Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 91: 705-729, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35320686

RESUMO

Biosynthesis of many important polysaccharides (including peptidoglycan, lipopolysaccharide, and N-linked glycans) necessitates the transport of lipid-linked oligosaccharides (LLO) across membranes from their cytosolic site of synthesis to their sites of utilization. Much of our current understanding of LLO transport comes from genetic, biochemical, and structural studies of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) superfamily protein MurJ, which flips the peptidoglycan precursor lipid II. MurJ plays a pivotal role in bacterial cell wall synthesis and is an emerging antibiotic target. Here, we review the mechanism of LLO flipping by MurJ, including the structural basis for lipid II flipping and ion coupling. We then discuss inhibition of MurJ by antibacterials, including humimycins and the phage M lysis protein, as well as how studies on MurJ could provide insight into other flippases, both within and beyond the MOP superfamily.


Assuntos
Bactérias/química , Proteínas de Transferência de Fosfolipídeos/química , Bactérias/classificação , Bactérias/citologia , Bactérias/metabolismo , Lipídeos , Peptidoglicano , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo
2.
Nature ; 619(7971): 819-827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438530

RESUMO

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.


Assuntos
COVID-19 , Proteínas de Transferência de Fosfolipídeos , SARS-CoV-2 , Animais , Humanos , Camundongos , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Quirópteros , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/prevenção & controle , COVID-19/virologia , Sequenciamento do Exoma , Hepatócitos/imunologia , Hepatócitos/metabolismo , Interferon gama/imunologia , Pulmão/imunologia , Pulmão/metabolismo , Fusão de Membrana , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/imunologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Internalização do Vírus
3.
Cell ; 151(1): 111-22, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021219

RESUMO

Collapse of membrane lipid asymmetry is a hallmark of blood coagulation. TMEM16F of the TMEM16 family that includes TMEM16A/B Ca(2+)-activated Cl(-) channels (CaCCs) is linked to Scott syndrome with deficient Ca(2+)-dependent lipid scrambling. We generated TMEM16F knockout mice that exhibit bleeding defects and protection in an arterial thrombosis model associated with platelet deficiency in Ca(2+)-dependent phosphatidylserine exposure and procoagulant activity and lack a Ca(2+)-activated cation current in the platelet precursor megakaryocytes. Heterologous expression of TMEM16F generates a small-conductance Ca(2+)-activated nonselective cation (SCAN) current with subpicosiemens single-channel conductance rather than a CaCC. TMEM16F-SCAN channels permeate both monovalent and divalent cations, including Ca(2+), and exhibit synergistic gating by Ca(2+) and voltage. We further pinpointed a residue in the putative pore region important for the cation versus anion selectivity of TMEM16F-SCAN and TMEM16A-CaCC channels. This study thus identifies a Ca(2+)-activated channel permeable to Ca(2+) and critical for Ca(2+)-dependent scramblase activity during blood coagulation. PAPERFLICK:


Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Cálcio/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ambystoma mexicanum , Animais , Anoctamina-1 , Anoctaminas , Canais de Cloreto/metabolismo , Hemostasia , Metabolismo dos Lipídeos , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Xenopus
4.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763336

RESUMO

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Assuntos
Adenosina Trifosfatases , Humanos , Animais , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Microscopia Crioeletrônica , Transporte Biológico , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Metabolismo dos Lipídeos , Conformação Proteica
5.
J Biol Chem ; 300(3): 105755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364890

RESUMO

XK-related 8 (XKR8), in complex with the transmembrane glycoprotein basigin, functions as a phospholipid scramblase activated by the caspase-mediated cleavage or phosphorylation of its C-terminal tail. It carries a putative phospholipid translocation path of multiple hydrophobic and charged residues in the transmembrane region. It also has a crucial tryptophan at the exoplasmic end of the path that regulates its scrambling activity. We herein investigated the tertiary structure of the human XKR8-basigin complex embedded in lipid nanodiscs at an overall resolution of 3.66 Å. We found that the C-terminal tail engaged in intricate polar and van der Waals interactions with a groove at the cytoplasmic surface of XKR8. These interactions maintained the inactive state of XKR8. Point mutations to disrupt these interactions strongly enhanced the scrambling activity of XKR8, suggesting that the activation of XKR8 is mediated by releasing the C-terminal tail from the cytoplasmic groove. We speculate that the cytoplasmic tail region of XKR8 functions as a plug to prevent the scrambling of phospholipids.


Assuntos
Proteínas Reguladoras de Apoptose , Basigina , Proteínas de Membrana , Proteínas de Transferência de Fosfolipídeos , Humanos , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Basigina/química , Membrana Celular/metabolismo , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Nanopartículas/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos , Conformação Proteica em alfa-Hélice , Imagem Individual de Molécula
6.
J Biol Chem ; 296: 100600, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781749

RESUMO

Ceramide-1-phosphate transfer proteins (CPTPs) are members of the glycolipid transfer protein (GLTP) superfamily that shuttle ceramide-1-phosphate (C1P) between membranes. CPTPs regulate cellular sphingolipid homeostasis in ways that impact programmed cell death and inflammation. CPTP downregulation specifically alters C1P levels in the plasma and trans-Golgi membranes, stimulating proinflammatory eicosanoid production and autophagy-dependent inflammasome-mediated cytokine release. However, the mechanisms used by CPTP to target the trans-Golgi and plasma membrane are not well understood. Here, we monitored C1P intervesicular transfer using fluorescence energy transfer (FRET) and showed that certain phosphoinositides (phosphatidylinositol 4,5 bisphosphate (PI-(4,5)P2) and phosphatidylinositol 4-phosphate (PI-4P)) increased CPTP transfer activity, whereas others (phosphatidylinositol 3-phosphate (PI-3P) and PI) did not. PIPs that stimulated CPTP did not stimulate GLTP, another superfamily member. Short-chain PI-(4,5)P2, which is soluble and does not remain membrane-embedded, failed to activate CPTP. CPTP stimulation by physiologically relevant PI-(4,5)P2 levels surpassed that of phosphatidylserine (PS), the only known non-PIP stimulator of CPTP, despite PI-(4,5)P2 increasing membrane equilibrium binding affinity less effectively than PS. Functional mapping of mutations that led to altered FRET lipid transfer and assessment of CPTP membrane interaction by surface plasmon resonance indicated that di-arginine motifs located in the α-6 helix and the α3-α4 helix regulatory loop of the membrane-interaction region serve as PI-(4,5)P2 headgroup-specific interaction sites. Haddock modeling revealed specific interactions involving the PI-(4,5)P2 headgroup that left the acyl chains oriented favorably for membrane embedding. We propose that PI-(4,5)P2 interaction sites enhance CPTP activity by serving as preferred membrane targeting/docking sites that favorably orient the protein for function.


Assuntos
Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Homeostase , Humanos , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica em alfa-Hélice
7.
Proc Natl Acad Sci U S A ; 116(8): 2907-2912, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718401

RESUMO

The exposure of phosphatidylserine (PtdSer) to the cell surface is regulated by the down-regulation of flippases and the activation of scramblases. Xkr8 has been identified as a scramblase that is activated during apoptosis, but its exogenous expression in the mouse Ba/F3 pro B cell line induces constitutive PtdSer exposure. Here we found that this Xkr8-mediated PtdSer exposure occurred at 4 °C, but not at 20 °C, although its scramblase activity was observed at 20 °C. The Xkr8-mediated PtdSer exposure was inhibited by a kinase inhibitor and enhanced by phosphatase inhibitors. Phosphorylated Xkr8 was detected by Phos-tag PAGE, and a mass spectrometric and mutational analysis identified three phosphorylation sites. Their phosphomimic mutation rendered Xkr8 resistant to the kinase inhibitor for PtdSer exposure at 4 °C, but unlike phosphatase inhibitors, it did not induce constitutive PtdSer exposure at 20 °C. On the other hand, when the flippase genes were deleted, the Xkr8 induced constitutive PtdSer exposure at high temperature, indicating that the flippase activity normally counteracted Xkr8's ability to expose PtdSer. These results indicate that PtdSer exposure can be increased by the phosphorylation-mediated activation of Xkr8 scramblase and flippase down-regulation.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas de Membrana/química , Fosfatidilserinas/química , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Transporte Biológico , Membrana Celular/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Fosfatidilserinas/farmacologia , Proteínas de Transferência de Fosfolipídeos/química , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/química , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
8.
Proc Natl Acad Sci U S A ; 116(33): 16332-16337, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31371510

RESUMO

Phospholipid flippases (P4-ATPases) utilize ATP to translocate specific phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of biological membranes, thus generating and maintaining transmembrane lipid asymmetry essential for a variety of cellular processes. P4-ATPases belong to the P-type ATPase protein family, which also encompasses the ion transporting P2-ATPases: Ca2+-ATPase, Na+,K+-ATPase, and H+,K+-ATPase. In comparison with the P2-ATPases, understanding of P4-ATPases is still very limited. The electrogenicity of P4-ATPases has not been explored, and it is not known whether lipid transfer between membrane bilayer leaflets can lead to displacement of charge across the membrane. A related question is whether P4-ATPases countertransport ions or other substrates in the opposite direction, similar to the P2-ATPases. Using an electrophysiological method based on solid supported membranes, we observed the generation of a transient electrical current by the mammalian P4-ATPase ATP8A2 in the presence of ATP and the negatively charged lipid substrate phosphatidylserine, whereas only a diminutive current was generated with the lipid substrate phosphatidylethanolamine, which carries no or little charge under the conditions of the measurement. The current transient seen with phosphatidylserine was abolished by the mutation E198Q, which blocks dephosphorylation. Likewise, mutation I364M, which causes the neurological disorder cerebellar ataxia, mental retardation, and disequilibrium (CAMRQ) syndrome, strongly interfered with the electrogenic lipid translocation. It is concluded that the electrogenicity is associated with a step in the ATPase reaction cycle directly involved in translocation of the lipid. These measurements also showed that no charged substrate is being countertransported, thereby distinguishing the P4-ATPase from P2-ATPases.


Assuntos
Adenosina Trifosfatases/genética , Transporte Biológico/genética , Lipídeos de Membrana/genética , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Ataxia Cerebelar/genética , Citoplasma/genética , Citoplasma/metabolismo , Fenômenos Eletrofisiológicos/genética , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/genética , Humanos , Deficiência Intelectual/genética , Lipídeos de Membrana/metabolismo , Mutação/genética , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/genética , Especificidade por Substrato/genética
9.
J Biol Chem ; 295(35): 12537-12544, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32709749

RESUMO

TMEM16 Ca2+-activated phospholipid scramblases (CaPLSases) mediate rapid transmembrane phospholipid flip-flop and as such play essential roles in various physiological and pathological processes such as blood coagulation, skeletal development, viral infection, cell-cell fusion, and ataxia. Pharmacological tools specifically targeting TMEM16 CaPLSases are urgently needed to understand these novel membrane transporters and their contributions to health and disease. Tannic acid (TA) and epigallocatechin gallate (EGCG) were recently reported as promising TMEM16F CaPLSase inhibitors. However, our present study shows that TA and EGCG do not inhibit the phospholipid-scrambling or ion conduction activities of the dual-functional TMEM16F. Instead, we found that TA and EGCG mainly acted as fluorescence quenchers that rapidly suppress the fluorophores conjugated to annexin V, a phosphatidylserine-binding probe commonly used to report on TMEM16 CaPLSase activity. These data demonstrate the false positive effects of TA and EGCG on inhibiting TMEM16F phospholipid scrambling and discourage the use of these polyphenols as CaPLSase inhibitors. Appropriate controls as well as a combination of both fluorescence imaging and electrophysiological validation are necessary in future endeavors to develop TMEM16 CaPLSase inhibitors.


Assuntos
Anoctaminas/química , Proteínas de Transferência de Fosfolipídeos/química , Fosfolipídeos/química , Animais , Anoctaminas/antagonistas & inibidores , Anoctaminas/metabolismo , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Camundongos , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/metabolismo , Polifenóis/química , Polifenóis/farmacologia , Taninos/química , Taninos/farmacologia
10.
Mol Reprod Dev ; 88(5): 371-375, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33821543

RESUMO

Intraflagellar transport 27 (IFT27) is a key regulator for spermiogenesis and male fertility in mice. ATP8a1, a protein involved in the translocation of phosphatidylserine and phosphatidylethanolamine across lipid bilayers, is the strongest binding partner of IFT27. To investigate the role of ATP8a1 in spermatogenesis and male fertility, the global Atp8a1 knockout mice were analyzed. All mutant mice were fertile, and sperm count and motility were comparable to the control mice. Examination of testis and epididymis by hematoxylin and eosin staining did not reveal major histologic defects. These observations demonstrate that ATP8a1 is not a major spermatogenesis regulator. Given that a tissue-specific paralogue of ATP8a1, ATP8a2, is present, further studies with double-knockout models are warranted to delineate any compensatory functions of the two proteins.


Assuntos
Adenosina Trifosfatases/fisiologia , Fertilidade/fisiologia , Proteínas de Transferência de Fosfolipídeos/fisiologia , Espermatogênese/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/deficiência , Adenosina Trifosfatases/genética , Animais , Epididimo/ultraestrutura , Infertilidade Masculina/genética , Masculino , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/deficiência , Proteínas de Transferência de Fosfolipídeos/genética , Domínios Proteicos , Testículo/ultraestrutura
11.
Eur Biophys J ; 50(5): 745-757, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33787949

RESUMO

Lead and mercury being common environmental pollutants are often associated with erythrocytes, where phosphatidylserine (PS) exposure-mediated procoagulant activation is induced. Human phospholipid scramblase 1 (hPLSCR1) identified in the erythrocyte membrane is a type II transmembrane protein involved in Ca2+-dependent bidirectional scrambling of phospholipids (PL) during blood coagulation, cell activation, and apoptosis. The prominent role of hPLSCR1 in Pb2+ and Hg2+ poisoning was demonstrated by a biochemical assay, where recombinant hPLSCR1 induced PL scrambling across bilayer with a higher binding affinity (Kd) towards Hg2+ (4.1 µM) and Pb2+ (5.8 µM) than Ca2+ (25.6 mM). The increased affinity could be the outcome of heavy metals interacting at auxiliary sites other than the calcium-binding motif of hPLSCR1. Similar to other metal-binding proteins, cysteine-based metal-binding motifs could be the potential additional binding sites in hPLSCR1. To explore the hypothesis, the cysteines were chemically modified, which significantly reduced only the Hg2+- and Pb2+-induced scrambling activity leaving Ca2+-induced activity unaltered. Recombinant constructs with deletion of prominent cysteine residues and point mutation in the calcium-binding motif including Δ100-hPLSCR1, Δ160-hPLSCR1, and D275A-hPLSCR1 were generated, purified, and assayed for scramblase activity. The cysteine-deleted constructs of hPLSCR1 showed reduced binding affinity (Kd) for Hg2+ and Pb2+ without altering the Ca2+-binding affinity whereas the point mutant had completely lost its affinity for Ca2+ and reduced affinities for Hg2+ and Pb2+. The results accentuated the significance of cysteine residues as additional binding sites for heavy metal ions in hPLSCR1.


Assuntos
Proteínas de Transferência de Fosfolipídeos/química , Cálcio/metabolismo , Cisteína , Humanos , Chumbo/toxicidade , Mercúrio/toxicidade , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos
12.
Proc Natl Acad Sci U S A ; 115(26): 6709-6714, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891673

RESUMO

The peptidoglycan cell wall provides an essential protective barrier in almost all bacteria, defining cellular morphology and conferring resistance to osmotic stress and other environmental hazards. The precursor to peptidoglycan, lipid II, is assembled on the inner leaflet of the plasma membrane. However, peptidoglycan polymerization occurs on the outer face of the plasma membrane, and lipid II must be flipped across the membrane by the MurJ protein before its use in peptidoglycan synthesis. Due to its central role in cell wall assembly, MurJ is of fundamental importance in microbial cell biology and is a prime target for novel antibiotic development. However, relatively little is known regarding the mechanisms of MurJ function, and structural data for MurJ are available only from the extremophile Thermosipho africanus Here, we report the crystal structure of substrate-free MurJ from the gram-negative model organism Escherichia coli, revealing an inward-open conformation. Taking advantage of the genetic tractability of E. coli, we performed high-throughput mutagenesis and next-generation sequencing to assess mutational tolerance at every amino acid in the protein, providing a detailed functional and structural map for the enzyme and identifying sites for inhibitor development. Lastly, through the use of sequence coevolution analysis, we identify functionally important interactions in the outward-open state of the protein, supporting a rocker-switch model for lipid II transport.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Transferência de Fosfolipídeos/química , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Evolução Molecular , Biblioteca Gênica , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Mutação , Proteínas de Transferência de Fosfolipídeos/genética , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Relação Estrutura-Atividade
13.
Proc Natl Acad Sci U S A ; 115(7): E1667-E1674, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382763

RESUMO

TMEM16F, which is activated by elevation of intracellular calcium to trigger phospholipid scrambling and the collapse of lipid bilayer asymmetry to mediate important cellular functions such as blood coagulation, also generates a small-conductance calcium-activated cation current. How TMEM16F activation may be regulated is an open question. By recording TMEM16F Ca2+-activated current, we found that the TMEM16F Ca2+-response is desensitized by a brief exposure to high intracellular Ca2+, which is associated with depletion of phosphatidylinositol-(4, 5)-bisphosphate (PIP2) from the inner leaflet of the membrane. Application of artificial or natural PIP2 restores TMEM16F channel activity. PIP2 modulation of TMEM16F requires the presence of several positively charged amino acids in its cytoplasmic N-terminal domain. TMEM16F interaction with PIP2 works synergistically with membrane depolarization to facilitate Ca2+-gating of TMEM16F. Our study reveals the dependence of TMEM16F activity on phosphoinositides and provides one mechanism for TMEM16F activation to be strictly regulated in the cell membrane.


Assuntos
Anoctaminas/metabolismo , Cálcio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Animais , Anoctaminas/química , Anoctaminas/genética , Linhagem Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Camundongos , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Domínios Proteicos
14.
J Biol Chem ; 294(50): 19081-19098, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31690622

RESUMO

Phosphatidylinositol-transfer proteins (PITPs) are key regulators of lipid signaling in eukaryotic cells. These proteins both potentiate the activities of phosphatidylinositol (PtdIns) 4-OH kinases and help channel production of specific pools of phosphatidylinositol 4-phosphate (PtdIns(4)P) dedicated to specific biological outcomes. In this manner, PITPs represent a major contributor to the mechanisms by which the biological outcomes of phosphoinositide are diversified. The two-ligand priming model proposes that the engine by which Sec14-like PITPs potentiate PtdIns kinase activities is a heterotypic lipid-exchange cycle where PtdIns is a common exchange substrate among the Sec14-like PITP family, but the second exchange ligand varies with the PITP. A major prediction of this model is that second-exchangeable ligand identity will vary from PITP to PITP. To address the heterogeneity in the second exchange ligand for Sec14-like PITPs, we used structural, computational, and biochemical approaches to probe the diversities of the lipid-binding cavity microenvironments of the yeast Sec14-like PITPs. The collective data report that yeast Sec14-like PITP lipid-binding pockets indeed define diverse chemical microenvironments that translate into differential ligand-binding specificities across this protein family.


Assuntos
Proteínas de Transporte/metabolismo , Lipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Sítios de Ligação , Proteínas de Transporte/química , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
15.
J Biol Chem ; 294(15): 5970-5979, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30760526

RESUMO

The P-type ATPase protein family includes, in addition to ion pumps such as Ca2+-ATPase and Na+,K+-ATPase, also phospholipid flippases that transfer phospholipids between membrane leaflets. P-type ATPase ion pumps translocate their substrates occluded between helices in the center of the transmembrane part of the protein. The large size of the lipid substrate has stimulated speculation that flippases use a different transport mechanism. Information on the functional importance of the most centrally located helices M5 and M6 in the transmembrane domain of flippases has, however, been sparse. Using mutagenesis, we examined the entire M5-M6 region of the mammalian flippase ATP8A2 to elucidate its possible function in the lipid transport mechanism. This mutational screen yielded an informative map assigning important roles in the interaction with the lipid substrate to only a few M5-M6 residues. The M6 asparagine Asn-905 stood out as being essential for the lipid substrate-induced dephosphorylation. The mutants N905A/D/E/H/L/Q/R all displayed very low activities and a dramatic insensitivity to the lipid substrate. Strikingly, Asn-905 aligns with key ion-binding residues of P-type ATPase ion pumps, and N905D was recently identified as one of the mutations causing the neurological disorder cerebellar ataxia, mental retardation, and disequilibrium (CAMRQ) syndrome. Moreover, the effects of substitutions to the adjacent residue Val-906 (i.e. V906A/E/F/L/Q/S) suggest that the lipid substrate approaches Val-906 during the translocation. These results favor a flippase mechanism with strong resemblance to the ion pumps, despite a location of the translocation pathway in the periphery of the transmembrane part of the flippase protein.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Animais , Asparagina/química , Asparagina/genética , Asparagina/metabolismo , Bovinos , Células HEK293 , Humanos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosforilação
16.
J Biol Chem ; 294(3): 981-990, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30482840

RESUMO

The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the ß-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transporte Biológico Ativo/fisiologia , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Domínios Proteicos , Estrutura Secundária de Proteína
17.
Plant Mol Biol ; 104(6): 665-678, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32915352

RESUMO

KEY MESSAGE: SEC14L-PITPs guide membrane recognition and signaling. An increasingly complex modular structure of SEC14L-PITPs evolved in land plants compared to green algae. SEC14/CRAL-TRIO and GOLD domains govern membrane binding specificity. SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs) provide cues for membrane identity by exchanging lipophilic substrates, ultimately governing membrane signaling. Flowering plant SEC14L-PITPs often have modular structure and are associated with cell division, development, and stress responses. Yet, structure-function relationships for biochemical-cellular interactions of SEC14L-PITPs are rather enigmatic. Here, we evaluate the phylogenetic relationships of the SEC14L-PITP superfamily in the green lineage. Compared to green algae, land plants have an extended set of SEC14L-PITPs with increasingly complex modular structure. SEC14-GOLD PITPs, present in land plants but not Chara, diverged to three functional subgroups, represented by the six PATELLIN (PATL) proteins in Arabidopsis. Based on the example of Arabidopsis PATL2, we dissect the functional domains for in vitro binding to phosphoinositides and liposomes and for plant cell membrane association. While the SEC14 domain and its CRAL-TRIO-N-terminal extension serve general membrane attachment of the protein, the C-terminal GOLD domain directs it to the plasma membrane by recognizing specific phosphoinositides. We discuss that the different domains of SEC14L-PITPs integrate developmental and environmental signals to control SEC14L-PITP-mediated membrane identity, important to initiate dynamic membrane events.


Assuntos
Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Arabidopsis/química , Evolução Biológica , Membrana Celular/química , Perfilação da Expressão Gênica , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Filogenia , Domínios Proteicos , Relação Estrutura-Atividade
18.
J Comput Chem ; 41(6): 538-551, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31750558

RESUMO

Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.


Assuntos
Anoctaminas/química , Lipídeos de Membrana/química , Proteínas de Transferência de Fosfolipídeos/química , Anoctaminas/metabolismo , Lipídeos de Membrana/metabolismo , Simulação de Dinâmica Molecular , Proteínas de Transferência de Fosfolipídeos/metabolismo
19.
Chem Res Toxicol ; 33(2): 553-564, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31769662

RESUMO

Human phospholipid scramblases are a family of four homologous transmembrane proteins (hPLSCR1-4) mediating phospholipids (PLs) translocation in plasma membrane upon Ca2+ activation. hPLSCR3, the only homologue localized to mitochondria, plays a vital role in mitochondrial structure, function, maintenance, and apoptosis. Upon Ca2+ activation, hPLSCR3 mediates PL translocation at the mitochondrial membrane enhancing t-bid-induced cytochrome c release and apoptosis. Mitochondria are important target organelles for heavy-metals-induced apoptotic signaling cascade and are the central executioner of apoptosis to trigger. Pb2+ and Hg2+ toxicity mediates apoptosis by increased reactive oxygen species (ROS) and cytochrome c release from mitochondria. To discover the role of hPLSCR3 in heavy metal toxicity, hPLSCR3 was overexpressed as a recombinant protein in Escherichia coli Rosetta (DE3) and purified by affinity chromatography. The biochemical assay using synthetic proteoliposomes demonstrated that hPLSCR3 translocated aminophospholipids in the presence of micromolar concentrations of Pb2+ and Hg2+. A point mutation in the Ca2+-binding motif (F258V) led to a ∼60% loss in the functional activity and decreased binding affinities for Pb2+ and Hg2+ implying that the divalent heavy metal ions bind to the Ca2+-binding motif. This was further affirmed by the characteristic spectra observed with stains-all dye. The conformational changes upon heavy metal binding were monitored by circular dichroism, intrinsic tryptophan fluorescence, and light-scattering studies. Our results revealed that Pb2+ and Hg2+ bind to hPLSCR3 with higher affinity than Ca2+ thus mediating scramblase activity. To summarize, this is the first biochemical evidence for heavy metals binding to the mitochondrial membrane protein leading to bidirectional translocation of PLs specifically toward phosphatidylethanolamine.


Assuntos
Apoptose/efeitos dos fármacos , Chumbo/farmacologia , Mercúrio/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fosfolipídeos/antagonistas & inibidores , Cálcio/química , Cálcio/farmacologia , Relação Dose-Resposta a Droga , Humanos , Chumbo/química , Mercúrio/química , Mitocôndrias/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/isolamento & purificação , Fosfolipídeos/metabolismo , Relação Estrutura-Atividade
20.
FASEB J ; 33(3): 3087-3096, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30509129

RESUMO

P4-ATPases, a subfamily of P-type ATPases, were initially identified as aminophospholipid translocases in eukaryotic membranes. These proteins generate and maintain membrane lipid asymmetry by translocating aminophospholipids (phosphatidylserine and phosphatidylethanolamine) from the exoplasmic/lumenal leaflet to the cytoplasmic leaflet. The human genome encodes 14 P4-ATPases, and the cellular localizations, substrate specificities, and cellular roles of these proteins were recently revealed. Numerous P4-ATPases, including ATP8A1, ATP8A2, ATP11A, ATP11B, and ATP11C, transport phosphatidylserine. By contrast, ATP8B1, ATP8B2, and ATP10A transport phosphatidylcholine but not aminophospholipids, although there is a discrepancy regarding the substrate of ATP8B1 in the literature. Some yeast and plant P4-ATPases can also translocate phosphatidylcholine. At least 2 P4-ATPases (ATP8A2 and ATP8B1) are associated with severe human diseases, and other P4-ATPases are implicated in various pathophysiologic conditions in mouse models. Here, we discuss the cellular functions of phosphatidylcholine flippases and suggest a model for the phenotype of progressive familial intrahepatic cholestasis 1 caused by a defect in ATP8B1.-Shin, H.-W., Takatsu, H. Substrates of P4-ATPases: beyond aminophospholipids (phosphatidylserine and phosphatidylethanolamine).


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA