Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 587(7835): 657-662, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32726803

RESUMO

The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses3-5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.


Assuntos
COVID-19/imunologia , COVID-19/virologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Imunidade Inata , SARS-CoV-2/enzimologia , SARS-CoV-2/imunologia , Animais , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Citocinas/química , Citocinas/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/metabolismo , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferons/imunologia , Interferons/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , NF-kappa B/imunologia , NF-kappa B/metabolismo , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Ubiquitinação , Ubiquitinas/química , Ubiquitinas/metabolismo , Tratamento Farmacológico da COVID-19
2.
Bioorg Med Chem ; 113: 117909, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39288705

RESUMO

The unique and complex structure of papain-like protease (PLpro) of the SARS-CoV-2 virus represents a difficult challenge for antiviral development, yet it offers a compelling validated target for effective therapy of COVID-19. The surge in scientific interest in inhibiting this cysteine protease emerged after its demonstrated connection to the cytokine storm in patients with COVID-19 disease. Furthermore, the development of new inhibitors against PLpro may also be beneficial for the treatment of respiratory infections caused by emerging coronavirus variants of concern. This review article provides a comprehensive overview of PLpro inhibitors, focusing on the structural framework of the known inhibitor GRL0617 and its analogs. We categorize PLpro inhibitors on the basis of their structures and binding site: Glu167 containing site, BL2 groove, Val70Ub site, and Cys111 containing catalytic site. We summarize and evaluate the majority of GRL0617-like inhibitors synthesized so far, highlighting their published biochemical parameters, which reflect their efficacy. Published research has shown that strategic modifications to GRL0617, such as decorating the naphthalene ring, extending the aromatic amino group or the orthomethyl group, can substantially decrease the IC50 from micromolar up to nanomolar concentration range. Some advantageous modifications significantly enhance inhibitory activity, paving the way for the development of new potent compounds. Our review places special emphasis on structures that involve direct modifications to the GRL0617 scaffold, including piperidine carboxamides and modified benzylmethylnaphthylethanamines (Jun9 scaffold). All these compounds are believed to inhibit the proteolytic, deubiquitination, and deISGylation activity of PLpro, biochemical processes linked to the severe progression of COVID-19. Finally, we summarize the development efforts for SARS-CoV-2 PLpro inhibitors, in detailed structure-activity relationships diagrams. This aims to inform and inspire future research in the search for potent antiviral agents against PLpro of current and emerging coronavirus threats.


Assuntos
Antivirais , Proteases Semelhantes à Papaína de Coronavírus , Desenho de Fármacos , SARS-CoV-2 , Relação Estrutura-Atividade , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/síntese química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/síntese química , COVID-19/virologia
3.
Biol Pharm Bull ; 47(5): 965-966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38763750

RESUMO

The emergence of coronavirus disease 2019 (COVID-19), a novel identified pneumonia resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has significantly impacted and posed significant challenges to human society. The papain-like protease (PLpro) found in the nonstructural protein 3 of SARS-CoV-2 plays a vital role in viral replication. Moreover, PLpro disrupts the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 from host proteins. Consequently, PLpro has emerged as a promising drug target against SARS-CoV-2 infection. Computational studies have reported that ciclesonide can bind to SARS-CoV-2 PLpro. However, the inhibitory effects of ciclenoside on the PLpro have not been experimentally evaluated. Here, we evaluated the inhibitory effects of synthetic glucocorticoids (sGCs), including ciclesonide, on SARS-CoV-2 PLpro in vitro assay. Ciclesonide significantly inhibited the enzymatic activity of PLpro, compared with other sGCs and its IC50 was 18.4 ± 1.89 µM. These findings provide insights into the development of PLpro inhibitors.


Assuntos
Pregnenodionas , SARS-CoV-2 , Pregnenodionas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Humanos , Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Glucocorticoides/farmacologia , COVID-19/virologia
4.
J Enzyme Inhib Med Chem ; 39(1): 2387417, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39163165

RESUMO

Papain-like protease (PLpro) is an attractive anti-coronavirus target. The development of PLpro inhibitors, however, is hampered by the limitations of the existing PLpro assay and the scarcity of validated active compounds. We developed a novel in-cell PLpro assay based on BRET and used it to evaluate and discover SARS-CoV-2 PLpro inhibitors. The developed assay demonstrated remarkable sensitivity for detecting the reduction of intracellular PLpro activity while presenting high reliability and performance for inhibitor evaluation and high-throughput screening. Using this assay, three protease inhibitors were identified as novel PLpro inhibitors that are structurally disparate from those previously known. Subsequent enzymatic assays and ligand-protein interaction analysis based on molecular docking revealed that ceritinib directly inhibited PLpro, showing high geometric complementarity with the substrate-binding pocket in PLpro, whereas CA-074 methyl ester underwent intracellular hydrolysis, exposing a free carboxyhydroxyl group essential for hydrogen bonding with G266 in the BL2 groove, resulting in PLpro inhibition.


Assuntos
Simulação de Acoplamento Molecular , Pirimidinas , SARS-CoV-2 , Sulfonas , Humanos , SARS-CoV-2/enzimologia , SARS-CoV-2/efeitos dos fármacos , Sulfonas/farmacologia , Sulfonas/química , Pirimidinas/química , Pirimidinas/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34210738

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to be a serious global public health threat. The 3C-like protease (3CLpro) is a virus protease encoded by SARS-CoV-2, which is essential for virus replication. We have previously reported a series of small-molecule 3CLpro inhibitors effective for inhibiting replication of human coronaviruses including SARS-CoV-2 in cell culture and in animal models. Here we generated a series of deuterated variants of a 3CLpro inhibitor, GC376, and evaluated the antiviral effect against SARS-CoV-2. The deuterated GC376 displayed potent inhibitory activity against SARS-CoV-2 in the enzyme- and the cell-based assays. The K18-hACE2 mice develop mild to lethal infection commensurate with SARS-CoV-2 challenge doses and were proposed as a model for efficacy testing of antiviral agents. We treated lethally infected mice with a deuterated derivative of GC376. Treatment of K18-hACE2 mice at 24 h postinfection with a derivative (compound 2) resulted in increased survival of mice compared to vehicle-treated mice. Lung virus titers were decreased, and histopathological changes were ameliorated in compound 2-treated mice compared to vehicle-treated mice. Structural investigation using high-resolution crystallography illuminated binding interactions of 3CLpro of SARS-CoV-2 and SARS-CoV with deuterated variants of GC376. Taken together, deuterated GC376 variants have excellent potential as antiviral agents against SARS-CoV-2.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/uso terapêutico , Pirrolidinas/uso terapêutico , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , COVID-19/patologia , Proteases 3C de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/química , Cristalografia por Raios X , Deutério , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Conformação Proteica , Pirrolidinas/química , SARS-CoV-2/enzimologia , Ácidos Sulfônicos , Transgenes
6.
Bioorg Chem ; 140: 106830, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683544

RESUMO

Global coronavirus disease 2019 (COVID-19) pandemic still threatens human health and public safety, and the development of effective antiviral agent is urgently needed. The SARS-CoV-2 main protease (Mpro) and papain-like protease (PLpro) are vital proteins in viral replication and promising therapeutic targets. Additionally, PLpro also modulates host immune response by cleaving ubiquitin and interferon-stimulated gene product 15 (ISG15) from ISGylated host proteins. In this report, we identified [1,2]selenazolo[5,4-c]pyridin-3(2H)-one and benzo[d]isothiazol-3(2H)-one as attractive scaffolds of PLpro and Mpro inhibitors. The representative compounds 6c and 7e exhibited excellent PLpro inhibition with percent inhibition of 42.9% and 44.9% at 50 nM, respectively. The preliminary enzyme kinetics experiment and fluorescent labelling experiment results determined that 6c was identified as a covalent PLpro inhibitor, while 7e was a non-covalent inhibitor. Molecular docking and dynamics simulations revealed that 6c and 7e bound to Zn-finger domain of PLpro. Compounds 6c and 7e were also identified to potent Mpro inhibitors, and they exhibited potent antiviral activities in SARS-CoV-2 infected Vero E6 cells, with EC50 value of 3.9 µM and 7.4 µM, respectively. In addition, the rat liver homogenate half-life of 6c and 7e exceeded 24 h. These findings suggest that 6c and 7e are promising led compounds for further development of PLpro/Mpro dual-target antiviral drugs.


Assuntos
COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Protease de Coronavírus , Animais , Humanos , Ratos , Antivirais/farmacologia , Corantes , Endopeptidases , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , SARS-CoV-2 , Inibidores de Protease de Coronavírus/química , Inibidores de Protease de Coronavírus/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores
7.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902093

RESUMO

We report synthesis of a novel 1,2,3,4-tetrahydroquinazoline derivative, named 2-(6,8-dibromo-3-(4-hydroxycyclohexyl)-1,2,3,4-tetrahydroquinazolin-2-yl)phenol (1), which was obtained from the hydrochloride of 4-((2-amino-3,5-dibromobenzyl)amino)cyclohexan-1-ol (ambroxol hydrochloride) and salicylaldehyde in EtOH. The resulting compound was produced in the form of colorless crystals of the composition 1∙0.5EtOH. The formation of the single product was confirmed by the IR and 1H spectroscopy, single-crystal and powder X-ray diffraction, and elemental analysis. The molecule of 1 contains a chiral tertiary carbon of the 1,2,3,4-tetrahydropyrimidine fragment and the crystal structure of 1∙0.5EtOH is a racemate. Optical properties of 1∙0.5EtOH were revealed by UV-vis spectroscopy in MeOH and it was established that the compound absorbs exclusively in the UV region up to about 350 nm. 1∙0.5EtOH in MeOH exhibits dual emission and the emission spectra contains bands at about 340 and 446 nm upon excitation at 300 and 360 nm, respectively. The DFT calculations were performed to verify the structure as well as electronic and optical properties of 1. ADMET properties of the R-isomer of 1 were evaluated using the SwissADME, BOILED-Egg, and ProTox-II tools. As evidenced from the blue dot position in the BOILED-Egg plot, both human blood-brain barrier penetration and gastrointestinal absorption properties are positive with the positive PGP effect on the molecule. Molecular docking was applied to examine the influence of the structures of both R-isomer and S-isomer of 1 on a series of the SARS-CoV-2 proteins. According to the docking analysis results, both isomers of 1 were found to be active against all the applied SARS-CoV-2 proteins with the best binding affinities with Papain-like protease (PLpro) and nonstructural protein 3 (Nsp3_range 207-379-AMP). Ligand efficiency scores for both isomers of 1 inside the binding sites of the applied proteins were also revealed and compared with the initial ligands. Molecular dynamics simulations were also applied to evaluate the stability of complexes of both isomers with Papain-like protease (PLpro) and nonstructural protein 3 (Nsp3_range 207-379-AMP). The complex of the S-isomer with Papain-like protease (PLpro) was found to be highly unstable, while the other complexes are stable.


Assuntos
Ambroxol , COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Quinazolinas , SARS-CoV-2 , Humanos , Ambroxol/análogos & derivados , Ambroxol/farmacocinética , Ambroxol/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Quinazolinas/química , Quinazolinas/farmacocinética , Quinazolinas/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química
8.
J Chem Inf Model ; 62(24): 6553-6573, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35960688

RESUMO

The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 µM and 9.0 µM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 µM to 3.3 µM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Proteases Semelhantes à Papaína de Coronavírus , Naftoquinonas , Inibidores de Proteases , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , COVID-19 , Simulação de Acoplamento Molecular , Naftoquinonas/química , Naftoquinonas/farmacologia , Papaína , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores
9.
Methods ; 195: 44-56, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33639316

RESUMO

Novel coronavirus SARS-CoV-2continues tospread rapidly worldwide and causing serious health and economic loss. In the absence of any effective treatment, various in-silico approaches are being explored towards the therapeutic discovery against COVID-19. Targeting multiple key enzymes of SARS-CoV-2 with a single potential drug could be an important in-silico strategy to tackle the therapeutic emergency. A number of Food and Drug Administration (FDA) approved drugs entered into clinical stages were originated from multi-target approaches with an increased rate, 16-21% between 2015 and 2017. In this study, we selected an FDA-approved library (Prestwick Chemical Library of 1520 compounds) and implemented in-silico virtual screening against multiple protein targets of SARS-CoV-2 on the Glide module of Schrödinger software (release 2020-1). Compounds were analyzed for their docking scores and the top-ranked against each targeted protein were further subjected to Molecular Dynamics (MD) simulations to assess the binding stability of ligand-protein complexes. A multi-targeting approach was optimized that enabled the analysis of several compounds' binding efficiency with more than one protein targets. It was demonstrated that Diosmin (6) showed the highest binding affinity towards multiple targets with binding free energy (kcal/mol) values of -63.39 (nsp3); -62.89 (nsp9); -31.23 (nsp12); and -65.58 (nsp15). Therefore, our results suggests that Diosmin (6) possesses multi-targeting capability, a potent inhibitor of various non-structural proteins of SARS-CoV-2, and thus it deserves further validation experiments before using as a therapeutic against COVID-19 disease.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Diosmina/farmacologia , Antivirais/uso terapêutico , COVID-19/virologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Diosmina/uso terapêutico , Descoberta de Drogas , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Ligação a RNA , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
10.
Mol Divers ; 26(4): 2189-2209, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34591234

RESUMO

Papain-like protease (nsp-3; non-structural protein) of novel corona virus is an ideal target for developing drugs as it plays multiple important functions for viral growth and replication. For instance, role of nsp-3 has been recognized in cleavage of viral polyprotein; furthermore, in infected host it weakens the immune system via downregulating the production of type I interferon. This downregulation is promoted by removal of ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from interferon-responsive factor 3 (IRF3) protein. Among known inhibitors of SARS-CoV-PLpro GRL0617 is by far the most effective inhibitor. As PLpro of SARS-CoV2 is having more than 80% similarity with SARS-CoV-PLpro, GRL0617 is reported to be effective even against SARS-CoV2. Owing to this similarity, certain key amino acids remain the same/conserved in both proteins. Among conserved amino acids Tyr268 for SARS-CoV2 and Tyr269 for SARS-CoV produce important hydrophobic interactions with aromatic rings of GRL0617. Here, in this study antibacterial compounds were collected from ZINC database, and they were filtered to select compounds that are having similar structural features as GRL0617. This filtered library of compound was then docked with SARS-CoV and CoV2-PLpro. Five hits were noted that were able to interact with Tyr268 (SARS-CoV2) and Tyr269 (SARS-CoV). Further, best hit 2-(2-((benzofuran-2-carboxamido)methyl)-5-methoxy-1H-indol-1-yl)acetic acid (ZINC44459905) was studied using molecular dynamic simulation where stability of protein-ligand complex as well as stability of produced interactions was noted.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteases Semelhantes à Papaína de Coronavírus , Reposicionamento de Medicamentos , SARS-CoV-2 , Aminoácidos , Compostos de Anilina/farmacologia , Antibacterianos , Benzamidas/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Naftalenos/farmacologia , RNA Viral , SARS-CoV-2/efeitos dos fármacos , Ubiquitinas/química , Ubiquitinas/metabolismo
11.
Biochem J ; 478(13): 2517-2531, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198325

RESUMO

The COVID-19 pandemic has emerged as the biggest life-threatening disease of this century. Whilst vaccination should provide a long-term solution, this is pitted against the constant threat of mutations in the virus rendering the current vaccines less effective. Consequently, small molecule antiviral agents would be extremely useful to complement the vaccination program. The causative agent of COVID-19 is a novel coronavirus, SARS-CoV-2, which encodes at least nine enzymatic activities that all have drug targeting potential. The papain-like protease (PLpro) contained in the nsp3 protein generates viral non-structural proteins from a polyprotein precursor, and cleaves ubiquitin and ISG protein conjugates. Here we describe the expression and purification of PLpro. We developed a protease assay that was used to screen a custom compound library from which we identified dihydrotanshinone I and Ro 08-2750 as compounds that inhibit PLpro in protease and isopeptidase assays and also inhibit viral replication in cell culture-based assays.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Compostos de Anilina/farmacologia , Animais , Benzamidas/farmacologia , Chlorocebus aethiops , Proteases Semelhantes à Papaína de Coronavírus/genética , Proteases Semelhantes à Papaína de Coronavírus/isolamento & purificação , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Sinergismo Farmacológico , Ensaios Enzimáticos , Flavinas/farmacologia , Transferência Ressonante de Energia de Fluorescência , Furanos/farmacologia , Ensaios de Triagem em Larga Escala , Concentração Inibidora 50 , Naftalenos/farmacologia , Fenantrenos/farmacologia , Quinonas/farmacologia , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/crescimento & desenvolvimento , Bibliotecas de Moléculas Pequenas/química , Células Vero , Replicação Viral/efeitos dos fármacos
12.
Molecules ; 27(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35209006

RESUMO

Two rare 2-phenoxychromone derivatives, 6-demethoxy-4`-O-capillarsine (1) and tenuflorin C (2), were isolated from the areal parts of Artemisia commutata and A. glauca, respectively, for the first time. Being rare in nature, the inhibition potentialities of 1 and 2 against SARS-CoV-2 was investigated using multistage in silico techniques. At first, molecular similarity and fingerprint studies were conducted for 1 and 2 against co-crystallized ligands of eight different COVID-19 enzymes. The carried-out studies indicated the similarity of 1 and 2 with TTT, the co-crystallized ligand of COVID-19 Papain-Like Protease (PLP), (PDB ID: 3E9S). Therefore, molecular docking studies of 1 and 2 against the PLP were carried out and revealed correct binding inside the active site exhibiting binding energies of -18.86 and -18.37 Kcal/mol, respectively. Further, in silico ADMET in addition to toxicity evaluation of 1 and 2 against seven models indicated the general safety and the likeness of 1 and 2 to be drugs. Lastly, to authenticate the binding and to investigate the thermodynamic characters, molecular dynamics (MD) simulation studies were conducted on 1 and PLP.


Assuntos
Artemisia/química , COVID-19/enzimologia , Cromonas/química , Proteases Semelhantes à Papaína de Coronavírus , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Humanos , Tratamento Farmacológico da COVID-19
13.
Angew Chem Int Ed Engl ; 61(9): e202113617, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34889013

RESUMO

The main protease (Mpro ) and papain-like protease (PLpro ) play critical roles in SARS-CoV-2 replication and are promising targets for antiviral inhibitors. The simultaneous visualization of Mpro and PLpro is extremely valuable for SARS-CoV-2 detection and rapid inhibitor screening. However, such a crucial investigation has remained challenging because of the lack of suitable probes. We have now developed a dual-color probe (3MBP5) for the simultaneous detection of Mpro and PLpro by fluorescence (or Förster) resonance energy transfer (FRET). This probe produces fluorescence from both the Cy3 and Cy5 fluorophores that are cleaved by Mpro and PLpro . 3MBP5-activatable specificity was demonstrated with recombinant proteins, inhibitors, plasmid-transfected HEK 293T cells, and SARS-CoV-2-infected TMPRSS2-Vero cells. Results from the dual-color probe first verified the simultaneous detection and intracellular distribution of SARS-CoV-2 Mpro and PLpro . This is a powerful tool for the simultaneous detection of different proteases with value for the rapid screening of inhibitors.


Assuntos
Cor , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Corantes Fluorescentes/química , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos
14.
Biochem Biophys Res Commun ; 538: 72-79, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33276953

RESUMO

SARS-CoV-2 papain-like protease is considered as an important potential target for anti-SARS-CoV-2 drug discovery due to its crucial roles in viral spread and innate immunity. Here, we have utilized an in silico molecular docking approach to identify the possible inhibitors of the SARS-CoV-2 papain-like protease, by screening 21 antiviral, antifungal and anticancer compounds. Among them, Neobavaisoflavone has the highest binding energy for SARS-CoV-2 papain-like protease. These molecules could bind near the SARS-CoV-2 papain-like protease crucial catalytic triad, ubiquitination and ISGylation residues: Trp106, Asn109, Cys111, Met208, Lys232, Pro247, Tyr268, Gln269, His272, Asp286 and Thr301. Because blocking the papain-like protease is an important strategy in fighting against viruses, these compounds might be promising candidates for therapeutic intervention against COVID-19.


Assuntos
Proteases Semelhantes à Papaína de Coronavírus/química , Inibidores de Protease de Coronavírus/química , Inibidores de Cisteína Proteinase/química , Descoberta de Drogas/métodos , Isoflavonas/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Protease de Coronavírus/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Isoflavonas/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica
15.
Chemistry ; 27(71): 17928-17940, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34714566

RESUMO

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for dedicated antiviral therapeutics. Metal complexes are commonly underrepresented in compound libraries that are used for screening in drug discovery campaigns, however, there is growing evidence for their role in medicinal chemistry. Based on previous results, we have selected more than 100 structurally diverse metal complexes for profiling as inhibitors of two relevant SARS-CoV-2 replication mechanisms, namely the interaction of the spike (S) protein with the ACE2 receptor and the papain-like protease PLpro . In addition to many well-established types of mononuclear experimental metallodrugs, the pool of compounds tested was extended to approved metal-based therapeutics such as silver sulfadiazine and thiomersal, as well as polyoxometalates (POMs). Among the mononuclear metal complexes, only a small number of active inhibitors of the S/ACE2 interaction was identified, with titanocene dichloride as the only strong inhibitor. However, among the gold and silver containing complexes many turned out to be very potent inhibitors of PLpro activity. Highly promising activity against both targets was noted for many POMs. Selected complexes were evaluated in antiviral SARS-CoV-2 assays confirming activity for gold complexes with N-heterocyclic carbene (NHC) or dithiocarbamato ligands, a silver NHC complex, titanocene dichloride as well as a POM compound. These studies might provide starting points for the design of metal-based SARS-CoV-2 antiviral agents.


Assuntos
Antivirais/farmacologia , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2/efeitos dos fármacos
16.
Mol Divers ; 25(3): 1963-1977, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33856591

RESUMO

The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, SARS-CoV-2, has recently emerged as a pandemic. Here, an attempt has been made through in-silico high throughput screening to explore the antiviral compounds from traditionally used plants for antiviral treatments in India namely, Tea, Neem and Turmeric, as potential inhibitors of two widely studied viral proteases, main protease (Mpro) and papain-like protease (PLpro) of the SARS-CoV-2. Molecular docking study using BIOVIA Discovery Studio 2018 revealed, (-)-epicatechin-3-O-gallate (ECG), a tea polyphenol has a binding affinity toward both the selected receptors, with the lowest CDocker energy - 46.22 kcal mol-1 for SARS-CoV-2 Mpro and CDocker energy - 44.72 kcal mol-1 for SARS-CoV-2 PLpro, respectively. The SARS-CoV-2 Mpro complexed with (-)-epicatechin-3-O-gallate, which had shown the best binding affinity was subjected to molecular dynamics simulations to validate its binding affinity, during which, the root-mean-square-deviation values of SARS-CoV-2 Mpro-Co-crystal ligand (N3) and SARS-CoV-2 Mpro- (-)-epicatechin-3-O-gallate systems were found to be more stable than SARS-CoV-2 Mpro system. Further, (-)-epicatechin-3-O-gallate was subjected to QSAR analysis which predicted IC50 of 0.3281 nM against SARS-CoV-2 Mpro. Overall, (-)-epicatechin-3-O-gallate showed a potential binding affinity with SARS-CoV-2 Mpro and could be proposed as a potential natural compound for COVID-19 treatment.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Simulação de Dinâmica Molecular , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos , Termodinâmica
17.
Mol Divers ; 25(3): 1761-1773, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33201386

RESUMO

SARS-CoV-2 is a new strain of Coronavirus that caused the pneumonia outbreak in Wuhan, China and has spread to over 200 countries of the world. It has received worldwide attention due to its virulence and high rate of infection. So far, several drugs have experimented against SARS-CoV-2, but the failure of these drugs to specifically interact with the viral protease necessitates urgent measure to boost up researches for the development of effective therapeutics against SARS-CoV-2. Papain-like protease (PLpro) of the viral polyproteins is essential for maturation and infectivity of the virus, making it one of the prime targets explored for SARS-CoV-2 drug design. This study was conducted to evaluate the efficacy of ~ 50,000 natural compounds retrieved from IBS database against COVID-19 PLpro using computer-aided drug design. Based on molecular dock scores, molecular interaction with active catalytic residues and molecular dynamics (MD) simulations studies, STOCK1N-69160 [(S)-2-((R)-4-((R)-2-amino-3-methylbutanamido)-3-(4-chlorophenyl) butanamido) propanoic acid hydrochloride] has been proposed as a novel inhibitor against COVID-19 PLpro. It demonstrated favourable docking score, the free energy of binding, interacted with key amino acid residues necessary for PLpro inhibition and also showed significant moderation for parameters investigated for ADME/tox (Adsorption, distribution, metabolism, excretion and toxicological) properties. The edge of the compound was further established by its stability in MD simulation conducted for 30 ns employing GROMACS software. We propose that STOCK1N-69160 is worth further investigation for preventing SARS-CoV-2.


Assuntos
Absorção Fisico-Química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Propionatos/química , Propionatos/farmacologia , SARS-CoV-2/enzimologia , Proteases Semelhantes à Papaína de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Desenho de Fármacos , Propionatos/metabolismo , Propionatos/toxicidade , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos , Software
18.
J Pharm Pharm Sci ; 24: 390-399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34319871

RESUMO

PURPOSE: SARS-CoV-2 infection is associated with substantial mortality and high morbidity. This study tested the effect of angiotensin II type I receptor blocker, losartan, on SARS-CoV-2 replication and inhibition of the papain-like protease of the virus. METHODS: The dose-dependent inhibitory effect of losartan, in concentrations from 1µM to 100µM as determined by quantitative cell analysis combining fluorescence microscopy, image processing, and cellular measurements (Cellomics analysis) on SARS-CoV-2 replication was investigated in Vero E6 cells. The impact of losartan on deubiquitination and deISGylation of SARS-CoV-2 papain-like protease (PLpro) were also evaluated.  Results: Losartan reduced PLpro cleavage of tetraUbiquitin to diUbiquitin.  It was less effective in inhibiting PLpro's cleavage of ISG15-AMC than Ubiquitin-AMC.  To determine if losartan inhibited SARS-CoV-2 replication, losartan treatment of SARS-CoV-2 infected Vero E6 was examined. Losartan treatment one hour prior to SARS-CoV-2 infection reduced levels of SARS-CoV-2 nuclear protein, an indicator of virus replication, by 80% and treatment one-hour post-infection decreased viral replication by 70%. CONCLUSION: Losartan was not an effective inhibitor of deubiquitinase or deISGylase activity of the PLpro but affected the SARS-CoV-2 replication of Vero E6 cells in vitro.  As losartan has a favorable safety profile and is currently available it has features necessary for efficacious drug repurposing and treatment of COVID-19.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antivirais/farmacologia , Losartan/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Chlorocebus aethiops , Biologia Computacional , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Ubiquitina/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
19.
Int J Mol Sci ; 22(8)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921228

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes the papain-like protease (PLpro). The protein not only plays an essential role in viral replication but also cleaves ubiquitin and ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from host proteins, making it an important target for developing new antiviral drugs. In this study, we searched for novel, noncovalent potential PLpro inhibitors by employing a multistep in silico screening of a 15 million compound library. The selectivity of the best-scored compounds was evaluated by checking their binding affinity to the human ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), which, as a deubiquitylating enzyme, exhibits structural and functional similarities to the PLpro. As a result, we identified 387 potential, selective PLpro inhibitors, from which we retrieved the 20 best compounds according to their IC50 values toward PLpro estimated by a multiple linear regression model. The selected candidates display potential activity against the protein with IC50 values in the nanomolar range from approximately 159 to 505 nM and mostly adopt a similar binding mode to the known, noncovalent SARS-CoV-2 PLpro inhibitors. We further propose the six most promising compounds for future in vitro evaluation. The results for the top potential PLpro inhibitors are deposited in the database prepared to facilitate research on anti-SARS-CoV-2 drugs.


Assuntos
Antivirais/química , Antivirais/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , SARS-CoV-2/enzimologia , Animais , Antivirais/toxicidade , Simulação por Computador , Cristalografia por Raios X , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Dose Letal Mediana , Ligantes , Testes de Mutagenicidade , Inibidores de Proteases/toxicidade , Relação Quantitativa Estrutura-Atividade , Ratos , Ubiquitina Tiolesterase/química , Ubiquitina Tiolesterase/metabolismo
20.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639036

RESUMO

Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Endorribonucleases/antagonistas & inibidores , SARS-CoV-2/enzimologia , Sesquiterpenos/farmacologia , Tomatina/análogos & derivados , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/farmacologia , COVID-19/virologia , Proteases 3C de Coronavírus/metabolismo , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Endorribonucleases/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2/efeitos dos fármacos , Tomatina/farmacologia , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA