Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 40(1): e105415, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33185289

RESUMO

Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/metabolismo , Transporte Biológico/fisiologia , Sistema X-AG de Transporte de Aminoácidos/genética , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/genética , Transporte Biológico/genética , Biologia Computacional/métodos , Mutação com Ganho de Função/genética , Modelos Moleculares , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato/genética
2.
Nature ; 570(7760): 219-223, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31132786

RESUMO

The combination of computational design and laboratory evolution is a powerful and potentially versatile strategy for the development of enzymes with new functions1-4. However, the limited functionality presented by the genetic code restricts the range of catalytic mechanisms that are accessible in designed active sites. Inspired by mechanistic strategies from small-molecule organocatalysis5, here we report the generation of a hydrolytic enzyme that uses Nδ-methylhistidine as a non-canonical catalytic nucleophile. Histidine methylation is essential for catalytic function because it prevents the formation of unreactive acyl-enzyme intermediates, which has been a long-standing challenge when using canonical nucleophiles in enzyme design6-10. Enzyme performance was optimized using directed evolution protocols adapted to an expanded genetic code, affording a biocatalyst capable of accelerating ester hydrolysis with greater than 9,000-fold increased efficiency over free Nδ-methylhistidine in solution. Crystallographic snapshots along the evolutionary trajectory highlight the catalytic devices that are responsible for this increase in efficiency. Nδ-methylhistidine can be considered to be a genetically encodable surrogate of the widely employed nucleophilic catalyst dimethylaminopyridine11, and its use will create opportunities to design and engineer enzymes for a wealth of valuable chemical transformations.


Assuntos
Evolução Molecular Direcionada , Hidrolases/genética , Hidrolases/metabolismo , Engenharia de Proteínas , 4-Aminopiridina/análogos & derivados , 4-Aminopiridina/metabolismo , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Ésteres/metabolismo , Código Genético , Hidrolases/química , Hidrólise , Metilistidinas/metabolismo , Modelos Moleculares , Mutagênese , Mutação , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , Especificidade por Substrato/genética
3.
Biochemistry ; 63(19): 2477-2492, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39350642

RESUMO

5-Methyluridine (m5U) rRNA modifications frequently occur at U747 and U1939 (Escherichia coli numbering) in domains II and IV of the 23S rRNA in Gram-negative bacteria, with the help of S-adenosyl-l-methionine (SAM)-dependent rRNA methyltransferases (MTases), RlmC and RlmD, respectively. In contrast, Gram-positive bacteria utilize a single SAM-dependent rRNA MTase, RlmCD, to modify both corresponding sites. Notably, certain archaea, specifically within the Thermococcales group, have been found to possess two genes encoding SAM-dependent archaeal (tRNA and rRNA) m5U (Arm5U) MTases. Among these, a tRNA-specific Arm5U MTase (PabTrmU54) has already been characterized. This study focused on the structural and functional characterization of the rRNA-specific Arm5U MTase from the hyperthermophilic archaeon Pyrococcus horikoshii (PhRlmCD). An in-depth structural examination revealed a dynamic hinge movement induced by the replacement of the iron-sulfur cluster with disulfide bonds, obstructing the substrate-binding site. It revealed distinctive characteristics of PhRlmCD, including elongated positively charged loops in the central domain and rotational variations in the TRAM domain, which influence substrate selectivity. Additionally, the results suggested that two potential mini-rRNA fragments interact in a similar manner with PhRlmCD at a positively charged cleft at the interface of domains and facilitate dual MTase activities akin to the protein RlmCD. Altogether, these observations showed that Arm5U MTases originated from horizontal gene transfer events, most likely from Gram-positive bacteria.


Assuntos
Proteínas Arqueais , Metiltransferases , Especificidade por Substrato , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Metiltransferases/metabolismo , Metiltransferases/química , Metiltransferases/genética , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , Modelos Moleculares , Cristalografia por Raios X , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos
4.
Proc Natl Acad Sci U S A ; 117(51): 32386-32394, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288716

RESUMO

In translation elongation, two translational guanosine triphosphatase (trGTPase) factors EF1A and EF2 alternately bind to the ribosome and promote polypeptide elongation. The ribosomal stalk is a multimeric ribosomal protein complex which plays an essential role in the recruitment of EF1A and EF2 to the ribosome and their GTP hydrolysis for efficient and accurate translation elongation. However, due to the flexible nature of the ribosomal stalk, its structural dynamics and mechanism of action remain unclear. Here, we applied high-speed atomic force microscopy (HS-AFM) to directly visualize the action of the archaeal ribosomal heptameric stalk complex, aP0•(aP1•aP1)3 (P-stalk). HS-AFM movies clearly demonstrated the wobbling motion of the P-stalk on the large ribosomal subunit where the stalk base adopted two conformational states, a predicted canonical state, and a newly identified flipped state. Moreover, we showed that up to seven molecules of archaeal EF1A (aEF1A) and archaeal EF2 (aEF2) assembled around the ribosomal P-stalk, corresponding to the copy number of the common C-terminal factor-binding site of the P-stalk. These results provide visual evidence for the factor-pooling mechanism by the P-stalk within the ribosome and reveal that the ribosomal P-stalk promotes translation elongation by increasing the local concentration of translational GTPase factors.


Assuntos
Proteínas Arqueais/química , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/metabolismo , Microscopia de Força Atômica/métodos , Proteínas Ribossômicas/química , Subunidades Ribossômicas Maiores/química , Proteínas Arqueais/metabolismo , Escherichia coli/genética , Fatores de Elongação Ligados a GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Elongação Traducional da Cadeia Peptídica , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo
5.
Nucleic Acids Res ; 46(15): 7820-7830, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30010948

RESUMO

The ATP-binding cassette (ABC) protein ABCE1 is an essential factor in ribosome recycling during translation. However, the detailed mechanochemistry of its recruitment to the ribosome, ATPase activation and subunit dissociation remain to be elucidated. Here, we show that the ribosomal stalk protein, which is known to participate in the actions of translational GTPase factors, plays an important role in these events. Biochemical and crystal structural data indicate that the conserved hydrophobic amino acid residues at the C-terminus of the archaeal stalk protein aP1 binds to the nucleotide-binding domain 1 (NBD1) of aABCE1, and that this binding is crucial for ATPase activation of aABCE1 on the ribosome. The functional role of the stalk•ABCE1 interaction in ATPase activation and the subunit dissociation is also investigated using mutagenesis in a yeast system. The data demonstrate that the ribosomal stalk protein likely participates in efficient actions of both archaeal and eukaryotic ABCE1 in ribosome recycling. The results also show that the stalk protein has a role in the function of ATPase as well as GTPase factors in translation.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Arqueais/metabolismo , Pyrococcus horikoshii/genética , Ribossomos/metabolismo , Sulfolobus solfataricus/genética , Fatores de Transcrição/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Biossíntese de Proteínas/fisiologia , Pyrococcus horikoshii/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sulfolobus solfataricus/metabolismo
6.
Nucleic Acids Res ; 46(6): 3232-3244, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471537

RESUMO

Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G' of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.


Assuntos
Proteínas Arqueais/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Pyrococcus horikoshii/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/genética , Ligação Proteica , Conformação Proteica , Pyrococcus horikoshii/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Homologia de Sequência de Aminoácidos
7.
Extremophiles ; 23(6): 669-679, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31363851

RESUMO

Self-splicing inteins are mobile genetic elements invading host genes via nested homing endonuclease (HEN) domains. All HEN domains residing within inteins are inserted at a highly conserved insertion site. A purifying selection mechanism directing the location of the HEN insertion site has not yet been identified. In this work, we solved the three-dimensional crystal structures of two inteins inserted in the cell division control protein 21 of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii. A comparison between the structures provides the structural basis for the thermo-stabilization mechanism of inteins that have lost the HEN domain during evolution. The presence of an entire extein domain in the intein structure from Pyrococcus horikoshii suggests the selection mechanism for the highly conserved HEN insertion point.


Assuntos
Proteínas Arqueais/química , Endonucleases/química , Inteínas , Pyrococcus abyssi/enzimologia , Pyrococcus horikoshii/enzimologia , Proteínas Arqueais/genética , Endonucleases/genética , Estabilidade Enzimática , Temperatura Alta , Domínios Proteicos , Pyrococcus abyssi/genética , Pyrococcus horikoshii/genética
8.
Nature ; 502(7469): 114-8, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23792560

RESUMO

Glutamate transporters are integral membrane proteins that catalyse neurotransmitter uptake from the synaptic cleft into the cytoplasm of glial cells and neurons. Their mechanism of action involves transitions between extracellular (outward)-facing and intracellular (inward)-facing conformations, whereby substrate binding sites become accessible to either side of the membrane. This process has been proposed to entail transmembrane movements of three discrete transport domains within a trimeric scaffold. Using single-molecule fluorescence resonance energy transfer (smFRET) imaging, we have directly observed large-scale transport domain movements in a bacterial homologue of glutamate transporters. We find that individual transport domains alternate between periods of quiescence and periods of rapid transitions, reminiscent of bursting patterns first recorded in single ion channels using patch-clamp methods. We propose that the switch to the dynamic mode in glutamate transporters is due to separation of the transport domain from the trimeric scaffold, which precedes domain movements across the bilayer. This spontaneous dislodging of the substrate-loaded transport domain is approximately 100-fold slower than subsequent transmembrane movements and may be rate determining in the transport cycle.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Modelos Moleculares , Pyrococcus horikoshii/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Ácido Aspártico/química , Transporte Biológico , Transferência Ressonante de Energia de Fluorescência , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Sódio/química
9.
J Bacteriol ; 200(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29866801

RESUMO

The TET peptidases are large self-compartmentalized complexes that form dodecameric particles. These metallopeptidases, members of the M42 family, are widely distributed in prokaryotes. Three different versions of TET complexes, with different substrate specificities, were found to coexist in the cytosol of the hyperthermophilic archaeon Pyrococcus horikoshii In the present work, we identified a novel type of TET complex that we named PhTET4. The recombinant PhTET4 enzyme was found to self-assemble as a tetrahedral edifice similar to other TET complexes. We determined PhTET4 substrate specificity using a broad range of monoacyl chromogenic and fluorogenic compounds. High-performance liquid chromatographic peptide degradation assays were also performed. These experiments demonstrated that PhTET4 is a strict glycyl aminopeptidase, devoid of amidolytic activity toward other types of amino acids. The catalytic efficiency of PhTET4 was studied under various conditions. The protein was found to be a hyperthermophilic alkaline aminopeptidase. Interestingly, unlike other peptidases from the same family, it was activated only by nickel ions.IMPORTANCE We describe here the first known peptidase displaying exclusive activity toward N-terminal glycine residues. This work indicates a specific role for intracellular glycyl peptidases in deep sea hyperthermophilic archaeal metabolism. These observations also provide critical evidence for the use of these archaeal extremozymes for biotechnological applications.


Assuntos
Aminopeptidases/metabolismo , Proteínas Arqueais/metabolismo , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , Aminopeptidases/genética , Proteínas Arqueais/genética , Níquel/química , Conformação Proteica , Especificidade por Substrato
10.
RNA ; 21(11): 1866-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385509

RESUMO

RtcB is a noncanonical RNA ligase that joins either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. The genes encoding RtcB and Archease constitute a tRNA splicing operon in many organisms. Archease is a cofactor of RtcB that accelerates RNA ligation and alters the NTP specificity of the ligase from Pyrococcus horikoshii. Yet, not all organisms that encode RtcB also encode Archease. Here we sought to understand the differences between Archease-dependent and Archease-independent RtcBs so as to illuminate the evolution of Archease and its function. We report on the Archease-dependent RtcB from Thermus thermophilus and the Archease-independent RtcB from Thermobifida fusca. We find that RtcB from T. thermophilus can catalyze multiple turnovers only in the presence of Archease. Remarkably, Archease from P. horikoshii can activate T. thermophilus RtcB, despite low sequence identity between the Archeases from these two organisms. In contrast, RtcB from T. fusca is a single-turnover enzyme that is unable to be converted into a multiple-turnover ligase by Archease from either P. horikoshii or T. thermophilus. Thus, our data indicate that Archease likely evolved to support multiple-turnover activity of RtcB and that coevolution of the two proteins is necessary for a functional interaction.


Assuntos
Aminoacil-tRNA Sintetases/genética , Proteínas de Bactérias/genética , RNA Ligase (ATP)/genética , Catálise , Óperon/genética , Pyrococcus horikoshii/genética , Splicing de RNA/genética , RNA de Transferência/genética , Thermus/genética
11.
Biosci Biotechnol Biochem ; 81(9): 1670-1680, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28715256

RESUMO

Ribonuclease P (RNase P) is an endoribonuclease that catalyzes the processing of the 5'-leader sequence of precursor tRNA (pre-tRNA) in all phylogenetic domains. We have found that RNase P in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 consists of RNase P RNA (PhopRNA) and five protein cofactors designated PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38. Biochemical characterizations over the past 10 years have revealed that PhoPop5 and PhoRpp30 fold into a heterotetramer and cooperate to activate a catalytic domain (C-domain) in PhopRNA, whereas PhoRpp21 and PhoRpp29 form a heterodimer and function together to activate a specificity domain (S-domain) in PhopRNA. PhoRpp38 plays a role in elevation of the optimum temperature of RNase P activity, binding to kink-turn (K-turn) motifs in two stem-loops in PhopRNA. This review describes the structural and functional information on P. horikoshii RNase P, focusing on the structural basis for the PhopRNA activation by the five RNase P proteins.


Assuntos
Proteínas Arqueais/metabolismo , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , RNA Arqueal/metabolismo , RNA de Transferência/metabolismo , Ribonuclease P/genética , Sequência de Bases , Humanos , RNA Arqueal/genética , Ribonuclease P/química , Ribonuclease P/metabolismo
12.
Nucleic Acids Res ; 43(13): 6631-48, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26101259

RESUMO

Post-translational control based on an environmentally sensitive intervening intein sequence is described. Inteins are invasive genetic elements that self-splice at the protein level from the flanking host protein, the exteins. Here we show in Escherichia coli and in vitro that splicing of the RadA intein located in the ATPase domain of the hyperthermophilic archaeon Pyrococcus horikoshii is strongly regulated by the native exteins, which lock the intein in an inactive state. High temperature or solution conditions can unlock the intein for full activity, as can remote extein point mutations. Notably, this splicing trap occurs through interactions between distant residues in the native exteins and the intein, in three-dimensional space. The exteins might thereby serve as an environmental sensor, releasing the intein for full activity only at optimal growth conditions for the native organism, while sparing ATP consumption under conditions of cold-shock. This partnership between the intein and its exteins, which implies coevolution of the parasitic intein and its host protein may provide a novel means of post-translational control.


Assuntos
Proteínas Arqueais/química , Proteínas de Ligação a DNA/química , Exteínas , Inteínas , Processamento de Proteína , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrococcus horikoshii/genética , Recombinases Rec A/química , Temperatura
13.
J Biol Chem ; 290(26): 15962-72, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25922069

RESUMO

GltPh from Pyrococcus horikoshii is a homotrimeric Na(+)-coupled aspartate transporter. It belongs to the widespread family of glutamate transporters, which also includes the mammalian excitatory amino acid transporters that take up the neurotransmitter glutamate. Each protomer in GltPh consists of a trimerization domain involved in subunit interactions and a transport domain containing the substrate binding site. Here, we have studied the dynamics of Na(+) and aspartate binding to GltPh. Tryptophan fluorescence measurements on the fully active single tryptophan mutant F273W revealed that Na(+) binds with low affinity to the apoprotein (Kd 120 mm), with a particularly low kon value (5.1 m(-1)s(-1)). At least two sodium ions bind before aspartate. The binding of Na(+) requires a very high activation energy (Ea 106.8 kJ mol(-1)) and consequently has a large Q10 value of 4.5, indicative of substantial conformational changes before or after the initial binding event. The apparent affinity for aspartate binding depended on the Na(+) concentration present. Binding of aspartate was not observed in the absence of Na(+), whereas in the presence of high Na(+) concentrations (above the Kd for Na(+)) the dissociation constants for aspartate were in the nanomolar range, and the aspartate binding was fast (kon of 1.4 × 10(5) m(-1)s(-1)), with low Ea and Q10 values (42.6 kJ mol(-1) and 1.8, respectively). We conclude that Na(+) binding is most likely the rate-limiting step for substrate binding.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/metabolismo , Ácido Aspártico/metabolismo , Pyrococcus horikoshii/metabolismo , Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Ácido Aspártico/química , Sítios de Ligação , Cinética , Conformação Proteica , Pyrococcus horikoshii/química , Pyrococcus horikoshii/genética , Sódio/química , Sódio/metabolismo
14.
J Biol Chem ; 290(15): 9780-8, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713135

RESUMO

The aspartate transporter from Pyrococcus horikoshii (GltPh) is a model for the structure of the SLC1 family of amino acid transporters. Crystal structures of GltPh provide insight into mechanisms of ion coupling and substrate transport; however, structures have been solved in the absence of a lipid bilayer so they provide limited information regarding interactions that occur between the protein and lipids of the membrane. Here, we investigated the effect of the lipid environment on aspartate transport by reconstituting GltPh into liposomes of defined lipid composition where the primary lipid is phosphatidylethanolamine (PE) or its methyl derivatives. We showed that the rate of aspartate transport and the transmembrane orientation of GltPh were influenced by the primary lipid in the liposomes. In PE liposomes, we observed the highest transport rate and showed that 85% of the transporters were orientated right-side out, whereas in trimethyl PE liposomes, 50% of transporters were right-side out, and we observed a 4-fold reduction in transport rate. Differences in orientation can only partially explain the lipid composition effect on transport rate. Crystal structures of GltPh revealed a tyrosine residue (Tyr-33) that we propose interacts with lipid headgroups during the transport cycle. Based on site-directed mutagenesis, we propose that a cation-π interaction between Tyr-33 and the lipid headgroups can influence conformational flexibility of the trimerization domain and thus the rate of transport. These results provide a specific example of how interactions between membrane lipids and membrane-bound proteins can influence function and highlight the importance of the role of the membrane in transporter function.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/genética , Proteínas Arqueais/metabolismo , Bicamadas Lipídicas/metabolismo , Pyrococcus horikoshii/metabolismo , Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Ácido Aspártico/metabolismo , Transporte Biológico , Cristalografia por Raios X , Cinética , Bicamadas Lipídicas/química , Lipossomos/química , Lipossomos/metabolismo , Modelos Moleculares , Mutação , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Pyrococcus horikoshii/genética , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
15.
J Biol Chem ; 290(16): 10495-503, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25724653

RESUMO

Accurate protein synthesis requires the hydrolytic editing of tRNAs incorrectly aminoacylated by aminoacyl-tRNA synthetases (ARSs). Recognition of cognate tRNAs by ARS is less error-prone than amino acid recognition, and, consequently, editing domains are generally believed to act only on the tRNAs cognate to their related ARSs. For example, the AlaX family of editing domains, including the editing domain of alanyl-tRNA synthetase and the related free-standing trans-editing AlaX enzymes, are thought to specifically act on tRNA(Ala), whereas the editing domains of threonyl-tRNA synthetases are specific for tRNA(Thr). Here we show that, contrary to this belief, AlaX-S, the smallest of the extant AlaX enzymes, deacylates Ser-tRNA(Thr) in addition to Ser-tRNA(Ala) and that a single residue is important to determine this behavior. Our data indicate that promiscuous forms of AlaX are ancestral to tRNA-specific AlaXs. We propose that former AlaX domains were used to maintain translational fidelity in earlier stages of genetic code evolution when mis-serylation of several tRNAs was possible.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Proteínas Arqueais/metabolismo , Código Genético , Pyrococcus abyssi/metabolismo , Pyrococcus horikoshii/metabolismo , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Pyrococcus abyssi/classificação , Pyrococcus abyssi/genética , Pyrococcus horikoshii/classificação , Pyrococcus horikoshii/genética , Edição de RNA , RNA de Transferência/química , RNA de Transferência/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
16.
RNA ; 20(12): 1955-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25336584

RESUMO

The signal recognition particle (SRP) is a conserved ribonucleoprotein particle that targets membrane and secreted proteins to translocation channels in membranes. In eukaryotes, the Alu domain, which comprises the 5' and 3' extremities of the SRP RNA bound to the SRP9/14 heterodimer, is thought to interact with the ribosome to pause translation elongation during membrane docking. We present the 3.2 Å resolution crystal structure of a chimeric Alu domain, comprising Alu RNA from the archaeon Pyrococcus horikoshii bound to the human Alu binding proteins SRP9/14. The structure reveals how intricate tertiary interactions stabilize the RNA 5' domain structure and how an extra, archaeal-specific, terminal stem helps constrain the Alu RNA into the active closed conformation. In this conformation, highly conserved noncanonical base pairs allow unusually tight side-by-side packing of 5' and 3' RNA stems within the SRP9/14 RNA binding surface. The biological relevance of this structure is confirmed by showing that a reconstituted full-length chimeric archaeal-human SRP is competent to elicit elongation arrest in vitro. The structure will be useful in refining our understanding of how the SRP Alu domain interacts with the ribosome.


Assuntos
Conformação de Ácido Nucleico , Partícula de Reconhecimento de Sinal/química , Cristalografia por Raios X , Humanos , Conformação Molecular , Fatores de Alongamento de Peptídeos/química , Fatores de Alongamento de Peptídeos/genética , Biossíntese de Proteínas/genética , Estrutura Terciária de Proteína/genética , Pyrococcus horikoshii/genética , Dobramento de RNA/genética , Partícula de Reconhecimento de Sinal/genética , Partícula de Reconhecimento de Sinal/ultraestrutura
17.
Nucleic Acids Res ; 42(6): 3931-42, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24435797

RESUMO

Archease is a 16-kDa protein that is conserved in all three domains of life. In diverse bacteria and archaea, the genes encoding Archease and the tRNA ligase RtcB are localized into an operon. Here we provide a rationale for this operon organization by showing that Archease and RtcB from Pyrococcus horikoshii function in tandem, with Archease altering the catalytic properties of the RNA ligase. RtcB catalyzes the GTP and Mn(II)-dependent joining of either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. We find that catalytic concentrations of Archease are sufficient to activate RtcB, and that Archease accelerates both the RNA 3'-P guanylylation and ligation steps. In addition, we show that Archease can alter the NTP specificity of RtcB such that ATP, dGTP or ITP is used efficiently. Moreover, RtcB variants that have inactivating substitutions in the guanine-binding pocket can be rescued by the addition of Archease. We also present a 1.4 Å-resolution crystal structure of P. horikoshii Archease that reveals a metal-binding site consisting of conserved carboxylates located at the protein tip. Substitution of the Archease metal-binding residues drastically reduced Archease-dependent activation of RtcB. Thus, evolution has sought to co-express archease and rtcB by creating a tRNA splicing operon.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , RNA Ligase (ATP)/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mutagênese , Óperon , Pyrococcus horikoshii/enzimologia , Pyrococcus horikoshii/genética , RNA/química , RNA/metabolismo , RNA Ligase (ATP)/química , RNA Ligase (ATP)/genética , Splicing de RNA , RNA de Transferência/metabolismo
18.
Amino Acids ; 47(8): 1579-87, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25963389

RESUMO

To date, there have been few reports analyzing the amino acid requirement for growth of hyperthermophilic archaea. We here found that the hyperthermophilic archaeon Pyrococcus horikoshii OT-3 requires Thr, Leu, Val, Phe, Tyr, Trp, His and Arg in the medium for growth, and shows slow growth in medium lacking Met or Ile. This largely corresponds to the presence, or absence, of genes related to amino acid biosynthesis in its genome, though there are exceptions. The amino acid requirements were dramatically lost by addition of D-isomers of Met, Leu, Val, allo-Ile, Phe, Tyr, Trp and Arg. Tracer analysis using (14)C-labeled D-Trp showed that D-Trp in the medium was used as a protein component in the cells, suggesting the presence of D-amino acid metabolic enzymes. Pyridoxal 5'-phosphate (PLP)-dependent racemase activity toward Met, Leu and Phe was detected in crude extract of P. horikoshii and was enhanced in cells grown in the medium supplemented with D-amino acids, especially D-allo-Ile. The gene encoding the racemase was narrowed down to one open reading frame on the basis of enzyme purification from P. horikoshii cells, and the recombinant enzyme exhibited PLP-dependent racemase activity toward several amino acids, including Met, Leu and Phe, but not Pro, Asp or Glu. This is the first report showing the presence in a hyperthermophilic archaeon of a PLP-dependent amino acid racemase with broad substrate specificity that is likely responsible for utilization of D-amino acids for growth.


Assuntos
Isomerases de Aminoácido/metabolismo , Pyrococcus horikoshii/enzimologia , Isomerases de Aminoácido/análise , Aminoácidos/administração & dosagem , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Genoma Arqueal , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/crescimento & desenvolvimento , Pyrococcus horikoshii/metabolismo
19.
Proc Natl Acad Sci U S A ; 109(37): 14841-6, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22927411

RESUMO

The site-specific incorporation of unnatural amino acids (UAAs) into proteins in living cells relies on an engineered tRNA/aminoacyl-tRNA synthetase (tRNA/aaRS) pair, orthogonal to the host cell, to deliver the UAA of choice in response to a unique nonsense or frameshift codon. Here we report the generation of mutually orthogonal prolyl-tRNA/prolyl-tRNA synthase (ProRS) pairs derived from an archaebacterial ancestor for use in Escherichia coli. By reprogramming the anticodon-binding pocket of Pyrococcus horikoshii ProRS (PhProRS), we were able to identify synthetase variants that recognize engineered Archaeoglobus fulgidus prolyl-tRNAs (Af-tRNA(Pro)) with three different anticodons: CUA, AGGG, and CUAG. Several of these evolved PhProRSs show specificity toward a particular anticodon variant of Af-tRNA(Pro), whereas others are promiscuous. Further evolution of the Af-tRNA(Pro) led to a variant exhibiting significantly improved amber suppression efficiency. Availability of a prolyl-tRNA/aaRS pair should enable site-specific incorporation of proline analogs and other N-modified UAAs into proteins in E. coli. The evolution of mutually orthogonal prolyl-tRNA/ProRS pairs demonstrates the plasticity of the tRNA-aaRS interface and should facilitate the incorporation of multiple, distinct UAAs into proteins.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Archaeoglobus fulgidus/genética , Evolução Molecular , Engenharia de Proteínas/métodos , Pyrococcus horikoshii/genética , RNA de Transferência/genética , Clonagem Molecular , Escherichia coli , Biblioteca Gênica , Mutagênese Sítio-Dirigida/métodos , Plasmídeos/genética , RNA de Transferência/metabolismo
20.
J Biol Chem ; 288(49): 35266-76, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24155238

RESUMO

Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na(+)-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, Glt(Ph), suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3-4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, Glt(Ph) is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved Glt(Ph) retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/química , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Substituição de Aminoácidos , Proteínas Arqueais/genética , Ácido Aspártico/metabolismo , Transporte Biológico Ativo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Cinética , Modelos Biológicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA