Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Trends Biochem Sci ; 49(2): 169-182, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103971

RESUMO

The α-kinase eukaryotic elongation factor 2 kinase (eEF-2K) regulates translational elongation by phosphorylating its ribosome-associated substrate, the GTPase eEF-2. eEF-2K is activated by calmodulin (CaM) through a distinctive mechanism unlike that in other CaM-dependent kinases (CAMK). We describe recent structural insights into this unique activation process and examine the effects of specific regulatory signals on this mechanism. We also highlight key unanswered questions to guide future structure-function studies. These include structural mechanisms which enable eEF-2K to interact with upstream/downstream partners and facilitate its integration of diverse inputs, including Ca2+ transients, phosphorylation mediated by energy/nutrient-sensing pathways, pH changes, and metabolites. Answering these questions is key to establishing how eEF-2K harmonizes translation with cellular requirements within the boundaries of its molecular landscape.


Assuntos
Quinase do Fator 2 de Elongação , Biossíntese de Proteínas , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Fosforilação , Calmodulina/química , Calmodulina/genética , Calmodulina/metabolismo
2.
J Biol Chem ; 299(6): 104813, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172726

RESUMO

The calmodulin-activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), serves as a master regulator of translational elongation by specifically phosphorylating and reducing the ribosome affinity of the guanosine triphosphatase, eukaryotic elongation factor 2 (eEF-2). Given its critical role in a fundamental cellular process, dysregulation of eEF-2K has been implicated in several human diseases, including those of the cardiovascular system, chronic neuropathies, and many cancers, making it a critical pharmacological target. In the absence of high-resolution structural information, high-throughput screening efforts have yielded small-molecule candidates that show promise as eEF-2K antagonists. Principal among these is the ATP-competitive pyrido-pyrimidinedione inhibitor, A-484954, which shows high specificity toward eEF-2K relative to a panel of "typical" protein kinases. A-484954 has been shown to have some degree of efficacy in animal models of several disease states. It has also been widely deployed as a reagent in eEF-2K-specific biochemical and cell-biological studies. However, given the absence of structural information, the precise mechanism of the A-484954-mediated inhibition of eEF-2K has remained obscure. Leveraging our identification of the calmodulin-activatable catalytic core of eEF-2K, and our recent determination of its long-elusive structure, here we present the structural basis for its specific inhibition by A-484954. This structure, which represents the first for an inhibitor-bound catalytic domain of a member of the α-kinase family, enables rationalization of the existing structure-activity relationship data for A-484954 variants and lays the groundwork for further optimization of this scaffold to attain enhanced specificity/potency against eEF-2K.


Assuntos
Trifosfato de Adenosina , Calmodulina , Quinase do Fator 2 de Elongação , Animais , Humanos , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Fator 2 de Elongação de Peptídeos/química , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação , Domínio Catalítico , Relação Estrutura-Atividade , Elongação Traducional da Cadeia Peptídica
3.
Mol Biol Rep ; 50(4): 3011-3022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36652154

RESUMO

BACKGROUND: Eukaryotic elongation factor 2 kinase (eukaryotic elongation factor 2 kinase, eEF2K) is a calcium calmodulin dependent protein kinase that keeps the highest energy consuming cellular process of protein synthesis under check through negative regulation. eEF2K pauses global protein synthesis rates at the translational elongation step by phosphorylating its only kown substrate elongation factor 2 (eEF2), a unique translocase activity in ekaryotic cells enabling the polypeptide chain elongation. Therefore, eEF2K is thought to preserve cellular energy pools particularly upon acute development of cellular stress conditions such as nutrient deprivation, hypoxia, or infections. Recently, high expression of this enzyme has been associated with poor prognosis in an array of solid tumor types. Therefore, in a growing number of studies tremendous effort is being directed to the development of treatment methods aiming to suppress eEF2K as a novel therapeutic approach in the fight against cancer. METHODS: In our study, we aimed to investigate the changes in the tumorigenicity of chordoma cells in presence of gene silencing for eEF2K. Taking a transient gene silencing approach using siRNA particles, eEF2K gene expression was suppressed in chordoma cells. RESULTS: Silencing eEF2K expression was associated with a slight increase in cellular proliferation and a decrease in death rates. Furthermore, no alteration in the sensitivity of chordoma cells to chemotherapy was detected in response to the decrease in eEF2K expression which intriguingly promoted suppression of cell migratory and invasion related properties. CONCLUSION: Our findings indicate that the loss of eEF2K expression in chordoma cell lines results in the reduction of metastatic capacity.


Assuntos
Cordoma , Quinase do Fator 2 de Elongação , Humanos , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/metabolismo , Cordoma/genética , Fosforilação , Linhagem Celular , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 116(45): 22583-22590, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31636182

RESUMO

Gene expression is rapidly remodeled by infection and inflammation in part via transcription factor NF-κB activation and regulated protein synthesis. While protein synthesis is largely controlled by mRNA translation initiation, whether cellular translation elongation factors are responsive to inflammation and infection remains poorly understood. Here, we reveal a surprising mechanism whereby NF-κB restricts phosphorylation of the critical translation elongation factor eEF2, which catalyzes the protein synthesis translocation step. Upon exposure to NF-κB-activating stimuli, including TNFα, human cytomegalovirus infection, or double-stranded DNA, eEF2 phosphorylation on Thr56, which slows elongation to limit protein synthesis, and the overall abundance of eEF2 kinase (eEF2K) are reduced. Significantly, this reflected a p65 NF-κB subunit-dependent reduction in eEF2K pre-mRNA, indicating that NF-κB activation represses eEF2K transcription to decrease eEF2K protein levels. Finally, we demonstrate that reducing eEF2K abundance regulates protein synthesis in response to a bacterial toxin that inactivates eEF2. This establishes that NF-κB activation by diverse physiological effectors controls eEF2 activity via a transcriptional repression mechanism that reduces eEF2K polypeptide abundance to preclude eEF2 phosphorylation, thereby stimulating translation elongation and protein synthesis. Moreover, it illustrates how nuclear transcription regulation shapes translation elongation factor activity and exposes how eEF2 is integrated into innate immune response networks orchestrated by NF-κB.


Assuntos
DNA/metabolismo , Quinase do Fator 2 de Elongação/genética , Inflamação/metabolismo , Biossíntese de Proteínas , Fator de Transcrição RelA/metabolismo , Motivos de Aminoácidos , DNA/genética , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/metabolismo , Humanos , Inflamação/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação , Fator de Transcrição RelA/genética
5.
Biochemistry ; 55(38): 5377-86, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27571275

RESUMO

Eukaryotic elongation factor 2 kinase (eEF-2K) phosphorylates its only known physiological substrate, elongation factor 2 (eEF-2), which reduces the affinity of eEF-2 for the ribosome and results in an overall reduction in protein translation rates. The C-terminal region of eEF-2K, which is predicted to contain several SEL-1-like helical repeats (SLRs), is required for the phosphorylation of eEF-2. Using solution nuclear magnetic resonance methodology, we have determined the structure of a 99-residue fragment from the extreme C-terminus of eEF-2K (eEF-2K627-725) that encompasses a region previously suggested to be essential for eEF-2 phosphorylation. eEF-2K627-725 contains four helices, of which the first (αI) is flexible, and does not pack stably against the ordered helical core formed by the last three helices (αII-αIV). The helical core is structurally similar to members of the tetratricopeptide repeat (TPR) family that includes SLRs. The two penultimate helices, αII and αIII, comprise the TPR, and the last helix, αIV, appears to have a capping function. The eEF-2K627-725 structure illustrates that the C-terminal deletion that was shown to abolish eEF-2 phosphorylation does so by destabilizing αIV and, therefore, the helical core. Indeed, mutation of two conserved C-terminal tyrosines (Y712A/Y713A) in eEF-2K previously shown to abolish eEF-2 phosphorylation leads to the unfolding of eEF-2K627-725. Preliminary functional analyses indicate that neither a peptide encoding a region deemed crucial for eEF-2 binding nor isolated eEF-2K627-725 inhibits eEF-2 phosphorylation by full-length eEF-2K. Taken together, our data suggest that the extreme C-terminal region of eEF-2K, in isolation, does not provide a primary docking site for eEF-2.


Assuntos
Quinase do Fator 2 de Elongação/química , Animais , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Conformação Proteica
6.
Acta Pharmacol Sin ; 37(3): 285-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26806303

RESUMO

Eukaryotic elongation factor 2 kinase (eEF2K) is an unusual protein kinase that regulates the elongation stage of protein synthesis by phosphorylating and inhibiting its only known substrate, eEF2. Elongation is a highly energy-consuming process, and eEF2K activity is tightly regulated by several signaling pathways. Regulating translation elongation can modulate the cellular energy demand and may also control the expression of specific proteins. Growing evidence links eEF2K to a range of human diseases, including cardiovascular conditions (atherosclerosis, via macrophage survival) and pulmonary arterial hypertension, as well as solid tumors, where eEF2K appears to play contrasting roles depending on tumor type and stage. eEF2K is also involved in neurological disorders and may be a valuable target in treating depression and certain neurodegenerative diseases. Because eEF2K is not required for mammalian development or cell viability, inhibiting its function may not elicit serious side effects, while the fact that it is an atypical kinase and quite distinct from the vast majority of other mammalian kinases suggests the possibility to develop it into compounds that inhibit eEF2K without affecting other important protein kinases. Further research is needed to explore these possibilities and there is an urgent need to identify and characterize potent and specific small-molecule inhibitors of eEF2K. In this article we review the recent evidence concerning the role of eEF2K in human diseases as well as the progress in developing small-molecule inhibitors of this enzyme.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/metabolismo , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Doenças Cardiovasculares/metabolismo , Descoberta de Drogas , Quinase do Fator 2 de Elongação/química , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Inibidores de Proteínas Quinases/farmacologia
7.
J Biol Chem ; 289(34): 23901-16, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25012662

RESUMO

Calmodulin (CaM)-dependent eukaryotic elongation factor 2 kinase (eEF-2K) impedes protein synthesis through phosphorylation of eukaryotic elongation factor 2 (eEF-2). It is subject to complex regulation by multiple upstream signaling pathways, through poorly described mechanisms. Precise integration of these signals is critical for eEF-2K to appropriately regulate protein translation rates. Here, an allosteric mechanism comprising two sequential conformations is described for eEF-2K activation. First, Ca(2+)/CaM binds eEF-2K with high affinity (Kd(CaM)(app) = 24 ± 5 nm) to enhance its ability to autophosphorylate Thr-348 in the regulatory loop (R-loop) by > 10(4)-fold (k(auto) = 2.6 ± 0.3 s(-1)). Subsequent binding of phospho-Thr-348 to a conserved basic pocket in the kinase domain potentially drives a conformational transition of the R-loop, which is essential for efficient substrate phosphorylation. Ca(2+)/CaM binding activates autophosphorylated eEF-2K by allosterically enhancing k(cat)(app) for peptide substrate phosphorylation by 10(3)-fold. Thr-348 autophosphorylation results in a 25-fold increase in the specificity constant (k(cat)(app)/K(m)(Pep-S) (app)), with equal contributions from k(cat)(app) and K(m)(Pep-S)(app), suggesting that peptide substrate binding is partly impeded in the unphosphorylated enzyme. In cells, Thr-348 autophosphorylation appears to control the catalytic output of active eEF-2K, contributing more than 5-fold to its ability to promote eEF-2 phosphorylation. Fundamentally, eEF-2K activation appears to be analogous to an amplifier, where output volume may be controlled by either toggling the power switch (switching on the kinase) or altering the volume control (modulating stability of the active R-loop conformation). Because upstream signaling events have the potential to modulate either allosteric step, this mechanism allows for exquisite control of eEF-2K output.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Calmodulina/metabolismo , Linhagem Celular Tumoral , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Ativação Enzimática , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Biossíntese de Proteínas , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Treonina/metabolismo
8.
Apoptosis ; 19(10): 1527-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25023961

RESUMO

Eukaryotic elongation factor-2 kinase (eEF2K), encoded by the EEF2K gene, is well-known to be a Ca(2+)/calmodulin (CaM)-dependent kinase which can negatively modulate protein synthesis. It is highly conserved among eukaryotes from mammals to invertebrates, of which human and mouse may have 99 % overall amino acid identity. This kinase can phosphorylate eukaryotic elongation factor-2 (eEF2) or undergo the process of autophosphorylation at multiple sites to inhibit its function in translation elongation. Due to the fact that regulation of eEF2 by eEF2K is an evolutionarily conserved mechanism, eEF2K activity may confer tumor cell adaption to metabolic stress under acute nutrient depletion, and the high expressed level of eEF2K has been found in several types of malignancies. eEF2K may modulate the expression of some apoptotic proteins such as XIAP, c-FLIPL, Bcl-XL, PI3KCI and p70(S6K) to inhibit apoptotic process in cancer. On the other hand, it plays a regulatory role in autophagy involved in mTORC1, AMPK and Atg8, thereby promoting cancer cell survival. Additionally, eEF2K may play a crucial role in the crosstalk between apoptosis and autophagy in cancer. Collectively, these findings have led to the conclusions that eEF2K may contribute to carcinogenesis, and thus being utilized as a potential target for future cancer therapy.


Assuntos
Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/metabolismo , Neoplasias/enzimologia , Animais , Apoptose , Autofagia , Sobrevivência Celular , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/fisiopatologia , Estrutura Terciária de Proteína
9.
Biochem J ; 442(3): 681-92, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22216903

RESUMO

eEF2K [eEF2 (eukaryotic elongation factor 2) kinase] phosphorylates and inactivates the translation elongation factor eEF2. eEF2K is not a member of the main eukaryotic protein kinase superfamily, but instead belongs to a small group of so-called α-kinases. The activity of eEF2K is normally dependent upon Ca(2+) and calmodulin. eEF2K has previously been shown to undergo autophosphorylation, the stoichiometry of which suggested the existence of multiple sites. In the present study we have identified several autophosphorylation sites, including Thr(348), Thr(353), Ser(366) and Ser(445), all of which are highly conserved among vertebrate eEF2Ks. We also identified a number of other sites, including Ser(78), a known site of phosphorylation, and others, some of which are less well conserved. None of the sites lies in the catalytic domain, but three affect eEF2K activity. Mutation of Ser(78), Thr(348) and Ser(366) to a non-phosphorylatable alanine residue decreased eEF2K activity. Phosphorylation of Thr(348) was detected by immunoblotting after transfecting wild-type eEF2K into HEK (human embryonic kidney)-293 cells, but not after transfection with a kinase-inactive construct, confirming that this is indeed a site of autophosphorylation. Thr(348) appears to be constitutively autophosphorylated in vitro. Interestingly, other recent data suggest that the corresponding residue in other α-kinases is also autophosphorylated and contributes to the activation of these enzymes [Crawley, Gharaei, Ye, Yang, Raveh, London, Schueler-Furman, Jia and Cote (2011) J. Biol. Chem. 286, 2607-2616]. Ser(366) phosphorylation was also detected in intact cells, but was still observed in the kinase-inactive construct, demonstrating that this site is phosphorylated not only autocatalytically but also in trans by other kinases.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Calmodulina/metabolismo , Domínio Catalítico , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Células HEK293 , Humanos , Fosforilação , Serina/genética , Treonina/genética
10.
Biochem J ; 442(1): 105-18, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22115317

RESUMO

eEF2K (eukaryotic elongation factor 2 kinase) is a Ca2+/CaM (calmodulin)-dependent protein kinase which regulates the translation elongation machinery. eEF2K belongs to the small group of so-called 'α-kinases' which are distinct from the main eukaryotic protein kinase superfamily. In addition to the α-kinase catalytic domain, other domains have been identified in eEF2K: a CaM-binding region, N-terminal to the kinase domain; a C-terminal region containing several predicted α-helices (resembling SEL1 domains); and a probably rather unstructured 'linker' region connecting them. In the present paper, we demonstrate: (i) that several highly conserved residues, implicated in binding ATP or metal ions, are critical for eEF2K activity; (ii) that Ca2+/CaM enhance the ability of eEF2K to bind to ATP, providing the first insight into the allosteric control of eEF2K; (iii) that the CaM-binding/α-kinase domain of eEF2K itself possesses autokinase activity, but is unable to phosphorylate substrates in trans; (iv) that phosphorylation of these substrates requires the SEL1-like domains of eEF2K; and (v) that highly conserved residues in the C-terminal tip of eEF2K are essential for the phosphorylation of eEF2, but not a peptide substrate. On the basis of these findings, we propose a model for the functional organization and control of eEF2K.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico/efeitos dos fármacos , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Células HEK293 , Humanos , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Zinco/química
11.
Protein Sci ; 30(6): 1221-1234, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890716

RESUMO

The calmodulin (CaM) activated α-kinase, eukaryotic elongation factor 2 kinase (eEF-2K), plays a central role in regulating translational elongation by phosphorylating eukaryotic elongation factor 2 (eEF-2), thereby reducing its ability to associate with the ribosome and suppressing global protein synthesis. Using TR (for truncated), a minimal functional construct of eEF-2K, and utilizing hydrogen/deuterium exchange mass spectrometry (HXMS), solution-state nuclear magnetic resonance (NMR) and biochemical approaches, we investigate the conformational changes accompanying complex formation between Ca2+ -CaM and TR and the effects of autophosphorylation of the latter at Thr348, its primary regulatory site. Our results suggest that a CaM C-lobe surface, complementary to the one involved in recognizing the calmodulin-binding domain (CBD) of TR, provides a secondary TR-interaction platform. CaM helix F, which is part of this secondary surface, responds to both Thr348 phosphorylation and pH changes, indicating its integration into an allosteric network that encompasses both components of the Ca2+ -CaM•TR complex. Solution NMR data suggest that CaMH107K , which carries a helix F mutation, is compromised in its ability to drive the conformational changes in TR necessary to enable efficient Thr348 phosphorylation. Biochemical studies confirm the diminished capacity of CaMH107K to induce TR autophosphorylation compared to wild-type CaM.


Assuntos
Calmodulina/química , Quinase do Fator 2 de Elongação/química , Ressonância Magnética Nuclear Biomolecular , Substituição de Aminoácidos , Calmodulina/genética , Quinase do Fator 2 de Elongação/genética , Humanos , Mutação de Sentido Incorreto , Fosforilação , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína
12.
J Mol Med (Berl) ; 98(6): 775-787, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32377852

RESUMO

Eukaryotic elongation factor-2 kinase (eEF2K), an atypical member of alpha-kinase family, is highly overexpressed in breast, pancreatic, brain, and lung cancers, and associated with poor survival in patients. eEF2K promotes cell proliferation, survival, and aggressive tumor characteristics, leading to tumor growth and progression. While initial studies indicated that eEF2K acts as a negative regulator of protein synthesis by suppressing peptide elongation phase, later studies demonstrated that it has multiple functions and promotes cell cycle, angiogenesis, migration, and invasion as well as induction of epithelial-mesenchymal transition through induction of integrin ß1, SRC/FAK, PI3K/AKT, cyclin D1, VEGF, ZEB1, Snail, and MMP-2. Under stress conditions such as hypoxia and metabolic distress, eEF2K is activated by several signaling pathways and slows down protein synthesis and helping cells to save energy and survive. In vivo therapeutic targeting of eEF2K by genetic methods inhibits tumor growth in various tumor models, validating it as a potential molecular target. Recent studies suggest that eEF2K plays a role in tumor microenvironment cells by monocyte chemoattractant protein-1 (MCP-1) and accumulation of tumor-associated macrophages. Due to its clinical significance and the pivotal role in tumorigenesis and progression, eEF2K is considered as an important therapeutic target in solid tumors. However, currently, there is no specific and potent inhibitor for translation into clinical studies. Here, we aim to systematically review current knowledge regarding eEF2K in tumor biology, microenvironment, and development of eEF2K targeted inhibitors and therapeutics.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral , Animais , Apoptose , Autofagia , Biomarcadores Tumorais , Suscetibilidade a Doenças , Quinase do Fator 2 de Elongação/antagonistas & inibidores , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Ativação Enzimática , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Conformação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , RNA não Traduzido/genética , Relação Estrutura-Atividade , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
13.
Biochim Biophys Acta ; 1784(6): 908-15, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18381083

RESUMO

The alpha kinases are a widespread family of atypical protein kinases characterized by a novel type of catalytic domain. In this paper the peptide substrate recognition motifs for three alpha kinases, Dictyostelium discoideum myosin heavy chain kinase (MHCK) A and MHCK B and mammalian eukaryotic elongation factor-2 kinase (eEF-2K), were characterized by incorporating amino acid substitutions into a previously identified MHCK A peptide substrate (YAYDTRYRR) (Luo X. et al. (2001) J. Biol. Chem. 276, 17836-43). A lysine or arginine in the P+1 position on the C-terminal side of the phosphoacceptor threonine (P site) was found to be critical for peptide substrate recognition by MHCK A, MHCK B and eEF-2K. Phosphorylation by MHCK B was further enhanced 8-fold by a basic residue in the P+2 position whereas phosphorylation by MHCK A was enhanced 2- to 4-fold by basic residues in the P+2, P+3 and P+4 positions. eEF-2K required basic residues in both the P+1 and P+3 positions to recognize peptide substrates. eEF-2K, like MHCK A and MHCK B, exhibited a strong preference for threonine as the phosphoacceptor amino acid. In contrast, the Dictyostelium VwkA and mammalian TRPM7 alpha kinases phosphorylated both threonine and serine residues. The results, together with a phylogenetic analysis of the alpha kinase catalytic domain, support the view that the metazoan eEF-2Ks and the Dictyostelium MHCKs form a distinct subgroup of alpha kinases with conserved properties.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Dictyostelium/enzimologia , Quinase do Fator 2 de Elongação/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/genética , Evolução Molecular , Dados de Sequência Molecular , Fosforilação , Filogenia , Proteínas de Protozoários/química , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Especificidade por Substrato
14.
Biochem J ; 413(1): 163-74, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18373493

RESUMO

eEF2 (eukaryotic elongation factor 2) contains a post-translationally modified histidine residue, known as diphthamide, which is the specific ADP-ribosylation target of diphtheria toxin, cholix toxin and Pseudomonas aeruginosa exotoxin A. Site-directed mutagenesis was conducted on residues within the diphthamide-containing loop (Leu693-Gly703) of eEF2 by replacement with alanine. The purified yeast eEF2 mutant proteins were then investigated to determine the role of this loop region in ADP-ribose acceptor activity of elongation factor 2 as catalysed by exotoxin A. A number of single alanine substitutions in the diphthamide-containing loop caused a significant reduction in the eEF2 ADP-ribose acceptor activities, including two strictly conserved residues, His694 and Asp696. Analysis by MS revealed that all of these mutant proteins lacked the 2'-modification on the His699 residue and that eEF2 is acetylated at Lys509. Furthermore, it was revealed that the imidazole ring of Diph699 (diphthamide at position 699) still functions as an ADP-ribose acceptor (albeit poorly), even without the diphthamide modification on the His699. Therefore, this diphthamide-containing loop plays an important role in the ADP-ribosylation of eEF2 catalysed by toxin and also for modification of His699 by the endogenous diphthamide modification machinery.


Assuntos
ADP Ribose Transferases/farmacologia , Adenosina Difosfato Ribose/metabolismo , Toxinas Bacterianas/farmacologia , Quinase do Fator 2 de Elongação/metabolismo , Exotoxinas/farmacologia , Histidina/análogos & derivados , Fatores de Virulência/farmacologia , Sequência de Aminoácidos , Quinase do Fator 2 de Elongação/química , Deleção de Genes , Regulação Fúngica da Expressão Gênica/fisiologia , Histidina/química , Histidina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Exotoxina A de Pseudomonas aeruginosa
15.
J Mol Biol ; 431(15): 2700-2717, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31108082

RESUMO

Eukaryotic elongation factor 2 kinase (eEF-2K), an atypical calmodulin-activated protein kinase, regulates translational elongation by phosphorylating its substrate, eukaryotic elongation factor 2 (eEF-2), thereby reducing its affinity for the ribosome. The activation and activity of eEF-2K are critical for survival under energy-deprived conditions and is implicated in a variety of essential physiological processes. Previous biochemical experiments have indicated that the binding site for the substrate eEF-2 is located in the C-terminal domain of eEF-2K, a region predicted to harbor several α-helical repeats. Here, using NMR methodology, we have determined the solution structure of a C-terminal fragment of eEF-2K, eEF-2K562-725 that encodes two α-helical repeats. The structure of eEF-2K562-725 shows signatures characteristic of TPR domains and of their SEL1-like sub-family. Furthermore, using the analyses of NMR spectral perturbations and ITC measurements, we have localized the eEF-2 binding site on eEF-2K562-725. We find that eEF-2K562-725 engages eEF-2 with an affinity comparable to that of the full-length enzyme. Furthermore, eEF-2K562-725 is able to inhibit the phosphorylation of eEF-2 by full-length eEF-2K in trans. Our present studies establish that eEF-2K562-725 encodes the major elements necessary to enable the eEF-2K/eEF-2 interactions.


Assuntos
Quinase do Fator 2 de Elongação/química , Sequência de Aminoácidos , Quinase do Fator 2 de Elongação/metabolismo , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fator 2 de Elongação de Peptídeos/metabolismo , Fosforilação , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Especificidade por Substrato
16.
Protein Sci ; 28(12): 2089-2098, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31626716

RESUMO

Eukaryotic elongation factor 2 kinase (eEF-2K) regulates protein synthesis by phosphorylating eukaryotic elongation factor 2 (eEF-2), thereby reducing its affinity for the ribosome and suppressing global translational elongation rates. eEF-2K is regulated by calmodulin (CaM) through a mechanism that is distinct from that of other CaM-regulated kinases. We had previously identified a minimal construct of eEF-2K (TR) that is activated similarly to the wild-type enzyme by CaM in vitro and retains its ability to phosphorylate eEF-2 efficiently in cells. Here, we employ solution nuclear magnetic resonance techniques relying on Ile δ1-methyls of TR and Ile δ1- and Met ε-methyls of CaM, as probes of their mutual interaction and the influence of Ca2+ thereon. We find that in the absence of Ca2+ , CaM exclusively utilizes its C-terminal lobe (CaMC ) to engage the N-terminal CaM-binding domain (CBD) of TR in a high-affinity interaction. Avidity resulting from additional weak interactions of TR with the Ca2+ -loaded N-terminal lobe of CaM (CaMN ) at increased Ca2+ levels serves to enhance the affinity further. These latter interactions under Ca2+ saturation result in minimal perturbations in the spectra of TR in the context of its complex with CaM, suggesting that the latter is capable of driving TR to its final, presumably active conformation, in the Ca2+ -free state. Our data are consistent with a scenario in which Ca2+ enhances the affinity of the TR/CaM interactions, resulting in the increased effective concentration of the CaM-bound species without significantly modifying the conformation of TR within the final, active complex.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Cálcio/química , Calmodulina/química , Quinase do Fator 2 de Elongação/química
17.
IEEE/ACM Trans Comput Biol Bioinform ; 16(6): 2057-2065, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29993692

RESUMO

Proteins in the MAPK pathways considered as potential drug targets for cancer treatment. Pathways along with the cross-talks increase their scope to view them as a network of MAPK pathways. Side effect causing targeted domains act as a proxy for drug targets due to its structural similarity and frequent reuse of their variants. We proposed to identify non-repeatable protein domains as the drug targets to disrupt the signal transduction than targeting the whole protein. Network based approach is used to understand the contribution of 52 domains in non-hub, non-essential, and intra-pathway cancerous nodes and to identify potential drug target domains. 34 distinct domains in the cancerous proteins are playing vital roles in making cancer as a complex disease and pose challenges to identify potential drug targets. Distribution of domain families follows the power law in the network. Single promiscuous domains are contributing to the formation of hubs like Pkinease, Pkinease Tyr, and Ras. Hub nodes are positively correlated with the domain coverage and targeting them would disrupt functional properties of the proteins. EIF 4EBP, alpha Kinase, Sel1, ROKNT, and KH 1 are the domains identified as potential domain targets for the disruption of the signaling mechanism involved in cancer.


Assuntos
Sistema de Sinalização das MAP Quinases , Neoplasias/tratamento farmacológico , Domínios Proteicos , Proteínas/química , Proteínas Adaptadoras de Transdução de Sinal/química , Algoritmos , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/química , Bases de Dados de Proteínas , Quinase do Fator 2 de Elongação/química , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/química , Humanos , Transdução de Sinais
18.
J Mol Biol ; 430(17): 2802-2821, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29800565

RESUMO

Eukaryotic elongation factor 2 kinase (eEF-2K), the only known calmodulin (CaM)-activated α-kinase, phosphorylates eukaryotic elongation factor 2 (eEF-2) on a specific threonine (Thr-56) diminishing its affinity for the ribosome and reducing the rate of nascent chain elongation during translation. Despite its critical cellular role, the precise mechanisms underlying the CaM-mediated activation of eEF-2K remain poorly defined. Here, employing a minimal eEF-2K construct (TR) that exhibits activity comparable to the wild-type enzyme and is fully activated by CaM in vitro and in cells, and using a variety of complimentary biophysical techniques in combination with computational modeling, we provide a structural mechanism by which CaM activates eEF-2K. Native mass analysis reveals that CaM, with two bound Ca2+ ions, forms a stoichiometric 1:1 complex with TR. Chemical crosslinking mass spectrometry and small-angle X-ray scattering measurements localize CaM near the N-lobe of the TR kinase domain and the spatially proximal C-terminal helical repeat. Hydrogen/deuterium exchange mass spectrometry and methyl NMR indicate that the conformational changes induced on TR by the engagement of CaM are not localized but are transmitted to remote regions that include the catalytic site and the functionally important phosphate binding pocket. The structural insights obtained from the present analyses, together with our previously published kinetics data, suggest that TR, and by inference, wild-type eEF-2K, upon engaging CaM undergoes a conformational transition resulting in a state that is primed to efficiently auto-phosphorylate on the primary activating T348 en route to full activation.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Quinase do Fator 2 de Elongação/química , Quinase do Fator 2 de Elongação/metabolismo , Calmodulina/química , Calmodulina/genética , Quinase do Fator 2 de Elongação/genética , Humanos , Cinética , Fosforilação , Conformação Proteica
19.
Cell Signal ; 29: 78-83, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27760376

RESUMO

Elongation Factor-2 Kinase (eEF2K) in an unusual mammalian enzyme that has one known substrate, elongation factor-2. It belongs to a class of kinases, called alpha kinases, that has little sequence identity to the >500 conventional protein kinases, but performs the same reaction and has similar catalytic residues. The phosphorylation of eEF2 blocks translation elongation, which is thought to be critical to regulating cellular energy usage. Here we report a system for discovering new substrates of alpha kinases and identify the first new substrates of eEF2K including AMPK and alpha4, and determine a sequence motif for the kinase that shows a requirement for threonine residues as the target of phosphorylation. These new substrates suggest that eEF2K has a more diverse role in regulating cellular energy usage that involves multiple pathways and regulatory feedback.


Assuntos
Células/metabolismo , Quinase do Fator 2 de Elongação/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Quinase do Fator 2 de Elongação/química , Células HeLa , Humanos , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Reprodutibilidade dos Testes , Especificidade por Substrato
20.
Structure ; 24(9): 1441-51, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27499441

RESUMO

Binding of Ca(2+)-loaded calmodulin (CaM) activates eukaryotic elongation factor 2 kinase (eEF-2K) that phosphorylates eEF-2, its only known cellular target, leading to a decrease in global protein synthesis. Here, using an eEF-2K-derived peptide (eEF-2KCBD) that encodes the region necessary for its CaM-mediated activation, we provide a structural basis for their interaction. The striking feature of this association is the absence of Ca(2+) from the CaM C-lobe sites, even under high Ca(2+) conditions. eEF-2KCBD engages CaM largely through the C lobe of the latter in an anti-parallel 1-5-8 hydrophobic mode reinforced by a pair of unique electrostatic contacts. Sparse interactions of eEF-2KCBD with the CaM N lobe results in persisting inter-lobe mobility. A conserved eEF-2K residue (W85) anchors it to CaM by inserting into a deep hydrophobic cavity within the CaM C lobe. Mutation of this residue (W85S) substantially weakens interactions between full-length eEF-2K and CaM in vitro and reduces eEF-2 phosphorylation in cells.


Assuntos
Cálcio/química , Calmodulina/química , Quinase do Fator 2 de Elongação/química , Fatores de Alongamento de Peptídeos/química , Peptídeos/química , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , Quinase do Fator 2 de Elongação/genética , Quinase do Fator 2 de Elongação/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA