Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Immunol ; 213(1): 63-74, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38767414

RESUMO

The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.


Assuntos
Retroalimentação Fisiológica , Janus Quinases , Penaeidae , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Penaeidae/imunologia , Penaeidae/genética , Transdução de Sinais/imunologia , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fosforilação , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismo
2.
J Biol Chem ; 300(3): 105748, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354785

RESUMO

Ticks pose a substantial public health risk as they transmit various pathogens. This concern is related to the adept blood-sucking strategy of ticks, underscored by the action of the anticoagulant, madanin, which is known to exhibit an approximately 1000-fold increase in anticoagulant activity following sulfation of its two tyrosine residues, Tyr51 and Tyr54. Despite this knowledge, the molecular mechanism underlying sulfation by tick tyrosylprotein sulfotransferase (TPST) remains unclear. In this study, we successfully prepared tick TPST as a soluble recombinant enzyme. We clarified the method by which this enzyme proficiently sulfates tyrosine residues in madanin. Biochemical analysis using a substrate peptide based on madanin and tick TPST, along with the analysis of the crystal structure of the complex and docking simulations, revealed a sequential sulfation process. Initial sulfation at the Tyr51 site augments binding, thereby facilitating efficient sulfation at Tyr54. Beyond direct biochemical implications, these findings considerably improve our understanding of tick blood-sucking strategies. Furthermore, combined with the utility of modified tick TPST, our findings may lead to the development of novel anticoagulants, promising avenues for thrombotic disease intervention and advancements in the field of public health.


Assuntos
Anticoagulantes , Proteínas de Artrópodes , Sulfotransferases , Carrapatos , Animais , Anticoagulantes/química , Sulfotransferases/química , Tirosina/metabolismo , Proteínas de Artrópodes/química , Cristalização
3.
J Virol ; 98(8): e0053024, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39051786

RESUMO

Tiny controllers referred to as microRNAs (miRNAs) impede the expression of genes to modulate biological processes. In invertebrates, particularly in shrimp as a model organism, it has been demonstrated that miRNAs play a crucial role in modulating innate immune responses against viral infection. By analyzing small RNAs, we identified 60 differentially expressed miRNAs (DEMs) in Penaues vannamei hemocytes following infection with white spot syndrome virus (WSSV). We predicted the target genes of WSSV-responsive miRNAs, shedding light on their participation in diverse biological pathways. We are particularly intrigued by pva-miR-166, which is the most notably elevated miRNA among 60 DEMs. At 24 h post-infection (hpi), the negative correlation between the expression of pva-miR-166 and its target gene, PvProsaposin, was evident and their interaction was confirmed by a reduction in luciferase activity in vitro. Suppression of PvProsaposin in unchallenged shrimp led to decreased survival rates, reduced total hemocyte count (THC), and increased caspase 3/7 activity, suggesting its significant role in maintaining hemocyte homeostasis. In WSSV-infected shrimp, a lower number of hemocytes corresponded to a lower WSSV load, but higher shrimp mortality was observed when PvProsaposin was suppressed. Conformingly, the introduction of the pva-miR-166 mimic to WSSV-infected shrimp resulted in decreased levels of PvProsaposin transcripts, a significant loss of THC, and an increase in the hemocyte apoptosis. Taken together, we propose that pva-miR-166 modulates hemocyte homeostasis during WSSV infection by suppressing the PvProsaposin, an anti-apoptotic gene. PvProsaposin inhibition disrupts hemocyte homeostasis, rendering the shrimp's inability to withstand WSSV invasion.IMPORTANCEGene regulation by microRNAs (miRNAs) has been reported during viral infection. Furthermore, hemocytes serve a dual role, not only producing various immune-related molecules to combat viral infections but also acting as a viral replication site. Maintaining hemocyte homeostasis is pivotal for the shrimp's survival during infection. The upregulated miRNA pva-miR-166 could repress PvProsaposin expression in shrimp hemocytes infected with WSSV. The significance of PvProsaposin in maintaining hemocyte homeostasis via apoptosis led to reduced survival rate, decreased total hemocyte numbers, and elevated caspase 3/7 activity in PvProsaposin-silenced shrimp. Additionally, the inhibitory ability of pva-miR-166-mimic and dsRNA-PvProsaposin on the expression of PvProsaposin also lowered the THC, increases the hemocyte apoptosis, resulting in a lower WSSV copy number. Ultimately, the dysregulation of the anti-apoptotic gene PvProsaposin by pva-miR-166 during WSSV infection disrupts hemocyte homeostasis, leading to an immunocompromised state in shrimp, rendering them incapable of surviving WSSV invasion.


Assuntos
Apoptose , Hemócitos , Homeostase , MicroRNAs , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Hemócitos/metabolismo , Hemócitos/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Penaeidae/virologia , Penaeidae/genética , Penaeidae/imunologia , Imunidade Inata , Regulação da Expressão Gênica , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Interações Hospedeiro-Patógeno
4.
J Virol ; 98(3): e0180523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323810

RESUMO

Shrimp hemocytes are the vital immune cells participating in innate immune response to defend against viruses. However, the lack of specific molecular markers for shrimp hemocyte hindered the insightful understanding of their functional clusters and differential roles in combating microbial infections. In this study, we used single-cell RNA sequencing to map the transcriptomic landscape of hemocytes from the white spot syndrome virus (WSSV)-infected Litopenaeus vannamei and conjointly analyzed with our previous published single-cell RNA sequencing technology data from the healthy hemocytes. A total of 16 transcriptionally distinct cell clusters were identified, which occupied different proportions in healthy and WSSV-infected hemocytes and exerted differential roles in antiviral immune response. Following mapping of the sequencing data to the WSSV genome, we found that all types of hemocytes could be invaded by WSSV virions, especially the cluster 8, which showed the highest transcriptional levels of WSSV genes and exhibited a cell type-specific antiviral response to the viral infection. Further evaluation of the cell clusters revealed the delicate dynamic balance between hemocyte immune response and viral infestation. Unsupervised pseudo-time analysis of hemocytes showed that the hemocytes in immune-resting state could be significantly activated upon WSSV infection and then functionally differentiated to different hemocyte subsets. Collectively, our results revealed the differential responses of shrimp hemocytes and the process of immune-functional differentiation post-WSSV infection, providing essential resource for the systematic insight into the synergistic immune response mechanism against viral infection among hemocyte subtypes. IMPORTANCE: Current knowledge of shrimp hemocyte classification mainly comes from morphology, which hinder in-depth characterization of cell lineage development, functional differentiation, and different immune response of hemocyte types during pathogenic infections. Here, single-cell RNA sequencing was used for mapping hemocytes during white spot syndrome virus (WSSV) infection in Litopenaeus vannamei, identifying 16 cell clusters and evaluating their potential antiviral functional characteristics. We have described the dynamic balance between viral infestation and hemocyte immunity. And the functional differentiation of hemocytes under WSSV stimulation was further characterized. Our results provided a comprehensive transcriptional landscape and revealed the heterogeneous immune response in shrimp hemocytes during WSSV infection.


Assuntos
Proteínas de Artrópodes , Hemócitos , Interações entre Hospedeiro e Microrganismos , Penaeidae , RNA-Seq , Análise da Expressão Gênica de Célula Única , Vírus da Síndrome da Mancha Branca 1 , Animais , Proteínas de Artrópodes/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Regulação da Expressão Gênica , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/metabolismo , Hemócitos/virologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Penaeidae/citologia , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/virologia , Vírus da Síndrome da Mancha Branca 1/genética , Vírus da Síndrome da Mancha Branca 1/imunologia
5.
FASEB J ; 38(10): e23658, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742809

RESUMO

Phospholipase A2 is the most abundant venom gland enzyme, whose activity leads to the activation of the inflammatory response by accumulating lipid mediators. This study aimed to identify, classify, and investigate the properties of venom PLA2 isoforms. Then, the present findings were confirmed by chemically measuring the activity of PLA2. The sequences representing PLA2 annotation were extracted from the Androctonus crassicauda transcriptome dataset using BLAS searches against the local PLA2 database. We found several cDNA sequences of PLA2 classified and named by conducting multiple searches as platelet-activating factor acetylhydrolases, calcium-dependent PLA2s, calcium-independent PLA2s, and secreted PLA2s. The largest and smallest isoforms of these proteins range between approximately 70.34 kDa (iPLA2) and 17.75 kDa (cPLA2). Among sPLA2 isoforms, sPLA2GXIIA and sPLA2G3 with ORF encoding 169 and 299 amino acids are the smallest and largest secreted PLA2, respectively. These results collectively suggested that A. crassicauda venom has PLA2 activity, and the members of this protein family may have important biological roles in lipid metabolism. This study also revealed the interaction between members of PLA2s in the PPI network. The results of this study would greatly help with the classification, evolutionary relationships, and interactions between PLA2 family proteins in the gene network.


Assuntos
Fosfolipases A2 , Transcriptoma , Animais , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Escorpiões/genética , Sequência de Aminoácidos , Filogenia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo
6.
J Allergy Clin Immunol ; 154(2): 447-457, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38697404

RESUMO

BACKGROUND: Human IgE (hIgE) mAbs against major mite allergen Der p 2 developed using human hybridoma technology were used for IgE epitope mapping and analysis of epitopes associated with the hIgE repertoire. OBJECTIVE: We sought to elucidate the new hIgE mAb 4C8 epitope on Der p 2 and compare it to the hIgE mAb 2F10 epitope in the context of the allergenic structure of Der p 2. METHODS: X-ray crystallography was used to determine the epitope of anti-Der p 2 hIgE mAb 4C8. Epitope mutants created by targeted mutagenesis were analyzed by immunoassays and in vivo using a human high-affinity IgE receptor (FcεRIα)-transgenic mouse model of passive systemic anaphylaxis. RESULTS: The structure of recombinant Der p 2 with hIgE mAb 4C8 Fab was determined at 3.05 Å. The newly identified epitope region does not overlap with the hIgE mAb 2F10 epitope or the region recognized by 3 overlapping hIgE mAbs (1B8, 5D10, and 2G1). Compared with wild-type Der p 2, single or double 4C8 and 2F10 epitope mutants bound less IgE antibodies from allergic patients by as much as 93%. Human FcεRIα-transgenic mice sensitized by hIgE mAbs, which were susceptible to anaphylaxis when challenged with wild-type Der p 2, could no longer cross-link FcεRI to induce anaphylaxis when challenged with the epitope mutants. CONCLUSIONS: These data establish the structural basis of allergenicity of 2 hIgE mAb nonoverlapping epitopes on Der p 2, which appear to make important contributions to the hIgE repertoire against Der p 2 and provide molecular targets for future design of allergy therapeutics.


Assuntos
Anticorpos Monoclonais , Antígenos de Dermatophagoides , Proteínas de Artrópodes , Epitopos , Imunoglobulina E , Camundongos Transgênicos , Antígenos de Dermatophagoides/imunologia , Antígenos de Dermatophagoides/química , Imunoglobulina E/imunologia , Humanos , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Animais , Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Camundongos , Mapeamento de Epitopos , Cristalografia por Raios X , Receptores de IgE/imunologia , Receptores de IgE/química , Pyroglyphidae/imunologia , Alérgenos/imunologia , Alérgenos/química
7.
J Allergy Clin Immunol ; 153(5): 1282-1291.e10, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360181

RESUMO

BACKGROUND: House dust mite (HDM) is the most common allergen trigger globally for allergic rhinitis and atopic asthma. OBJECTIVES: To expedite accurate confirmation of allergen sensitization, we designed fluorescent allergen tetramers to directly stain specific IgE on basophils to detect specific allergen sensitization using the flow cytometric CytoBas assay. METHODS: Recombinant proteins of major HDM allergens (component), Der f 1, Der p 1, and Der p 2 were biotinylated and conjugated with fluorochrome streptavidins as tetramers. Blood samples from 64 patients who are HDM-allergic and 26 controls that are non-HDM-sensitized were incubated with allergen tetramers for evaluation of basophil binding (CytoBas) and activation (BAT) with flow cytometry. RESULTS: The tetramers effectively bound and activated basophils from patients who are allergic but not from controls who are nonsensitized. CytoBas with Der p 1 as a single allergen had comparable sensitivity and specificity (92% and 100%) to BAT (91% and 100%) in detecting allergen sensitization, as did CytoBas with Der p 2 (95% and 96%) to BAT (95% and 87%). A positive staining for Der p 1 and/or Der p 2 in CytoBas was 100% sensitive and 96% specific for HDM allergy. CONCLUSIONS: CytoBas has diagnostic accuracy for group 1 and group 2 HDM allergens that is comparable to BAT, but with additional advantages of multiple allergen components in a single tube and no requirement for in vitro basophil activation. These findings endorse a single, multiplex CytoBas assay for accurate and component-resolved diagnosis of aeroallergen sensitization in patients with allergic asthma and/or rhinitis.


Assuntos
Antígenos de Dermatophagoides , Proteínas de Artrópodes , Asma , Basófilos , Cisteína Endopeptidases , Citometria de Fluxo , Pyroglyphidae , Rinite Alérgica , Humanos , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Basófilos/imunologia , Cisteína Endopeptidases/imunologia , Animais , Rinite Alérgica/imunologia , Rinite Alérgica/diagnóstico , Asma/imunologia , Asma/diagnóstico , Feminino , Adulto , Citometria de Fluxo/métodos , Masculino , Pyroglyphidae/imunologia , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Imunoglobulina E/imunologia , Imunoglobulina E/sangue , Alérgenos/imunologia , Sensibilidade e Especificidade , Criança
8.
Proteomics ; 24(14): e2300292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38676470

RESUMO

The cuticles of arthropods provide an interface between the organism and its environment. Thus, the cuticle's structure influences how the organism responds to and interacts with its surroundings. Here, we used label-free quantification proteomics to provide a proteome of the moulted cuticle of the aquatic crustacean Daphnia magna, which has long been a prominent subject of studies on ecology, evolution, and developmental biology. We detected a total of 278 high-confidence proteins. Using protein sequence domain and functional enrichment analyses, we identified chitin-binding structural proteins and chitin-modifying enzymes as the most abundant protein groups in the cuticle proteome. Structural cuticular protein families showed a similar distribution to those found in other arthropods and indicated proteins responsible for the soft and flexible structure of the Daphnia cuticle. Finally, cuticle protein genes were also clustered as tandem gene arrays in the D. magna genome. The cuticle proteome presented here will be a valuable resource to the Daphnia research community, informing genome annotations and investigations on diverse topics such as the genetic basis of interactions with predators and parasites.


Assuntos
Proteínas de Artrópodes , Daphnia , Proteoma , Animais , Proteoma/metabolismo , Proteoma/análise , Proteoma/genética , Daphnia/metabolismo , Daphnia/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/análise , Proteômica/métodos , Quitina/metabolismo , Quitina/análise
9.
Dev Genes Evol ; 234(1): 21-32, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616194

RESUMO

Dmrt (doublesex and mab-3 related transcription factor) is a protein family of transcription factors implicated in sexual regulation. Dmrt proteins are widely conserved and known for their involvement in sex determination and differentiation across species, from invertebrates to humans. In this study, we identified a novel gene with a DM (doublesex/Mab-3)-domain gene in the river prawn, Macrobrachium nipponense, which we named MniDmrt1B due to its similarities and close phylogenetic relationship with Dmrt1B in Macrobrachium rosenbergii. Through amino acid alignments and structural predictions, we observed conservation and identified putative active sites within the DM domain. qRT-PCR analysis revealed that MniDmrt1B exhibited high expression levels in the testis, with consistently higher expression in males compared to females during development. Additionally, similar to other sex-regulated genes, the MniDmrt1B gene exhibited high expression levels during the sex differentiation-sensitive periods in M. nipponense. These results strongly indicated that MniDmrt1B probably plays an important role in testis development and sex differentiation in M. nipponense.


Assuntos
Proteínas de Artrópodes , Palaemonidae , Fatores de Transcrição , Animais , Feminino , Masculino , Sequência de Aminoácidos , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/química , Regulação da Expressão Gênica no Desenvolvimento , Palaemonidae/genética , Palaemonidae/crescimento & desenvolvimento , Palaemonidae/metabolismo , Filogenia , Alinhamento de Sequência , Diferenciação Sexual/genética , Testículo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química
10.
Biol Reprod ; 110(5): 1000-1011, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38408206

RESUMO

The germ cell-less gene is crucial for gonad development in various organisms. Early interventions in its expression suggested a regulatory role at the mitotic stages of spermatogenesis, and its early knockout resulted in complete sterility in Drosophila. Genomic and transcriptomic data available for the catadromous giant prawn Macrobrachium rosenbergii enabled the identification of a germ cell-less homolog for this species, which we termed MroGCL (mRNA accession number OQ533056). An open reading frame containing 494 amino acids and a typical evolutionarily conserved BTB/POZ domain suggests possible protein-protein interaction functions in keeping with the Drosophila germ cell-less protein. Genomic mapping of MroGCL showed a full length of 120 896 bases. Analysis of the temporal expression of MroGCL showed constant expression in early prawn embryonic and larval stages, but a significant increase 10 days after metamorphosis when crucial sexual differentiation processes occur in prawns. In adult animals, high expression was detected in the gonads compared to the somatic tissues. RNAi-based knock-down experiments showed that both the silenced and control groups reached advanced spermatogenic stages, but that there was a significant decrease in the yield of spermatozoa in about half of the silenced animals. This finding supports our hypothesis that MroGCL is crucial for mitosis during early stage spermatogenesis. In conclusion, this study contributes to the understanding of crustacean gonad development and provides a stepping stone in the development of environmentally valuable sterile crustacean populations.


Assuntos
Palaemonidae , Espermatogênese , Animais , Palaemonidae/genética , Palaemonidae/fisiologia , Espermatogênese/fisiologia , Espermatogênese/genética , Masculino , Sequência de Aminoácidos , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo
11.
Cell Tissue Res ; 397(2): 125-146, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878176

RESUMO

In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.


Assuntos
Palaemonidae , Animais , Palaemonidae/metabolismo , Palaemonidae/genética , Masculino , Feminino , Água Doce , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/genética , Aquaporinas/metabolismo , Aquaporinas/genética
12.
Transgenic Res ; 33(1-2): 21-33, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573429

RESUMO

Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.


Assuntos
Polipeptídeos Semelhantes à Elastina , Seda , Seda/genética , Proteínas de Artrópodes , Elastina/genética , Elastina/química , Elastina/metabolismo , Nicotiana/genética , Proteínas Recombinantes de Fusão/genética
13.
Protein Expr Purif ; 222: 106536, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38908458

RESUMO

Lectins are versatile proteins that specifically recognize and interact with sugar moieties expressed on the cell surface. The potential of lectin in drug targeting and delivery has instigated interest to identify natural lectins. Crabs have been identified as a rich source of lectin because the innate immune system is activated on encounter of pathogens and helps in the production of lectin. Although the presence of lectins in crab's hemolymph is well documented, little information about lectin in hepatopancreas, a vital organ for immunity and digestion in crustaceans, is currently available. A calcium dependent lectin (75 kDa) was purified from the hepatopancreas of the freshwater crab Oziotelphusa naga by bioadsorption and fetuin linked Sepharose 4B affinity chromatography technique. The isolated hepatopancreas lectin is calcium dependent and maximum agglutination was observed with rabbit erythrocytes. The hemagglutinating activity of the hepatopancreas lectin was effectively inhibited by sugars, such as α-lactose, GlcNAc, trehalose and NeuAc. Compared to sialylated N-glycosylated proteins including transferrin and apo transferrin, sialylated O-glycosylated proteins like fetuin exhibited stronger inhibitory effect. The ability of erythrocytes to bind hepatopancreas lectin has been diminished by desialylation of the potent inhibitor, indicating the significance of sialic acid in lectin-ligand interactions. The purified hepatopancreas lectin showed a broad spectrum of antimicrobial activity against bacteria Staphylococcus aureus, Klebsiella pneumoniae, Proteus mirabilis, Pseudomonas aeruginosa, E. coli and fungi Candida albicans and Aspergillus niger. The findings of this study demonstrate the significance of hepatopancreas lectin as a multifunctional defense protein that inhibits the growth of bacteria and fungi.


Assuntos
Braquiúros , Hepatopâncreas , Lectinas , Animais , Hepatopâncreas/química , Lectinas/farmacologia , Lectinas/química , Lectinas/isolamento & purificação , Braquiúros/química , Proteínas de Artrópodes/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/isolamento & purificação , Proteínas de Artrópodes/genética , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Coelhos , Eritrócitos/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
14.
Protein Expr Purif ; 221: 106519, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38830441

RESUMO

Sinopotamon Henanense expresses two metal‒induced metallothioneins (MTs), Cd‒induced MT and Cu‒induced MT (ShCuMT). The Cd‒induced MT has been characterized as a Cd‒thiolate MT. However, it is unknown whether ShCuMT is a Cu‒thiolate MT. In the present study, ShCuMT was expressed heterologously in Escherichia coli and purified by Ni‒NTA column and superdex‒75 column. And its metal‒binding feature was evaluated by DTNB reaction, circular dichroism spectroscopy (CD), isothermal microtitration (ITC), electrospray flight mass spectrometry (ESI‒TOF‒MS), and matrix‒assisted laser desorption ionization flight mass spectrometry (MALDI‒TOF‒MS). Bioinformatics analysis demonstrated that ShCuMT possessed the cysteine‒triplet motif of a Cu‒specific MT. Expression and purification of ShCuMT illustrated that SUMO tag used as the production system for ShCuMT resulted in a high production yield. The stability order of ShCuMT binding metal ions were Cu (Ⅰ) > Cd (Ⅱ) > Zn (Ⅱ). The CD spectrum indicated that ShCuMT binding with Cu (I) exhibited a compact thiol metal clusters structure. Besides, there emerged no a visible nickel‒thiol absorption after Ni‒NTA column affinity chromatography. The ITC results implied that Cu‒ShCuMT possessed the optimal thermodynamic conformation and the highest stoichiometric number of Cu (Ⅰ). Overall, the results suggested that SUMO fusion system is a robust and inexpensive approach for ShCuMT expression and Ni‒NTA column had no influence on metal binding of ShCuMT and Cu(Ⅰ) was considered its cognate metal ion, and ShCuMT possessed canonical Cu‒thiolate characteristics. The metal binding feature of ShCuMT reported here contributes to elucidating the structure‒function relationship of ShCuMT in S. Henanense.


Assuntos
Cobre , Metalotioneína , Metalotioneína/genética , Metalotioneína/química , Metalotioneína/metabolismo , Metalotioneína/isolamento & purificação , Animais , Cobre/metabolismo , Cobre/química , Braquiúros/genética , Braquiúros/metabolismo , Braquiúros/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Cádmio/metabolismo , Cádmio/química , Escherichia coli/genética , Escherichia coli/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/biossíntese
15.
Fish Shellfish Immunol ; 149: 109548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588870

RESUMO

Pentraxins (PTXs) are a family of pattern recognition proteins (PRPs) that play a role in pathogen recognition during infection via pathogen-associated molecular patterns (PAMPs). Here, we characterized a short-chained pentraxin isolated from kuruma shrimp (Marsupenaeus japonicus) hemocytes (MjPTX). MjPTX contains the pentraxin signature HxCxS/TWxS (where x can be any amino acid), although the second conserved residue of this signature differed slightly (L instead of C). In the phylogenetic analysis, MjPTX clustered closely with predicted sequences from crustaceans (shrimp, lobster, and crayfish) displaying high sequence identities exceeding 52.67 %. In contrast, MjPTX showed minimal sequence identity when compared to functionally similar proteins in other animals, with sequence identities ranging from 20.42 % (mouse) to 28.14 % (horseshoe crab). MjPTX mRNA transcript levels increased significantly after artificial infection with Vibrio parahaemolyticus (48 h), White Spot Syndrome Virus (72 h) and Yellow Head Virus (24 and 48 h). Assays done in vitro revealed that recombinant MjPTX (rMjPTX) has an ability to agglutinate Gram-negative and Gram-positive bacteria and to bind microbial polysaccharides and bacterial suspensions in the presence of Ca2+. Taken together, our results suggest that MjPTX functions as a classical pattern recognition protein in the presence of calcium ions, that is capable of binding to specific moieties present on the surface of microorganisms and facilitating their clearance.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Hemócitos , Penaeidae , Filogenia , Vibrio parahaemolyticus , Animais , Penaeidae/genética , Penaeidae/imunologia , Hemócitos/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/química , Proteínas de Artrópodes/imunologia , Vibrio parahaemolyticus/fisiologia , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Proteína C-Reativa/genética , Proteína C-Reativa/química , Proteína C-Reativa/imunologia , Regulação da Expressão Gênica/imunologia , Roniviridae/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
16.
Fish Shellfish Immunol ; 150: 109648, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777253

RESUMO

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Braquiúros , Regulação da Expressão Gênica , Imunidade Inata , Filogenia , Receptores de Laminina , Alinhamento de Sequência , Animais , Braquiúros/genética , Braquiúros/imunologia , Receptores de Laminina/genética , Receptores de Laminina/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Sequência de Bases
17.
Fish Shellfish Immunol ; 151: 109679, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844185

RESUMO

The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) typically composing of eight subunits (CSN1-8) mediates the process of deneddylation and deubiquitination. The fifth subunit of COP9 signalosome, CSN5, has special characteristics compared with the other seven subunits, and plays vital roles in the deneddylation activity and diverse cellular processes. However, the role of CSN5 in antiviral immunity is not clear. In this study, we identified 8 subunits (CSN1-8) of COP9 signalosome in shrimp Marsupenaeus japonicus. CSN1-6 were existed in all tested tissues, but CSN7-CSN8 were not detected in hepatopancreas. After WSSV challenged, the expression level of Csn1 to Csn4, and Csn6 to Csn8 were highly decreased, but the expression level of Csn5 was conspicuously increased in shrimp challenged by white spot syndrome virus (WSSV). The CSN5 was recombinantly expressed in Escherichia coli and its polyclonal antibody was prepared. The expression level of CSN5 was conspicuously increased at RNA and protein levels in the shrimp challenged by WSSV. After knockdown of Csn5 by RNA interference, the WSSV replication was obviously increased in shrimp. When injected the recombinant protein of CSN5 with the membrane penetrating peptide into shrimp, WSSV replication was inhibited and the survival rate of shrimp was significantly improved compared with control. We further analyzed the expression of antimicrobial peptides (AMPs) in Csn5-RNAi shrimp, and the results showed that the expression of several AMPs was declined significantly. These results indicate that CSN5 inhibits replication of WSSV via regulating expression of AMPs in shrimp, and the recombinant CSN5 might be used in shrimp aquaculture for the white spot syndrome disease control.


Assuntos
Proteínas de Artrópodes , Complexo do Signalossomo COP9 , Imunidade Inata , Penaeidae , Vírus da Síndrome da Mancha Branca 1 , Animais , Penaeidae/genética , Penaeidae/imunologia , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Alinhamento de Sequência/veterinária , Filogenia
18.
Fish Shellfish Immunol ; 151: 109735, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945414

RESUMO

Antimicrobial peptide (AMP) is an important component of crustaceans' innate immune system. In this study, a short neuropeptide F (sNPF) gene (Pc-sNPF) and a Forkhead box O (FOXO) gene (PcFOXO) from Procambarus clarkii were identified. Analysis findings showed that the expression level of AMP genes differed between male and female P. clarkii. Furthermore, Pc-sNPF and PcFOXO were related to the sex dimorphism of AMP. Knockdown of Pc-sNPF in the eyestalk significantly upregulated the expression of PcFOXO and two anti-lipopolysaccharide factors (PcALF4 and PcALFL) in the intestine of P. clarkii. The expression of PcFOXO in the intestine of female P. clarkii was higher than in that of males. Results from RNA interference revealed that PcFOXO positively regulated the expression of PcALF4 and PcALFL in the intestine of male and female P. clarkii. In summary, our study showed that differences in Pc-sNPF expression in eyestalk of male and female P. clarkii leading to sex dimorphism of AMP expression in the intestine are mediated by the sNPF-FOXO-AMP signal pathway called the eyestalk-intestine axis.


Assuntos
Proteínas de Artrópodes , Regulação da Expressão Gênica , Neuropeptídeos , Caracteres Sexuais , Animais , Masculino , Feminino , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/metabolismo , Regulação da Expressão Gênica/imunologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Astacoidea/genética , Astacoidea/imunologia , Intestinos , Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/metabolismo , Imunidade Inata/genética , Filogenia , Perfilação da Expressão Gênica , Sequência de Aminoácidos , Alinhamento de Sequência
19.
Fish Shellfish Immunol ; 151: 109626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797334

RESUMO

In arthropods, the involvement of Dscam (Down syndrome cell adhesion molecule) in innate immunity has been extensively demonstrated. Its cytoplasmic tail contains multiple conserved functional sites, which indicates its involvement in different intracellular signaling pathways. In this study, we focused on the role of the cytoplasmic tail of Dscam in the Chinese mitten crab (Eriocheir sinensis) immune defense. In the group with cytoplasmic tail knockdown (the site was located on constant exons 37 and 38), 3885 differentially expressed genes (DEGs) were identified. The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. The expression of selected genes were validated using quantitative real-time reverse transcription PCR. We identified key Cell cycle, Janus kinase (JAK)-signal transducer, activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathway genes, the results indicated that the cytoplasmic tail of Dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes.


Assuntos
Proteínas de Artrópodes , Braquiúros , Hemócitos , Imunidade Inata , Animais , Braquiúros/genética , Braquiúros/imunologia , Hemócitos/imunologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Imunidade Inata/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/imunologia , Regulação da Expressão Gênica/imunologia , Proliferação de Células
20.
Fish Shellfish Immunol ; 152: 109799, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098748

RESUMO

LRR-only protein (LRRop) is an important class of immune molecules that function as pattern recognition receptor in invertebrates, however, the bacterial inhibitory activity of this proteins remain largely unknown. Herein, a novel LRRop was cloned from Eriocheir sinensis and named as EsLRRop2. The EsLRRop2 consists of six LRR motifs and formed a horseshoe shape three-dimension structure. EsLRRop2 was mainly expressed in intestine and hepatopancreas. The transcripts of EsLRRop2 in the intestine and hepatopancreas were induced by Vibrio parahaemolyticus and Staphylococcus aureus, and displayed similar transcriptional profiles. The expression levels of EsLRRop2 responded more rapidly and highly to V. parahaemolyticus than S. aureus in the intestine and hepatopancreas. Although the basal expression level of EsLRRop2 in hemocytes was relatively low, its transcripts in hemocytes were significantly induced by V. parahaemolyticus and S. aureus. The recombinant proteins of EsLRRop2 (rEsLRRop2) displayed a wide range of binding spectrum against vibrios, including V. parahaemolyticus, V. alginolyticus, and V. harveryi. The rEsLRRop2 showed dose- and time-dependent inhibitory activity against V. parahaemolyticus and S. aureus, and it could agglutinate the two bacteria. Furthermore, the inhibitory activities of rEsLRRop2 against V. parahaemolyticus, V. alginolyticus, V. harveryi and S. aureus was slightly affected by pH and salinity, and the rEsLRRop2 displayed the strongest inhibitory activity against all the three vibrios when the salinity was 20 ‰ and pH was 8.0. Collectively, these results elucidate the bacterial binding and inhibitory activities of EsLRRop2, and provide theoretical foundations for the application of rEsLRRop2 in prevention and control of vibrio diseases in aquaculture.


Assuntos
Sequência de Aminoácidos , Proteínas de Artrópodes , Braquiúros , Filogenia , Staphylococcus aureus , Vibrio parahaemolyticus , Braquiúros/imunologia , Braquiúros/genética , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Vibrio parahaemolyticus/fisiologia , Staphylococcus aureus/fisiologia , Imunidade Inata/genética , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Vibrio/fisiologia , Sequência de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA