeric GCAP5 (measured by EPR-DEER) defined restraints for calculating the dimer structure by molecular docking. The GCAP5 dimer possesses intermolecular hydrophobic contacts involving the side chain atoms of H18, Y21, M25, F72, V76, and W93, as well as an intermolecular salt bridge between R22 and D71. The structural model of the GCAP5 dimer was validated by mutations (H18E/Y21E, H18A/Y21A, R22D, R22A, M25E, D71R, F72E, and V76E) at the dimer interface that disrupt dimerization of GCAP5 and affect the activation of RetGC. We propose that GCAP5 dimerization may play a role in the Fe2+-dependent regulation of cyclase activity in zebrafish photoreceptors.


Assuntos
Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas de Peixe-Zebra/química , Sequência de Aminoácidos , Animais , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Magnésio/química , Magnésio/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
J Biol Chem ; 295(31): 10781-10793, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32493772

RESUMO

Retinal degeneration-3 (RD3) protein protects photoreceptors from degeneration by preventing retinal guanylyl cyclase (RetGC) activation via calcium-sensing guanylyl cyclase-activating proteins (GCAP), and RD3 truncation causes severe congenital blindness in humans and other animals. The three-dimensional structure of RD3 has recently been established, but the molecular mechanisms of its inhibitory binding to RetGC remain unclear. Here, we report the results of probing 133 surface-exposed residues in RD3 by single substitutions and deletions to identify side chains that are critical for the inhibitory binding of RD3 to RetGC. We tested the effects of these substitutions and deletions in vitro by reconstituting purified RD3 variants with GCAP1-activated human RetGC1. Although the vast majority of the surface-exposed residues tolerated substitutions without loss of RD3's inhibitory activity, substitutions in two distinct narrow clusters located on the opposite sides of the molecule effectively suppressed RD3 binding to the cyclase. The first surface-exposed cluster included residues adjacent to Leu63 in the loop connecting helices 1 and 2. The second cluster surrounded Arg101 on a surface of helix 3. Single substitutions in those two clusters drastically, i.e. up to 245-fold, reduced the IC50 for the cyclase inhibition. Inactivation of the two binding sites completely disabled binding of RD3 to RetGC1 in living HEK293 cells. In contrast, deletion of 49 C-terminal residues did not affect the apparent affinity of RD3 for RetGC. Our findings identify the functional interface on RD3 required for its inhibitory binding to RetGC, a process essential for protecting photoreceptors from degeneration.


Assuntos
Proteínas do Olho/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo , Substituição de Aminoácidos , Animais , Bovinos , Proteínas do Olho/genética , Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Ligação Proteica , Receptores de Superfície Celular/genética
9.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445435

RESUMO

Retinal guanylate cyclases (RetGCs) promote the Ca2+-dependent synthesis of cGMP that coordinates the recovery phase of visual phototransduction in retinal rods and cones. The Ca2+-sensitive activation of RetGCs is controlled by a family of photoreceptor Ca2+ binding proteins known as guanylate cyclase activator proteins (GCAPs). The Mg2+-bound/Ca2+-free GCAPs bind to RetGCs and activate cGMP synthesis (cyclase activity) at low cytosolic Ca2+ levels in light-activated photoreceptors. By contrast, Ca2+-bound GCAPs bind to RetGCs and inactivate cyclase activity at high cytosolic Ca2+ levels found in dark-adapted photoreceptors. Mutations in both RetGCs and GCAPs that disrupt the Ca2+-dependent cyclase activity are genetically linked to various retinal diseases known as cone-rod dystrophies. In this review, I will provide an overview of the known atomic-level structures of various GCAP proteins to understand how protein dimerization and Ca2+-dependent conformational changes in GCAPs control the cyclase activity of RetGCs. This review will also summarize recent structural studies on a GCAP homolog from zebrafish (GCAP5) that binds to Fe2+ and may serve as a Fe2+ sensor in photoreceptors. The GCAP structures reveal an exposed hydrophobic surface that controls both GCAP1 dimerization and RetGC binding. This exposed site could be targeted by therapeutics designed to inhibit the GCAP1 disease mutants, which may serve to mitigate the onset of retinal cone-rod dystrophies.


Assuntos
Cálcio/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/química , Ferro/metabolismo , Proteínas de Peixe-Zebra/química , Peixe-Zebra/metabolismo , Animais , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Transdução de Sinal Luminoso , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas de Peixe-Zebra/metabolismo
10.
J Biol Chem ; 294(10): 3476-3488, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30622141

RESUMO

The guanylyl cyclase-activating protein, GCAP1, activates photoreceptor membrane guanylyl cyclase (RetGC) in the light, when free Ca2+ concentrations decline, and decelerates the cyclase in the dark, when Ca2+ concentrations rise. Here, we report a novel mutation, G86R, in the GCAP1 (GUCA1A) gene in a family with a dominant retinopathy. The G86R substitution in a "hinge" region connecting EF-hand domains 2 and 3 in GCAP1 strongly interfered with its Ca2+-dependent activator-to-inhibitor conformational transition. The G86R-GCAP1 variant activated RetGC at low Ca2+ concentrations with higher affinity than did the WT GCAP1, but failed to decelerate the cyclase at the Ca2+ concentrations characteristic of dark-adapted photoreceptors. Ca2+-dependent increase in Trp94 fluorescence, indicative of the GCAP1 transition to its RetGC inhibiting state, was suppressed and shifted to a higher Ca2+ range. Conformational changes in G86R GCAP1 detectable by isothermal titration calorimetry (ITC) also became less sensitive to Ca2+, and the dose dependence of the G86R GCAP1-RetGC1 complex inhibition by retinal degeneration 3 (RD3) protein was shifted toward higher than normal concentrations. Our results indicate that the flexibility of the hinge region between EF-hands 2 and 3 is required for placing GCAP1-regulated Ca2+ sensitivity of the cyclase within the physiological range of intracellular Ca2+ at the expense of reducing GCAP1 affinity for the target enzyme. The disease-linked mutation of the hinge Gly86, leading to abnormally high affinity for the target enzyme and reduced Ca2+ sensitivity of GCAP1, is predicted to abnormally elevate cGMP production and Ca2+ influx in photoreceptors in the dark.


Assuntos
Cálcio/metabolismo , Distrofias de Cones e Bastonetes/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Guanilato Ciclase/metabolismo , Mutação , Retina/enzimologia , Morte Celular/genética , Distrofias de Cones e Bastonetes/enzimologia , Distrofias de Cones e Bastonetes/metabolismo , Distrofias de Cones e Bastonetes/patologia , Proteínas Ativadoras de Guanilato Ciclase/química , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Retina/patologia , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia
11.
J Biol Chem ; 294(37): 13729-13739, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346032

RESUMO

Deficiency of RD3 (retinal degeneration 3) protein causes recessive blindness and photoreceptor degeneration in humans and in the rd3 mouse strain, but the disease mechanism is unclear. Here, we present evidence that RD3 protects photoreceptors from degeneration by competing with guanylyl cyclase-activating proteins (GCAPs), which are calcium sensor proteins for retinal membrane guanylyl cyclase (RetGC). RetGC activity in rd3/rd3 retinas was drastically reduced but stimulated by the endogenous GCAPs at low Ca2+ concentrations. RetGC activity completely failed to accelerate in rd3/rd3GCAPs-/- hybrid photoreceptors, whose photoresponses remained drastically suppressed compared with the WT. However, ∼70% of the hybrid rd3/rd3GCAPs-/- photoreceptors survived past 6 months, in stark contrast to <5% in the nonhybrid rd3/rd3 retinas. GFP-tagged human RD3 inhibited GCAP-dependent activation of RetGC in vitro similarly to the untagged RD3. When transgenically expressed in rd3/rd3 mouse retinas under control of the rhodopsin promoter, the RD3GFP construct increased RetGC levels to near normal levels, restored dark-adapted photoresponses, and rescued rods from degeneration. The fluorescence of RD3GFP in rd3/rd3RD3GFP+ retinas was mostly restricted to the rod photoreceptor inner segments, whereas GCAP1 immunofluorescence was concentrated predominantly in the outer segment. However, RD3GFP became distributed to the outer segments when bred into a GCAPs-/- genetic background. These results support the hypothesis that an essential biological function of RD3 is competition with GCAPs that inhibits premature cyclase activation in the inner segment. Our findings also indicate that the fast rate of degeneration in RD3-deficient photoreceptors results from the lack of this inhibition.


Assuntos
Guanilato Ciclase/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Substituição de Aminoácidos , Animais , Cegueira/genética , Cálcio/metabolismo , Modelos Animais de Doenças , Anormalidades do Olho/genética , Feminino , Guanilato Ciclase/fisiologia , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Proteínas Nucleares/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/fisiologia , Ligação Proteica/genética , Receptores de Superfície Celular/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Células Fotorreceptoras Retinianas Bastonetes/metabolismo
12.
Int J Mol Sci ; 21(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979372

RESUMO

Guanylate Cyclase activating protein 1 (GCAP1) mediates the Ca2+-dependent regulation of the retinal Guanylate Cyclase (GC) in photoreceptors, acting as a target inhibitor at high [Ca2+] and as an activator at low [Ca2+]. Recently, a novel missense mutation (G86R) was found in GUCA1A, the gene encoding for GCAP1, in patients diagnosed with cone-rod dystrophy. The G86R substitution was found to affect the flexibility of the hinge region connecting the N- and C-domains of GCAP1, resulting in decreased Ca2+-sensitivity and abnormally enhanced affinity for GC. Based on a structural model of GCAP1, here, we tested the hypothesis of a cation-π interaction between the positively charged R86 and the aromatic W94 as the main mechanism underlying the impaired activator-to-inhibitor conformational change. W94 was mutated to F or L, thus, resulting in the double mutants G86R+W94L/F. The double mutants showed minor structural and stability changes with respect to the single G86R mutant, as well as lower affinity for both Mg2+ and Ca2+, moreover, substitutions of W94 abolished "phase II" in Ca2+-titrations followed by intrinsic fluorescence. Interestingly, the presence of an aromatic residue in position 94 significantly increased the aggregation propensity of Ca2+-loaded GCAP1 variants. Finally, atomistic simulations of all GCAP1 variants in the presence of Ca2+ supported the presence of two cation-π interactions involving R86, which was found to act as a bridge between W94 and W21, thus, locking the hinge region in an activator-like conformation and resulting in the constitutive activation of the target under physiological conditions.


Assuntos
Distrofia de Cones/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Guanilato Ciclase/metabolismo , Aminoácidos Aromáticos/química , Cálcio/metabolismo , Cátions/química , Dicroísmo Circular , Distrofia de Cones/genética , Difusão Dinâmica da Luz , Proteínas Ativadoras de Guanilato Ciclase/genética , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes , Termodinâmica
13.
J Neurosci ; 38(12): 2990-3000, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29440533

RESUMO

The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S+ rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca2+ phototransduction feedback and abnormally high free-Ca2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2+/+ or GCAP1,2+/- backgrounds, was prevented in GCAP1,2-/- mice lacking Ca2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca2+ levels in photoreceptors.SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to the cyclase mediated by guanylyl cyclase activating proteins (GCAPs), which are calcium-sensor proteins. The abnormal calcium sensitivity of the cyclase increases cGMP-gated dark current in the rod outer segments, reshapes rod photoresponses, and triggers photoreceptor death. This work is the first to demonstrate a direct physiological effect of GUCY2D CORD6-linked mutation on photoreceptor physiology in vivo It also identifies the abnormal regulation of the cyclase by calcium-sensor proteins as the main trigger for the photoreceptor death.


Assuntos
Cálcio/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Animais , Guanilato Ciclase/genética , Humanos , Camundongos , Camundongos Transgênicos , Receptores de Superfície Celular/genética , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/patologia , Visão Ocular
14.
J Biol Chem ; 293(19): 7457-7465, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29549122

RESUMO

Light adaptation of photoreceptor cells is mediated by Ca2+-dependent mechanisms. In darkness, Ca2+ influx through cGMP-gated channels into the outer segment of photoreceptors is balanced by Ca2+ extrusion via Na+/Ca2+, K+ exchangers (NCKXs). Light activates a G protein signaling cascade, which closes cGMP-gated channels and decreases Ca2+ levels in photoreceptor outer segment because of continuing Ca2+ extrusion by NCKXs. Guanylate cyclase-activating proteins (GCAPs) then up-regulate cGMP synthesis by activating retinal membrane guanylate cyclases (RetGCs) in low Ca2+ This activation of RetGC accelerates photoresponse recovery and critically contributes to light adaptation of the nighttime rod and daytime cone photoreceptors. In mouse rod photoreceptors, GCAP1 and GCAP2 both contribute to the Ca2+-feedback mechanism. In contrast, only GCAP1 appears to modulate RetGC activity in mouse cones because evidence of GCAP2 expression in cones is lacking. Surprisingly, we found that GCAP2 is expressed in cones and can regulate light sensitivity and response kinetics as well as light adaptation of GCAP1-deficient mouse cones. Furthermore, we show that GCAP2 promotes cGMP synthesis and cGMP-gated channel opening in mouse cones exposed to low Ca2+ Our biochemical model and experiments indicate that GCAP2 significantly contributes to the activation of RetGC1 at low Ca2+ when GCAP1 is not present. Of note, in WT mouse cones, GCAP1 dominates the regulation of cGMP synthesis. We conclude that, under normal physiological conditions, GCAP1 dominates the regulation of cGMP synthesis in mouse cones, but if its function becomes compromised, GCAP2 contributes to the regulation of phototransduction and light adaptation of cones.


Assuntos
Adaptação Ocular , Proteínas Ativadoras de Guanilato Ciclase/fisiologia , Transdução de Sinal Luminoso/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Cálcio/metabolismo , GMP Cíclico/biossíntese , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trocador de Sódio e Cálcio/metabolismo
15.
Hum Mol Genet ; 26(1): 133-144, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025326

RESUMO

Macular dystrophy leads to progressive loss of central vision and shows symptoms similar to age-related macular degeneration. Genetic screening of patients diagnosed with macular dystrophy disclosed a novel mutation in the GUCA1A gene, namely a c.526C > T substitution leading to the amino acid substitution p.L176F in the guanylate cyclase-activating protein 1 (GCAP1). The same variant was found in three families showing an autosomal dominant mode of inheritance. For a full functional characterization of the L176F mutant we expressed and purified the mutant protein and measured key parameters of its activating properties, its Ca2+/Mg2+-binding, and its Ca2+-induced conformational changes in comparison to the wildtype protein. The mutant was less sensitive to changes in free Ca2+, resulting in a constitutively active form under physiological Ca2+-concentration, showed significantly higher activation rates than the wildtype (90-fold versus 20-fold) and interacted with an higher apparent affinity with its target guanylate cyclase. However, direct Ca2+-binding of the mutant was nearly similar to the wildtype; binding of Mg2+ occurred with higher affinity. We performed molecular dynamics simulations for comparing the Ca2+-saturated inhibiting state of GCAP1 with the Mg2+-bound activating states. The L176F mutant exhibited significantly lower flexibility, when three Ca2+ or two Mg2+ were bound forming probably the structural basis for the modified GCAP1 function.


Assuntos
Cálcio/metabolismo , GMP Cíclico/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Degeneração Macular/genética , Mutação/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Adolescente , Adulto , Feminino , Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Humanos , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Pessoa de Meia-Idade , Simulação de Dinâmica Molecular , Linhagem , Conformação Proteica , Células Fotorreceptoras Retinianas Cones/patologia , Adulto Jovem
16.
Mol Cell Biochem ; 448(1-2): 91-105, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29427171

RESUMO

This study with recombinant reconstituted system mimicking the cellular conditions of the native cones documents that photoreceptor ROS-GC1 is modulated by gaseous CO2. Mechanistically, CO2 is sensed by carbonic anhydrase (CAII), generates bicarbonate that, in turn, directly targets the core catalytic domain of ROS-GC1, and activates it to increased synthesis of cyclic GMP. This, then, functions as a second messenger for the cone phototransduction. The study demonstrates that, in contrast to the Ca2+-modulated phototransduction, the CO2 pathway is Ca2+-independent, yet is linked with it and synergizes it. It, through R787C mutation in the third heptad of the signal helix domain of ROS-GC1, affects cone-rod dystrophy, CORD6. CORD6 is caused firstly by lowered basal and GCAP1-dependent ROS-GC1 activity and secondly, by a shift in Ca2+ sensitivity of the ROS-GC1/GCAP1 complex that remains active in darkness. Remarkably, the first but not the second defect disappears with bicarbonate thus explaining the basis for CORD6 pathological severity. Because cones, but not rods, express CAII, the excessive synthesis of cyclic GMP would be most acute in cones.


Assuntos
Dióxido de Carbono/metabolismo , Anidrase Carbônica II/metabolismo , Distrofias de Cones e Bastonetes/enzimologia , Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/metabolismo , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Animais , Células COS , Anidrase Carbônica II/genética , Catálise , Bovinos , Chlorocebus aethiops , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , GMP Cíclico/genética , GMP Cíclico/metabolismo , Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Receptores de Superfície Celular/genética , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Bastonetes/patologia
17.
Biochemistry ; 56(51): 6652-6661, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29172459

RESUMO

Sensory guanylate cyclases (zGCs) in zebrafish photoreceptors are regulated by a family of guanylate cyclase activator proteins (called GCAP1-7). GCAP5 contains two nonconserved cysteine residues (Cys15 and Cys17) that could in principle bind to biologically active transition state metal ions (Zn2+ and Fe2+). Here, we present nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) binding analyses that demonstrate the binding of one Fe2+ ion to two GCAP5 molecules (in a 1:2 complex) with a dissociation constant in the nanomolar range. At least one other Fe2+ binds to GCAP5 with micromolar affinity that likely represents electrostatic Fe2+ binding to the EF-hand loops. The GCAP5 double mutant (C15A/C17A) lacks nanomolar binding to Fe2+, suggesting that Fe2+ at this site is ligated directly by thiolate groups of Cys15 and Cys17. Size exclusion chromatography analysis indicates that GCAP5 forms a dimer in the Fe2+-free and Fe2+-bound states. NMR structural analysis and molecular docking studies suggest that a single Fe2+ ion is chelated by thiol side chains from Cys15 and Cys17 in the GCAP5 dimer, forming an [Fe(SCys)4] complex like that observed previously in two-iron superoxide reductases. Binding of Fe2+ to GCAP5 weakens its ability to activate photoreceptor human GC-E by decreasing GC activity >10-fold. Our results indicate a strong Fe2+-induced inhibition of GC by GCAP5 and suggest that GCAP5 may serve as a redox sensor in visual phototransduction.


Assuntos
Compostos Ferrosos/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Guanilato Ciclase/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Guanilato Ciclase/antagonistas & inibidores , Proteínas Ativadoras de Guanilato Ciclase/química , Proteínas Ativadoras de Guanilato Ciclase/genética , Luz , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
18.
J Biol Chem ; 291(9): 4429-41, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26703466

RESUMO

GCAP1, a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca(2+)-sensitive activation of retinal guanylyl cyclase 1 (RetGC1). We present NMR resonance assignments, residual dipolar coupling data, functional analysis, and a structural model of GCAP1 mutant (GCAP1(V77E)) in the Ca(2+)-free/Mg(2+)-bound state. NMR chemical shifts and residual dipolar coupling data reveal Ca(2+)-dependent differences for residues 170-174. An NMR-derived model of GCAP1(V77E) contains Mg(2+) bound at EF2 and looks similar to Ca(2+) saturated GCAP1 (root mean square deviations = 2.0 Å). Ca(2+)-dependent structural differences occur in the fourth EF-hand (EF4) and adjacent helical region (residues 164-174 called the Ca(2+) switch helix). Ca(2+)-induced shortening of the Ca(2+) switch helix changes solvent accessibility of Thr-171 and Leu-174 that affects the domain interface. Although the Ca(2+) switch helix is not part of the RetGC1 binding site, insertion of an extra Gly residue between Ser-173 and Leu-174 as well as deletion of Arg-172, Ser-173, or Leu-174 all caused a decrease in Ca(2+) binding affinity and abolished RetGC1 activation. We conclude that Ca(2+)-dependent conformational changes in the Ca(2+) switch helix are important for activating RetGC1 and provide further support for a Ca(2+)-myristoyl tug mechanism.


Assuntos
Proteínas do Olho/agonistas , Proteínas Ativadoras de Guanilato Ciclase/química , Magnésio/química , Modelos Moleculares , Receptores de Superfície Celular/agonistas , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Bovinos , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Guanilato Ciclase/química , Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Células HEK293 , Humanos , Lipoilação , Magnésio/metabolismo , Dados de Sequência Molecular , Mutação , Ácido Mirístico/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional , Desdobramento de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
19.
Hum Mol Genet ; 24(23): 6653-66, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26358777

RESUMO

Two recently identified missense mutations (p. L84F and p. I107T) in GUCA1A, the gene coding for guanylate cyclase (GC)-activating protein 1 (GCAP1), lead to a phenotype ascribable to cone, cone-rod and macular dystrophies. Here, we present a thorough biochemical and biophysical characterization of the mutant proteins and their distinct molecular features. I107T-GCAP1 has nearly wild-type-like protein secondary and tertiary structures, and binds Ca(2+) with a >10-fold lower affinity than the wild-type. On the contrary, L84F-GCAP1 displays altered tertiary structure in both GC-activating and inhibiting states, and a wild type-like apparent affinity for Ca(2+). The latter mutant also shows a significantly high affinity for Mg(2+), which might be important for stabilizing the GC-activating state and inducing a cooperative mechanism for the binding of Ca(2+), so far not been observed in other GCAP1 variants. Moreover, the thermal stability of L84F-GCAP1 is particularly high in the Ca(2+)-bound, GC-inhibiting state. Molecular dynamics simulations suggest that such enhanced stability arises from a deeper burial of the myristoyl moiety within the EF1-EF2 domain. The simulations also support an allosteric mechanism connecting the myristoyl moiety to the highest-affinity Ca(2+) binding site EF3. In spite of their remarkably distinct molecular features, both mutants cause constitutive activation of the target GC at physiological Ca(2+). We conclude that the similar aberrant regulation of the target enzyme results from a similar perturbation of the GCAP1-GC interaction, which may eventually cause dysregulation of both Ca(2+) and cyclic GMP homeostasis and result in retinal degeneration.


Assuntos
Proteínas Ativadoras de Guanilato Ciclase/genética , Guanilato Ciclase/metabolismo , Mutação de Sentido Incorreto , Distrofias Retinianas/genética , Animais , Cálcio , Cátions Bivalentes/metabolismo , Regulação da Expressão Gênica , Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Temperatura Alta , Magnésio , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Distrofias Retinianas/metabolismo
20.
PLoS Genet ; 10(7): e1004480, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25058152

RESUMO

The neuronal calcium sensor proteins GCAPs (guanylate cyclase activating proteins) switch between Ca2+-free and Ca2+-bound conformational states and confer calcium sensitivity to guanylate cyclase at retinal photoreceptor cells. They play a fundamental role in light adaptation by coupling the rate of cGMP synthesis to the intracellular concentration of calcium. Mutations in GCAPs lead to blindness. The importance of functional EF-hands in GCAP1 for photoreceptor cell integrity has been well established. Mutations in GCAP1 that diminish its Ca2+ binding affinity lead to cell damage by causing unabated cGMP synthesis and accumulation of toxic levels of free cGMP and Ca2+. We here investigate the relevance of GCAP2 functional EF-hands for photoreceptor cell integrity. By characterizing transgenic mice expressing a mutant form of GCAP2 with all EF-hands inactivated (EF-GCAP2), we show that GCAP2 locked in its Ca2+-free conformation leads to a rapid retinal degeneration that is not due to unabated cGMP synthesis. We unveil that when locked in its Ca2+-free conformation in vivo, GCAP2 is phosphorylated at Ser201 and results in phospho-dependent binding to the chaperone 14-3-3 and retention at the inner segment and proximal cell compartments. Accumulation of phosphorylated EF-GCAP2 at the inner segment results in severe toxicity. We show that in wildtype mice under physiological conditions, 50% of GCAP2 is phosphorylated correlating with the 50% of the protein being retained at the inner segment. Raising mice under constant light exposure, however, drastically increases the retention of GCAP2 in its Ca2+-free form at the inner segment. This study identifies a new mechanism governing GCAP2 subcellular distribution in vivo, closely related to disease. It also identifies a pathway by which a sustained reduction in intracellular free Ca2+ could result in photoreceptor damage, relevant for light damage and for those genetic disorders resulting in "equivalent-light" scenarios.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , GMP Cíclico/metabolismo , Motivos EF Hand/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Humanos , Camundongos , Fosforilação , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA