Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2014-2016, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848690

RESUMO

In a recent publication in Science, Zocher et al.1 identify and characterize long-lived nuclear RNA in the mouse brain, suggesting their potential roles as guardians of neuronal longevity.


Assuntos
Neurônios , Animais , Neurônios/metabolismo , Camundongos , Longevidade/genética , Encéfalo/metabolismo , Humanos , RNA Nuclear/metabolismo , RNA Nuclear/genética
2.
Mol Cell ; 82(2): 463-478.e11, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34741808

RESUMO

The ability of RNAs to form specific contacts with other macromolecules provides an important mechanism for subcellular compartmentalization. Here we describe a suite of hybridization-proximity (HyPro) labeling technologies for unbiased discovery of proteins (HyPro-MS) and transcripts (HyPro-seq) associated with RNAs of interest in genetically unperturbed cells. As a proof of principle, we show that HyPro-MS and HyPro-seq can identify both known and previously unexplored spatial neighbors of the noncoding RNAs 45S, NEAT1, and PNCTR expressed at markedly different levels. Notably, HyPro-seq uncovers an extensive repertoire of incompletely processed, adenosine-to-inosine-edited transcripts accumulating at the interface between their encoding chromosomal regions and the NEAT1-containing paraspeckle compartment. At least some of these targets require NEAT1 for their optimal expression. Overall, this study provides a versatile toolkit for dissecting RNA interactomes in diverse biomedical contexts and expands our understanding of the functional architecture of the mammalian nucleus.


Assuntos
Compartimento Celular , Núcleo Celular/metabolismo , Técnicas Genéticas , RNA Nuclear/metabolismo , Proteínas de Ligação a RNA/metabolismo , Núcleo Celular/genética , Células HeLa , Humanos , Espectrometria de Massas , Estudo de Prova de Conceito , Ligação Proteica , Proteoma , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Nuclear/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/genética , RNA-Seq , Transcriptoma
3.
Mol Cell ; 65(5): 787-800.e5, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190770

RESUMO

In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination. Following glucose withdrawal, many growth-related mRNAs showed reduced transcription but increased Nab3 binding, accompanied by downstream recruitment of Mtr4, and oligo(A) tailing. We conclude that transcription termination is followed by TRAMP-mediated RNA decay. Upregulated transcripts evaded increased surveillance factor binding following glucose withdrawal. Some upregulated genes showed use of alternative transcription starts to bypass strong NNS binding sites. We conclude that nuclear surveillance pathways regulate both positive and negative responses to glucose availability.


Assuntos
Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Adaptação Fisiológica , Sítios de Ligação , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Glucose/deficiência , Glucose/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Nuclear/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
4.
Nat Rev Genet ; 19(8): 518-529, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29748575

RESUMO

RNA turnover is an integral part of cellular RNA homeostasis and gene expression regulation. Whereas the cytoplasmic control of protein-coding mRNA is often the focus of study, we discuss here the less appreciated role of nuclear RNA decay systems in controlling RNA polymerase II (RNAPII)-derived transcripts. Historically, nuclear RNA degradation was found to be essential for the functionalization of transcripts through their proper maturation. Later, it was discovered to also be an important caretaker of nuclear hygiene by removing aberrant and unwanted transcripts. Recent years have now seen a set of new protein complexes handling a variety of new substrates, revealing functions beyond RNA processing and the decay of non-functional transcripts. This includes an active contribution of nuclear RNA metabolism to the overall cellular control of RNA levels, with mechanistic implications during cellular transitions.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , RNA Polimerase II/metabolismo , Estabilidade de RNA/fisiologia , RNA Nuclear/biossíntese , Transcrição Gênica/fisiologia , Animais , Núcleo Celular/genética , Humanos , RNA Polimerase II/genética , RNA Nuclear/genética
5.
RNA ; 27(9): 991-1003, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108230

RESUMO

Mammalian RNA interference (RNAi) is often linked to the regulation of gene expression in the cytoplasm. Synthetic RNAs, however, can also act through the RNAi pathway to regulate transcription and splicing. While nuclear regulation by synthetic RNAs can be robust, a critical unanswered question is whether endogenous functions for nuclear RNAi exist in mammalian cells. Using enhanced crosslinking immunoprecipitation (eCLIP) in combination with RNA sequencing (RNA-seq) and multiple AGO knockout cell lines, we mapped AGO2 protein binding sites within nuclear RNA. The strongest AGO2 binding sites were mapped to micro RNAs (miRNAs). The most abundant miRNAs were distributed similarly between the cytoplasm and nucleus, providing no evidence for mechanisms that facilitate localization of miRNAs in one compartment versus the other. Beyond miRNAs, most statistically significant AGO2 binding was within introns. Splicing changes were confirmed by RT-PCR and recapitulated by synthetic miRNA mimics complementary to the sites of AGO2 binding. These data support the hypothesis that miRNAs can control gene splicing. While nuclear RNAi proteins have the potential to be natural regulatory mechanisms, careful study will be necessary to identify critical RNA drivers of normal physiology and disease.


Assuntos
Processamento Alternativo , Proteínas Argonautas/genética , Fatores de Iniciação em Eucariotos/genética , MicroRNAs/genética , RNA Nuclear/genética , Proteínas Argonautas/deficiência , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Fatores de Iniciação em Eucariotos/deficiência , Éxons , Células HCT116 , Humanos , Imunoprecipitação , Íntrons , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Ligação Proteica , RNA Nuclear/metabolismo , Análise de Sequência de RNA
6.
RNA ; 27(9): 1102-1125, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34187903

RESUMO

Polyadenylated nuclear (PAN) RNA is a long noncoding transcript involved in Kaposi's sarcoma-associated herpesvirus (KSHV) lytic reactivation and regulation of cellular and viral gene expression. We have previously shown that PAN RNA has dynamic secondary structure and protein binding profiles that can be influenced by epitranscriptomic modifications. N6-methyladenosine (m6A) is one of the most abundant chemical signatures found in viral RNA genomes and virus-encoded RNAs. Here, we combined antibody-independent next-generation mapping with direct RNA sequencing to address the epitranscriptomic status of PAN RNA in KSHV infected cells. We showed that PAN m6A status is dynamic, reaching the highest number of modifications at the late lytic stages of KSHV infection. Using a newly developed method, termed selenium-modified deoxythymidine triphosphate (SedTTP)-reverse transcription (RT) and ligation assisted PCR analysis of m6A (SLAP), we gained insight into the fraction of modification at identified sites. By applying comprehensive proteomic approaches, we identified writers and erasers that regulate the m6A status of PAN, and readers that can convey PAN m6A phenotypic effects. We verified the temporal and spatial subcellular availability of the methylome components for PAN modification by performing confocal microscopy analysis. Additionally, the RNA biochemical probing (SHAPE-MaP) outlined local and global structural alterations invoked by m6A in the context of full-length PAN RNA. This work represents the first comprehensive overview of the dynamic interplay that takes place between the cellular epitranscriptomic machinery and a specific viral RNA in the context of KSHV infected cells.


Assuntos
Adenosina/análogos & derivados , Epigênese Genética , Herpesvirus Humano 8/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Nuclear/genética , Adenosina/genética , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Pareamento de Bases , Sequência de Bases , Linhagem Celular Tumoral , Endonucleases/genética , Endonucleases/metabolismo , Herpesvirus Humano 8/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Linfócitos/metabolismo , Linfócitos/virologia , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Conformação de Ácido Nucleico , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Reversa , Análise de Sequência de RNA , Transcriptoma
7.
Chromosoma ; 130(1): 75-90, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33585981

RESUMO

Within the pericentric regions of human chromosomes reside large arrays of tandemly repeated satellite sequences. Expression of the human pericentric satellite HSATII is prevented by extensive heterochromatin silencing in normal cells, yet in many cancer cells, HSATII RNA is aberrantly expressed and accumulates in large nuclear foci in cis. Expression and aggregation of HSATII RNA in cancer cells is concomitant with recruitment of key chromatin regulatory proteins including methyl-CpG binding protein 2 (MeCP2). While HSATII expression has been observed in a wide variety of cancer cell lines and tissues, the effect of its expression is unknown. We tested the effect of stable expression of HSATII RNA within cells that do not normally express HSATII. Ectopic HSATII expression in HeLa and primary fibroblast cells leads to focal accumulation of HSATII RNA in cis and triggers the accumulation of MeCP2 onto nuclear HSATII RNA bodies. Further, long-term expression of HSATII RNA leads to cell division defects including lagging chromosomes, chromatin bridges, and other chromatin defects. Thus, expression of HSATII RNA in normal cells phenocopies its nuclear accumulation in cancer cells and allows for the characterization of the cellular events triggered by aberrant expression of pericentric satellite RNA.


Assuntos
Divisão Celular , Cromatina/genética , DNA Satélite/genética , Expressão Ectópica do Gene , Proteína 2 de Ligação a Metil-CpG/metabolismo , RNA Nuclear/genética , Células HeLa , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , RNA Longo não Codificante
8.
J Virol ; 95(13): e0009621, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853955

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic human gammaherpesvirus and the causative agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD). During reactivation, viral genes are expressed in a temporal manner. These lytic genes encode transactivators, core replication proteins, or structural proteins. During reactivation, other viral factors that are required for lytic replication are expressed. The most abundant viral transcript is the long noncoding RNA (lncRNA) known as polyadenylated nuclear (PAN) RNA. lncRNAs have diverse functions, including the regulation of gene expression and the immune response. PAN possesses two main cis-acting elements, the Mta response element (MRE) and the expression and nuclear retention element (ENE). While PAN has been demonstrated to be required for efficient viral replication, the function of these elements within PAN remains unclear. Our goal was to determine if the ENE of PAN is required in the context of infection. A KSHV bacmid containing a deletion of the 79-nucleotide (nt) ENE in PAN was generated to assess the effects of the ENE during viral replication. Our studies demonstrated that the ENE is not required for viral DNA synthesis, lytic gene expression, or the production of infectious virus. Although the ENE is not required for viral replication, we found that the ENE functions to retain PAN in the nucleus, and the absence of the ENE results in an increased accumulation of PAN in the cytoplasm. Furthermore, open reading frame 59 (ORF59), LANA, ORF57, H1.4, and H2A still retain the ability to bind to PAN in the absence of the ENE. Together, our data highlight how the ENE affects the nuclear retention of PAN but ultimately does not play an essential role during lytic replication. Our data suggest that PAN may have other functional domains apart from the ENE. IMPORTANCE KSHV is an oncogenic herpesvirus that establishes latency and exhibits episodes of reactivation. KSHV disease pathologies are most often associated with the lytic replication of the virus. PAN RNA is the most abundant viral transcript during the reactivation of KSHV and is required for viral replication. Deletion and knockdown of PAN resulted in defects in viral replication and reduced virion production in the absence of PAN RNA. To better understand how the cis elements within PAN may contribute to its function, we investigated if the ENE of PAN was necessary for viral replication. Although the ENE had previously been extensively studied with both biochemical and in vitro approaches, this is the first study to demonstrate the role of the ENE in the context of infection and that the ENE of PAN is not required for the lytic replication of KSHV.


Assuntos
Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/genética , RNA Longo não Codificante/genética , Ativação Viral/genética , Latência Viral/genética , Hiperplasia do Linfonodo Gigante/virologia , Linhagem Celular Tumoral , Células HEK293 , Herpesvirus Humano 8/fisiologia , Humanos , RNA Mensageiro/genética , RNA Nuclear/genética , Sarcoma de Kaposi/virologia , Replicação Viral/genética
9.
Nucleic Acids Res ; 48(12): 6943-6953, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32463452

RESUMO

ARS2 is a conserved protein centrally involved in both nuclear RNA productive and destructive processes. To map features of ARS2 promoting RNA decay, we utilized two different RNA reporters, one of which depends on direct ARS2 tethering for its degradation. In both cases, ARS2 triggers a degradation phenotype aided by its interaction with the poly(A) tail exosome targeting (PAXT) connection. Interestingly, C-terminal amino acids of ARS2, responsible for binding the RNA 5'cap binding complex (CBC), become dispensable when ARS2 is directly tethered to the reporter RNA. In contrast, the Zinc-finger (ZnF) domain of ARS2 is essential for the decay of both reporters and consistently co-immunoprecipitation analyses reveal a necessity of this domain for the interaction of ARS2 with the PAXT-associated RNA helicase MTR4. Taken together, our results map the domains of ARS2 underlying two essential properties of the protein: its RNP targeting ability and its capacity to recruit the RNA decay machinery.


Assuntos
Proteínas Nucleares/genética , RNA Helicases/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Células HEK293 , Humanos , Complexo Proteico Nuclear de Ligação ao Cap/genética , Proteínas Nucleares/química , Domínios Proteicos/genética , RNA Helicases/química , RNA Mensageiro/química , RNA Nuclear/química , RNA Nuclear/genética
10.
J Cell Sci ; 132(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30745340

RESUMO

The GGGGCC (G4C2) repeat expansion mutation in the C9ORF72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Transcription of the repeat and formation of nuclear RNA foci, which sequester specific RNA-binding proteins, is one of the possible pathological mechanisms. Here, we show that (G4C2) n repeat RNA predominantly associates with essential paraspeckle proteins SFPQ, NONO, RBM14, FUS and hnRNPH and colocalizes with known paraspeckle-associated RNA hLinc-p21. As formation of paraspeckles in motor neurons has been associated with early phases of ALS, we investigated the extent of similarity between paraspeckles and (G4C2) n RNA foci. Overexpression of (G4C2)72 RNA results in their increased number and colocalization with SFPQ-stained nuclear bodies. These paraspeckle-like (G4C2)72 RNA foci form independently of the known paraspeckle scaffold, the long non-coding RNA NEAT1 Moreover, the knockdown of SFPQ protein in C9ORF72 expansion mutation-positive fibroblasts significantly reduces the number of (G4C2) n RNA foci. In conclusion, (G4C2) n RNA foci have characteristics of paraspeckles, which suggests that both RNA foci and paraspeckles play roles in FTD and ALS, and implies approaches for regulation of their formation.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Demência Frontotemporal/genética , Neurônios Motores/fisiologia , Complexos Multiproteicos/metabolismo , Mutação/genética , RNA Nuclear/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Espaço Intranuclear , Camundongos , Fator de Processamento Associado a PTB/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Nuclear/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos
11.
Plant Physiol ; 182(1): 147-158, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31722974

RESUMO

In addition to transcriptional regulation, gene expression is further modulated through mRNA spatiotemporal distribution, by RNA movement between cells, and by RNA localization within cells. Here, we have adapted RNA fluorescence in situ hybridization (FISH) to explore RNA localization in Arabidopsis (Arabidopsis thaliana). We show that RNA FISH on sectioned material can be applied to investigate the tissue and subcellular localization of meristem and flower development genes, cell cycle transcripts, and plant long noncoding RNAs. We also developed double RNA FISH to dissect the coexpression of different mRNAs at the shoot apex and nuclear-cytoplasmic separation of cell cycle gene transcripts in dividing cells. By coupling RNA FISH with fluorescence immunocytochemistry, we further demonstrate that a gene's mRNA and protein may be simultaneously detected, for example revealing uniform distribution of PIN-FORMED1 (PIN1) mRNA and polar localization of PIN1 protein in the same cells. Therefore, our method enables the visualization of gene expression at both transcriptional and translational levels with subcellular spatial resolution, opening up the possibility of systematically tracking the dynamics of RNA molecules and their cognate proteins in plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Hibridização in Situ Fluorescente/métodos , RNA Nuclear/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Meristema/genética , Meristema/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA Nuclear/genética
12.
Parasitology ; 148(10): 1219-1222, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33729118

RESUMO

Transfer RNAs play a key role in protein synthesis. Following transcription, tRNAs are extensively processed prior to their departure from the nucleus to become fully functional during translation. This includes removal of 5' leaders and 3' trailers by a specific endo- and/or exonuclease, 3' CCA tail addition, posttranscriptional modifications and in some cases intron removal. In this minireview, the critical factors of nuclear tRNA trafficking are described based on studies in classical models such as yeast and human cell lines. In addition, recent findings and identification of novel regulatory loops of nuclear tRNA trafficking in trypanosomes are discussed with emphasis on tRNA modifications. The comparison between the representatives of opisthokonts and excavates serves here to understand the evolutionary conservation and diversity of nuclear tRNA export mechanisms.


Assuntos
RNA Nuclear/metabolismo , RNA de Transferência/metabolismo , Saccharomyces cerevisiae/metabolismo , Trypanosoma/metabolismo , Linhagem Celular , Humanos , RNA Nuclear/genética , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Trypanosoma/genética
13.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948199

RESUMO

The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/fisiologia , Estabilidade de RNA/fisiologia , Transcrição Gênica/genética , Animais , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Genoma/genética , Humanos , RNA/genética , RNA/metabolismo , Estabilidade de RNA/genética , RNA Nuclear/genética , RNA Nuclear/metabolismo
14.
PLoS Pathog ; 14(11): e1007389, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383841

RESUMO

During lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV), a nuclear viral long noncoding RNA known as PAN RNA becomes the most abundant polyadenylated transcript in the cell. Knockout or knockdown of KSHV PAN RNA results in loss of late lytic viral gene expression and, consequently, reduction of progeny virion release from the cell. Here, we demonstrate that knockdown of PAN RNA from the related Rhesus macaque rhadinovirus (RRV) phenocopies that of KSHV PAN RNA. These two PAN RNA homologs, although lacking significant nucleotide sequence conservation, can functionally substitute for each other to rescue phenotypes associated with the absence of PAN RNA expression. Because PAN RNA is exclusively nuclear, previous studies suggested that it directly interacts with host and viral chromatin to modulate gene expression. We studied KSHV and RRV PAN RNA homologs using capture hybridization analysis of RNA targets (CHART) and observed their association with host chromatin, but the loci differ between PAN RNA homologs. Accordingly, we find that KSHV PAN RNA is undetectable in chromatin following cell fractionation. Thus, modulation of gene expression at specific chromatin loci appears not to be the primary, nor the pertinent function of this viral long noncoding RNA. PAN RNA represents a cautionary tale for the investigation of RNA association with chromatin whereby cross-linking of DNA spatially adjacent to an abundant nuclear RNA gives the appearance of specific interactions. Similarly, PAN RNA expression does not affect viral transcription factor complex expression or activity, which is required for generation of the late lytic viral mRNAs. Rather, we provide evidence for an alternative model of PAN RNA function whereby knockdown of KSHV or RRV PAN RNA results in compromised nuclear mRNA export thereby reducing the cytoplasmic levels of viral mRNAs available for production of late lytic viral proteins.


Assuntos
RNA Longo não Codificante/genética , Rhadinovirus/genética , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cromatina/metabolismo , Regulação Viral da Expressão Gênica/genética , Técnicas de Silenciamento de Genes/métodos , Células HEK293 , Herpesviridae/genética , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Humanos , Macaca mulatta/virologia , RNA Mensageiro/genética , RNA Nuclear/genética , RNA Viral/genética , Infecções Tumorais por Vírus , Proteínas Virais/metabolismo , Replicação Viral
15.
PLoS Pathog ; 14(3): e1006950, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29554134

RESUMO

Expression from the HIV-1 LTR can be repressed in a small population of cells, which contributes to the latent reservoir. The factors mediating this repression have not been clearly elucidated. We have identified a network of nuclear RNA surveillance factors that act as effectors of HIV-1 silencing. RRP6, MTR4, ZCCHC8 and ZFC3H1 physically associate with the HIV-1 TAR region and repress transcriptional output and recruitment of RNAPII to the LTR. Knock-down of these factors in J-Lat cells increased the number of GFP-positive cells, with a concomitant increase in histone marks associated with transcriptional activation. Loss of these factors increased HIV-1 expression from infected PBMCs and led to reactivation of HIV-1 from latently infected PBMCs. These findings identify a network of novel transcriptional repressors that control HIV-1 expression and which could open new avenues for therapeutic intervention.


Assuntos
Infecções por HIV/virologia , Repetição Terminal Longa de HIV/genética , HIV-1/genética , Proteínas Nucleares/metabolismo , RNA Nuclear/metabolismo , Proteínas Repressoras/metabolismo , Ativação Viral , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Regulação Viral da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/patogenicidade , Células HeLa , Humanos , Proteínas Nucleares/genética , RNA Helicases/genética , RNA Helicases/metabolismo , RNA Nuclear/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Latência Viral
16.
Nucleic Acids Res ; 46(D1): D152-D159, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29186503

RESUMO

MINTbase is a repository that comprises nuclear and mitochondrial tRNA-derived fragments ('tRFs') found in multiple human tissues. The original version of MINTbase comprised tRFs obtained from 768 transcriptomic datasets. We used our deterministic and exhaustive tRF mining pipeline to process all of The Cancer Genome Atlas datasets (TCGA). We identified 23 413 tRFs with abundance of ≥ 1.0 reads-per-million (RPM). To facilitate further studies of tRFs by the community, we just released version 2.0 of MINTbase that contains information about 26 531 distinct human tRFs from 11 719 human datasets as of October 2017. Key new elements include: the ability to filter tRFs on-the-fly by minimum abundance thresholding; the ability to filter tRFs by tissue keywords; easy access to information about a tRF's maximum abundance and the datasets that contain it; the ability to generate relative abundance plots for tRFs across cancer types and convert them into embeddable figures; MODOMICS information about modifications of the parental tRNA, etc. Version 2.0 of MINTbase contains 15x more datasets and nearly 4x more distinct tRFs than the original version, yet continues to offer fast, interactive access to its contents. Version 2.0 is available freely at http://cm.jefferson.edu/MINTbase/.


Assuntos
Bases de Dados de Ácidos Nucleicos , Neoplasias/genética , RNA de Transferência/genética , Genoma Humano , Humanos , RNA Mitocondrial/genética , RNA Neoplásico/genética , RNA Nuclear/genética , Interface Usuário-Computador
17.
J Virol ; 92(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29643239

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments.IMPORTANCE Late in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus.


Assuntos
Núcleo Celular/metabolismo , Replicação do DNA , DNA Viral/metabolismo , Poli A/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear/metabolismo , RNA não Traduzido/metabolismo , Núcleo Celular/genética , Células Cultivadas , DNA Viral/genética , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8/fisiologia , Humanos , Poli A/genética , RNA Mensageiro/genética , RNA Nuclear/genética , RNA não Traduzido/genética , RNA Viral/genética , RNA Viral/metabolismo , Sarcoma de Kaposi/virologia , Replicação Viral
18.
Nucleic Acids Res ; 45(13): e121, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28460090

RESUMO

The genome-wide identification of microRNA transcription start sites (miRNA TSSs) is essential for understanding how miRNAs are regulated in development and disease. In this study, we developed mirSTP (mirna transcription Start sites Tracking Program), a probabilistic model for identifying active miRNA TSSs from nascent transcriptomes generated by global run-on sequencing (GRO-seq) and precision run-on sequencing (PRO-seq). MirSTP takes advantage of characteristic bidirectional transcription signatures at active TSSs in GRO/PRO-seq data, and provides accurate TSS prediction for human intergenic miRNAs at a high resolution. MirSTP performed better than existing generalized and experiment specific methods, in terms of the enrichment of various promoter-associated marks. MirSTP analysis of 27 human cell lines in 183 GRO-seq and 28 PRO-seq experiments identified TSSs for 480 intergenic miRNAs, indicating a wide usage of alternative TSSs. By integrating predicted miRNA TSSs with matched ENCODE transcription factor (TF) ChIP-seq data, we connected miRNAs into the transcriptional circuitry, which provides a valuable source for understanding the complex interplay between TF and miRNA. With mirSTP, we not only predicted TSSs for 72 miRNAs, but also identified 12 primary miRNAs with significant RNA polymerase pausing alterations after JQ1 treatment; each miRNA was further validated through BRD4 binding to its predicted promoter. MirSTP is available at http://bioinfo.vanderbilt.edu/mirSTP/.


Assuntos
MicroRNAs/genética , Regiões Promotoras Genéticas , Análise de Sequência de RNA/métodos , Algoritmos , Linhagem Celular , DNA Intergênico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos , MicroRNAs/metabolismo , Modelos Estatísticos , RNA Nuclear/genética , RNA Nuclear/metabolismo , Análise de Sequência de RNA/estatística & dados numéricos , Software , Sítio de Iniciação de Transcrição
19.
Nucleic Acids Res ; 45(20): 11954-11961, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981754

RESUMO

2-Methylthio-N6-isopentenyl modification of adenosine (ms2i6A) is an evolutionally conserved modification that is found in transfer RNAs (tRNAs). We have recently shown that Cdk5 regulatory subunit-associated protein 1 (Cdk5rap1) specifically converts i6A to ms2i6A at position A37 of four mitochondrial DNA-encoded tRNAs, and that the modification regulates efficient mitochondrial translation and energy metabolism in mammals. Curiously, a previous study reported that ms2i6A is present abundantly in nuclear-derived RNA species such as microRNAs, but not in tRNA fractions. To fully understand the molecular property of ms2i6A, the existence of non-canonical ms2i6A must be carefully validated. In the present study, we examined ms2i6A in total RNA purified from human and murine ρ0 cells, in which mitochondrial DNA-derived tRNAs were completely depleted. The ms2i6A was not detected in these cells at all. We generated a monoclonal antibody against ms2i6A and examined ms2i6A in murine RNAs using the antibody. The anti-ms2i6A antibody only reacted with the tRNA fractions and not in other RNA species. Furthermore, immunocytochemistry analysis using the antibody showed the predominant localization of ms2i6A in mitochondria and co-localization with the mitochondrial elongation factor Tu. Taken together, we propose that ms2i6A is a mitochondrial tRNA-specific modification and is absent from nuclear-encoded RNA species.


Assuntos
Núcleo Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isopenteniladenosina/análogos & derivados , Proteínas do Tecido Nervoso/metabolismo , RNA Nuclear/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Núcleo Celular/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isopenteniladenosina/imunologia , Isopenteniladenosina/metabolismo , Camundongos Knockout , Microscopia Confocal , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/genética , Interferência de RNA , RNA Nuclear/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
20.
Nucleic Acids Res ; 45(11): 6805-6821, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28383682

RESUMO

Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.


Assuntos
Herpesvirus Humano 8/genética , RNA Mensageiro/metabolismo , RNA Nuclear/metabolismo , RNA Viral/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Citoplasma/metabolismo , Citoplasma/virologia , Herpesvirus Humano 8/metabolismo , Humanos , Sequências Repetidas Invertidas , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Ligação Proteica , RNA Mensageiro/genética , RNA Nuclear/genética , RNA Viral/genética , Células Tumorais Cultivadas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA