Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34.575
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 87: 555-584, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925255

RESUMO

S-adenosylmethionine (AdoMet) has been referred to as both "a poor man's adenosylcobalamin (AdoCbl)" and "a rich man's AdoCbl," but today, with the ever-increasing number of functions attributed to each cofactor, both appear equally rich and surprising. The recent characterization of an organometallic species in an AdoMet radical enzyme suggests that the line that differentiates them in nature will be constantly challenged. Here, we compare and contrast AdoMet and cobalamin (Cbl) and consider why Cbl-dependent AdoMet radical enzymes require two cofactors that are so similar in their reactivity. We further carry out structural comparisons employing the recently determined crystal structure of oxetanocin-A biosynthetic enzyme OxsB, the first three-dimensional structural data on a Cbl-dependent AdoMet radical enzyme. We find that the structural motifs responsible for housing the AdoMet radical machinery are largely conserved, whereas the motifs responsible for binding additional cofactors are much more varied.


Assuntos
S-Adenosilmetionina/metabolismo , Vitamina B 12/metabolismo , Animais , Sítios de Ligação , Coenzimas/química , Coenzimas/metabolismo , Eletroquímica , Enzimas/química , Enzimas/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , S-Adenosilmetionina/química , Vitamina B 12/análogos & derivados , Vitamina B 12/química
2.
Nature ; 629(8010): 98-104, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693411

RESUMO

Photobiocatalysis-where light is used to expand the reactivity of an enzyme-has recently emerged as a powerful strategy to develop chemistries that are new to nature. These systems have shown potential in asymmetric radical reactions that have long eluded small-molecule catalysts1. So far, unnatural photobiocatalytic reactions are limited to overall reductive and redox-neutral processes2-9. Here we report photobiocatalytic asymmetric sp3-sp3 oxidative cross-coupling between organoboron reagents and amino acids. This reaction requires the cooperative use of engineered pyridoxal biocatalysts, photoredox catalysts and an oxidizing agent. We repurpose a family of pyridoxal-5'-phosphate-dependent enzymes, threonine aldolases10-12, for the α-C-H functionalization of glycine and α-branched amino acid substrates by a radical mechanism, giving rise to a range of α-tri- and tetrasubstituted non-canonical amino acids 13-15 possessing up to two contiguous stereocentres. Directed evolution of pyridoxal radical enzymes allowed primary and secondary radical precursors, including benzyl, allyl and alkylboron reagents, to be coupled in an enantio- and diastereocontrolled fashion. Cooperative photoredox-pyridoxal biocatalysis provides a platform for sp3-sp3 oxidative coupling16, permitting the stereoselective, intermolecular free-radical transformations that are unknown to chemistry or biology.


Assuntos
Aminoácidos , Biocatálise , Acoplamento Oxidativo , Processos Fotoquímicos , Aminoácidos/biossíntese , Aminoácidos/química , Aminoácidos/metabolismo , Biocatálise/efeitos da radiação , Evolução Molecular Direcionada , Radicais Livres/química , Radicais Livres/metabolismo , Glicina/química , Glicina/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Glicina Hidroximetiltransferase/química , Indicadores e Reagentes , Luz , Acoplamento Oxidativo/efeitos da radiação , Fosfato de Piridoxal/metabolismo , Estereoisomerismo , Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo
3.
Nature ; 631(8020): 319-327, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38898275

RESUMO

Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.


Assuntos
Técnicas de Química Sintética , Oligossacarídeos , Açúcares , Radicais Livres/química , Radicais Livres/metabolismo , Glicosilação/efeitos da radiação , Indicadores e Reagentes/química , Luz , Oligossacarídeos/síntese química , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/efeitos da radiação , Estereoisomerismo , Açúcares/síntese química , Açúcares/química , Açúcares/metabolismo , Açúcares/efeitos da radiação
4.
Nature ; 625(7993): 74-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110574

RESUMO

Enzymes are recognized as exceptional catalysts for achieving high stereoselectivities1-3, but their ability to control the reactivity and stereoinduction of free radicals lags behind that of chemical catalysts4. Thiamine diphosphate (ThDP)-dependent enzymes5 are well-characterized systems that inspired the development of N-heterocyclic carbenes (NHCs)6-8 but have not yet been proved viable in asymmetric radical transformations. There is a lack of a biocompatible and general radical-generation mechanism, as nature prefers to avoid radicals that may be harmful to biological systems9. Here we repurpose a ThDP-dependent lyase as a stereoselective radical acyl transferase (RAT) through protein engineering and combination with organophotoredox catalysis10. Enzyme-bound ThDP-derived ketyl radicals are selectively generated through single-electron oxidation by a photoexcited organic dye and then cross-coupled with prochiral alkyl radicals with high enantioselectivity. Diverse chiral ketones are prepared from aldehydes and redox-active esters (35 examples, up to 97% enantiomeric excess (e.e.)) by this method. Mechanistic studies reveal that this previously elusive dual-enzyme catalysis/photocatalysis directs radicals with the unique ThDP cofactor and evolvable active site. This work not only expands the repertoire of biocatalysis but also provides a unique strategy for controlling radicals with enzymes, complementing existing chemical tools.


Assuntos
Aciltransferases , Biocatálise , Luz , Liases , Acilação , Aciltransferases/química , Aciltransferases/metabolismo , Aldeídos/metabolismo , Biocatálise/efeitos da radiação , Domínio Catalítico , Radicais Livres/metabolismo , Cetonas/metabolismo , Liases/química , Liases/metabolismo , Oxirredução , Engenharia de Proteínas , Estereoisomerismo , Tiamina Pirofosfato/metabolismo
5.
Acc Chem Res ; 57(9): 1446-1457, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38603772

RESUMO

Enzymes are desired catalysts for chemical synthesis, because they can be engineered to provide unparalleled levels of efficiency and selectivity. Yet, despite the astonishing array of reactions catalyzed by natural enzymes, many reactivity patterns found in small molecule catalysts have no counterpart in the living world. With a detailed understanding of the mechanisms utilized by small molecule catalysts, we can identify existing enzymes with the potential to catalyze reactions that are currently unknown in nature. Over the past eight years, our group has demonstrated that flavin-dependent "ene"-reductases (EREDs) can catalyze various radical-mediated reactions with unparalleled levels of selectivity, solving long-standing challenges in asymmetric synthesis.This Account presents our development of EREDs as general catalysts for asymmetric radical reactions. While we have developed multiple mechanisms for generating radicals within protein active sites, this account will focus on examples where flavin mononucleotide hydroquinone (FMNhq) serves as an electron transfer radical initiator. While our initial mechanistic hypotheses were rooted in electron-transfer-based radical initiation mechanisms commonly used by synthetic organic chemists, we ultimately uncovered emergent mechanisms of radical initiation that are unique to the protein active site. We will begin by covering intramolecular reactions and discussing how the protein activates the substrate for reduction by altering the redox-potential of alkyl halides and templating the charge transfer complex between the substrate and flavin-cofactor. Protein engineering has been used to modify the fundamental photophysics of these reactions, highlighting the opportunity to tune these systems further by using directed evolution. This section highlights the range of coupling partners and radical termination mechanisms available to intramolecular reactions.The next section will focus on intermolecular reactions and the role of enzyme-templated ternary charge transfer complexes among the cofactor, alkyl halide, and coupling partner in gating electron transfer to ensure that it only occurs when both substrates are bound within the protein active site. We will highlight the synthetic applications available to this activation mode, including olefin hydroalkylation, carbohydroxylation, arene functionalization, and nitronate alkylation. This section also discusses how the protein can favor mechanistic steps that are elusive in solution for the asymmetric reductive coupling of alkyl halides and nitroalkanes. We are aware of several recent EREDs-catalyzed photoenzymatic transformations from other groups. We will discuss results from these papers in the context of understanding the nuances of radical initiation with various substrates.These biocatalytic asymmetric radical reactions often complement the state-of-the-art small-molecule-catalyzed reactions, making EREDs a valuable addition to a chemist's synthetic toolbox. Moreover, the underlying principles studied with these systems are potentially operative with other cofactor-dependent proteins, opening the door to different types of enzyme-catalyzed radical reactions. We anticipate that this Account will serve as a guide and inspire broad interest in repurposing existing enzymes to access new transformations.


Assuntos
Oxirredutases , Oxirredutases/metabolismo , Oxirredutases/química , Radicais Livres/química , Radicais Livres/metabolismo , Biocatálise , Flavinas/química , Flavinas/metabolismo , Hidroquinonas/química , Hidroquinonas/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Transporte de Elétrons
6.
Nat Chem Biol ; 19(1): 28-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109647

RESUMO

Ferroptosis is a type of cell death caused by radical-driven lipid peroxidation, leading to membrane damage and rupture. Here we show that enzymatically produced sulfane sulfur (S0) species, specifically hydropersulfides, scavenge endogenously generated free radicals and, thereby, suppress lipid peroxidation and ferroptosis. By providing sulfur for S0 biosynthesis, cysteine can support ferroptosis resistance independently of the canonical GPX4 pathway. Our results further suggest that hydropersulfides terminate radical chain reactions through the formation and self-recombination of perthiyl radicals. The autocatalytic regeneration of hydropersulfides may explain why low micromolar concentrations of persulfides suffice to produce potent cytoprotective effects on a background of millimolar concentrations of glutathione. We propose that increased S0 biosynthesis is an adaptive cellular response to radical-driven lipid peroxidation, potentially representing a primordial radical protection system.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Morte Celular , Radicais Livres , Enxofre
7.
Chem Soc Rev ; 53(12): 6511-6567, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38775004

RESUMO

Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.


Assuntos
Portadores de Fármacos , Polimerização , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Portadores de Fármacos/química , Humanos , Polímeros/química , Polímeros/síntese química , Nanopartículas/química , Liberação Controlada de Fármacos , Radicais Livres/química
8.
J Am Chem Soc ; 146(11): 7222-7232, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38469853

RESUMO

Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center. A thin layer of eumelanin is polymerized on the surface of nanodiamonds (NDs), and depending on the environmental conditions, such as the local pH value, near-infrared, and ultraviolet light irradiation, the radicals form and react in situ. By combining experiments and theoretical simulations, we quantify the local number and kinetics of free radicals in the eumelanin layer. Next, the ND sensor enters the cells via endosomal vesicles. We quantify the number of radicals formed within the eumelanin layer in these acidic compartments by applying optical relaxometry measurements. In the future, we believe that the ND quantum sensor could provide valuable insights into the chemistry of eumelanin, which could contribute to the understanding and treatment of eumelanin- and melanin-related diseases.


Assuntos
Melaninas , Nanodiamantes , Raios Ultravioleta , Radicais Livres
9.
J Am Chem Soc ; 146(19): 13598-13606, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691811

RESUMO

Nucleic acid-binding dyes (NuABDs) are fluorogenic probes that light up after binding to nucleic acids. Taking advantage of their fluorogenicity, NuABDs have been widely utilized in the fields of nanotechnology and biotechnology for diagnostic and analytical applications. We demonstrate the potential of NuABDs together with an appropriate nucleic acid scaffold as an intriguing photocatalyst for precisely controlled atom-transfer radical polymerization (ATRP). Additionally, we systematically investigated the thermodynamic and electrochemical properties of the dyes, providing insights into the mechanism that drives the photopolymerization. The versatility of the NuABD-based platform was also demonstrated through successful polymerizations using several NuABDs in conjunction with diverse nucleic acid scaffolds, such as G-quadruplex DNA or DNA nanoflowers. This study not only extends the horizons of controlled photopolymerization but also broadens opportunities for nucleic acid-based materials and technologies, including nucleic acid-polymer biohybrids and stimuli-responsive ATRP platforms.


Assuntos
Corantes Fluorescentes , Processos Fotoquímicos , Polimerização , Catálise , Corantes Fluorescentes/química , Radicais Livres/química , DNA/química , Ácidos Nucleicos/química , Quadruplex G
10.
J Am Chem Soc ; 146(6): 3710-3720, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38308759

RESUMO

1/2H and 13C hyperfine coupling constants to 5'-deoxyadenosyl (5'-dAdo•) radical trapped within the active site of the radical S-adenosyl-l-methionine (SAM) enzyme, pyruvate formate lyase-activating enzyme (PFL-AE), both in the absence of substrate and the presence of a reactive peptide-model of the PFL substrate, are completely characteristic of a classical organic free radical whose unpaired electron is localized in the 2pπ orbital of the sp2 C5'-carbon (J. Am. Chem. Soc. 2019, 141, 12139-12146). However, prior electron-nuclear double resonance (ENDOR) measurements had indicated that this 5'-dAdo• free radical is never truly "free": tight van der Waals contact with its target partners and active-site residues guide it in carrying out the exquisitely precise, regioselective reactions that are hallmarks of RS enzymes. Here, our understanding of how the active site chaperones 5'-dAdo• is extended through the finding that this apparently unexceptional organic free radical has an anomalous g-tensor and exhibits significant 57Fe, 13C, 15N, and 2H hyperfine couplings to the adjacent, isotopically labeled, methionine-bound [4Fe-4S]2+ cluster cogenerated with 5'-dAdo• during homolytic cleavage of cluster-bound SAM. The origin of the 57Fe couplings through nonbonded radical-cluster contact is illuminated by a formal exchange-coupling model and broken symmetry-density functional theory computations. Incorporation of ENDOR-derived distances from C5'(dAdo•) to labeled-methionine as structural constraints yields a model for active-site positioning of 5'-dAdo• with a short, nonbonded C5'-Fe distance (∼3 Å). This distance involves substantial motion of 5'-dAdo• toward the unique Fe of the [4Fe-4S]2+ cluster upon S-C(5') bond-cleavage, plausibly an initial step toward formation of the Fe-C5' bond of the organometallic complex, Ω, the central intermediate in catalysis by radical-SAM enzymes.


Assuntos
Proteínas Ferro-Enxofre , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Metionina , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Domínio Catalítico , Racemetionina , Radicais Livres/química , Proteínas Ferro-Enxofre/química
11.
J Am Chem Soc ; 146(17): 12087-12099, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647488

RESUMO

Electron transfer during solid-liquid contact electrification has been demonstrated to produce reactive oxygen species (ROS) such as hydroxyl radicals (•OH) and superoxide anion radicals (•O2-). Here, we show that such a process also occurs in liquid-liquid contact electrification. By preparing perfluorocarbon nanoemulsions to construct a perfluorocarbon-water "liquid-liquid" interface, we confirmed that electrons were transferred from water to perfluorocarbon in ultrasonication-induced high-frequency liquid-liquid contact to produce •OH and •O2-. The produced ROS could be applied to ablate tumors by triggering large-scale immunogenic cell death in tumor cells, promoting dendritic cell maturation and macrophage polarization, ultimately activating T cell-mediated antitumor immune response. Importantly, the raw material for producing •OH is water, so the tumor therapy is not limited by the endogenous substances (O2, H2O2, etc.) in the tumor microenvironment. This work provides new perspectives for elucidating the mechanism of generation of free radicals in liquid-liquid contact and provides an excellent tumor therapeutic modality.


Assuntos
Fluorocarbonos , Água , Fluorocarbonos/química , Água/química , Camundongos , Animais , Neoplasias/tratamento farmacológico , Radicais Livres/química , Humanos , Radical Hidroxila/química , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia
12.
Cancer Metastasis Rev ; 42(1): 49-85, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36701089

RESUMO

Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Oxirredução , Antioxidantes/metabolismo , Oncogenes , Radicais Livres , Metástase Neoplásica
13.
Small ; 20(27): e2312211, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38381004

RESUMO

Uveal melanoma (UM) is an ocular cancer predominantly affecting adults, characterized by challenging diagnostic outcomes. This research endeavors to develop an innovative multifunctional nanocomposite system sensitive to near-infrared (NIR) radiation, serving as both a non-oxygen free-radical generator and a photothermal agent. The designed system combines azobis isobutyl imidazoline hydrochloride (AIBI) with mesoporous copper sulfide (MCuS) nanoparticles. MCuS harnesses NIR laser energy to induce photothermal therapy, converting light energy into heat to destroy cancer cells. Simultaneously, AIBI is activated by the NIR laser to produce alkyl radicals, which induce DNA damage in remaining cancer cells. This distinctive feature equips the designed system to selectively eliminate cancers in the hypoxic tumor microenvironment. MCuS is also beneficial to scavenge the overexpressed glutathione (GSH) in the tumor microenvironment. GSH generally consumes free radicals and hiders the PDT effect. To enhance control over AIBI release in cancer cells, 1-tetradecyl alcohol (TD), a phase-changing material, is introduced onto the surface of MCuS nanoparticles to create the final AMPT nanoparticle system. In vitro and in vivo experiments confirm the remarkable anti-tumor efficacy of AMPT. Notably, the study introduces an orthotopic tumor model for UM, demonstrating the feasibility of precise and effective targeted treatment within the ocular system.


Assuntos
Cobre , Melanoma , Nanocompostos , Terapia Fototérmica , Neoplasias Uveais , Cobre/química , Neoplasias Uveais/terapia , Neoplasias Uveais/patologia , Melanoma/terapia , Melanoma/patologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Humanos , Animais , Radicais Livres/química , Linhagem Celular Tumoral , Porosidade , Sulfetos/química , Camundongos , Imidazóis/química , Microambiente Tumoral/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/química
14.
Chem Res Toxicol ; 37(7): 1121-1128, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953874

RESUMO

Implementation of the Tobacco Control Act in 2009 banned characterizing flavors in cigarettes (except menthol and tobacco), but substitution has occurred by the continued availability of alternative flavored products (i.e., flavored little cigars). Little is known about how flavorants in noncigarette tobacco products impact human health. Thus, we investigated the impact of flavorants on free radical production in the mainstream smoke of little cigars. Gas- and particulate-phase free radical yields in mainstream smoke generated from 12 commercial little cigar brands and research little cigars and cigarettes were measured via electron paramagnetic resonance spectroscopy using the International Organization of Standardization (ISO) smoking protocol. Flavorants were extracted from unsmoked little cigars and analyzed by gas chromatography-mass spectroscopy. Gas- and particulate-phase radical yields from little cigars ranged from 13.5 to 97.6 and 0.453-1.175 nmol/unit, respectively. Comparatively, research cigarettes yielded an average of 4.9 nmol gas-phase radicals/unit and 0.292 nmol particulate-phase radicals/unit. From the products, 66 flavorants were identified, with each brand containing 4-24 individual flavorants. The free radical content was strongly correlated with the number of flavorants present in each cigar (r = 0.74, p = 0.01), indicating that highly flavored little cigars may produce higher levels of toxic free radicals. The presence of the flavorant ethyl methylphenylglycidate (strawberry) was associated with >2-fold higher levels of GP radicals (p = 0.001). Our results show that free radical delivery from little cigars is greater than that from research cigarettes and provide empirical evidence for the harmfulness of flavored tobacco products. Additionally, it demonstrates that flavorants present in combustible tobacco products can influence the levels of free radicals produced. Therefore, future tobacco product standards should consider little cigars.


Assuntos
Aromatizantes , Fumaça , Produtos do Tabaco , Aromatizantes/análise , Aromatizantes/química , Radicais Livres/análise , Radicais Livres/química , Produtos do Tabaco/análise , Fumaça/análise
15.
Chem Res Toxicol ; 37(6): 991-999, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38778043

RESUMO

Electronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA). Furthermore, 2 wt % BA nicotine salts were studied at the following nicotine to acid ratios: 1:2 (pH 4), 1:1 (pH 7), and 2:1 (pH 8), in comparison with freebase nicotine (pH 10). Radical yields were quantified by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra of free radicals in the nicotine salt aerosol matched those generated from the Fenton reaction, which are primarily hydroxyl (OH) radicals and other reactive oxygen species (ROS). Although the aerosol mass formation was not significantly different for most of the tested nicotine salts and acid concentrations, notable ROS yields were observed only from BA, CA, and TA under the study conditions. The e-liquids with SLA, LA, LVA, SA, and MA produced less ROS than the 2 wt % freebase nicotine e-liquid, suggesting that organic acids may play dual roles in the production and scavenging of ROS. For BA nicotine salts, it was found that the ROS yield increased with a higher acid concentration (or a lower nicotine to acid ratio). The observation that BA nicotine salts produce the highest ROS yield in aerosol generated from a fourth-generation vape device, which increases with acid concentration, has important implications for ROS-mediated health outcomes that may be relevant to consumers, manufacturers, and regulatory agencies.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Vaping , Nicotina/análise , Nicotina/química , Radicais Livres/química , Radicais Livres/análise , Vaping/efeitos adversos , Sais/química , Sais/análise , Soluções , Ácido Benzoico/química , Ácido Benzoico/análise , Ácidos Levulínicos/química , Ácidos Levulínicos/análise , Malatos
16.
Nitric Oxide ; 143: 9-15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096947

RESUMO

This study explores the antiarrhythmic and hypotensive potential of pyridyl-substituted nitronyl nitroxides derivatives, uncovering the crucial role of a single carbon moiety of the pyridine cycle alongside radical and charged oxygen centers of the imidazoline fragment. Notably, the introduction of fluorine atoms diminished the antiarrhythmic effect, while the most potent derivatives featured the nitronyl nitroxide pattern positioned at the third site of the pyridine cycle. Gender-dependent responses were observed in lead compounds LCF3 and LMe, with LMe inducing temporary bradycardia and hypotension specifically in female rats, and LCF3 causing significant blood pressure reduction followed by rebound in females compared to milder effects in males. Mechanistic insights point towards ß1 adrenoceptor blockade as an underlying mechanism, supported by experiments on isolated rat atria. This research underscores the interplay between structure, cardiovascular effects and gender-specific responses, offering insights for therapeutic strategies for treating free radical-associated cardiovascular disorders.


Assuntos
Anti-Hipertensivos , Óxidos de Nitrogênio , Masculino , Ratos , Feminino , Animais , Óxidos de Nitrogênio/química , Radicais Livres , Piridinas
17.
Org Biomol Chem ; 22(19): 3966-3978, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690804

RESUMO

Amino acid and peptide radicals are of broad interest due to their roles in biochemical oxidative damage, pathogenesis and protein radical catalysis, among others. Using density functional theory (DFT) calculations at the ωB97X-D/def2-QZVPPD//ωB97X-D/def2-TZVPP level of theory, we systematically investigated the hydrogen bonding between water and fourteen α-amino acids (Ala, Asn, Cys, Gln, Gly, His, Met, Phe, Pro, Sel, Ser, Thr, Trp, and Tyr) in both neutral and radical cation forms. For all amino acids surveyed, stronger hydrogen-bonding interactions with water were observed upon single-electron oxidation, with the greatest increases in hydrogen-bonding strength occurring in Gly, Ala and His. We demonstrate that the side chain has a significant impact on the most favorable hydrogen-bonding modes experienced by amino acid radical cations. Our computations also explored the fragmentation of amino acid radical cations through the loss of a COOH radical facilitated by hydrogen bonding. The most favorable pathways provided stabilization of the resulting cationic fragments through hydrogen bonding, resulting in more favorable thermodynamics for the fragmentation process. These results indicate that non-covalent interactions with the environment have a profound impact on the structure and chemical fate of oxidized amino acids.


Assuntos
Aminoácidos , Cátions , Teoria da Densidade Funcional , Ligação de Hidrogênio , Aminoácidos/química , Cátions/química , Radicais Livres/química , Termodinâmica , Água/química , Modelos Moleculares
18.
J Chem Inf Model ; 64(10): 4168-4179, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38745447

RESUMO

Hydroxyprolines are abundant in nature and widely utilized by many living organisms. Isomerization of trans-4-hydroxy-d-proline (t4D-HP) to generate 2-amino-4-ketopentanoate has been found to need a glycyl radical enzyme HplG, which catalyzes the cleavage of the C-N bond, while dehydration of trans-4-hydroxy-l-proline involves a homologous enzyme of HplG. Herein, molecular dynamics simulations and quantum mechanics/molecular mechanics (QM/MM) calculations are employed to understand the reaction mechanism of HplG. Two possible reaction pathways of HplG have been explored to decipher the origin of its chemoselectivity. The QM/MM calculations reveal that the isomerization proceeds via an initial hydrogen shift from the Cγ site of t4D-HP to a catalytic cysteine radical, followed by cleavage of the Cδ-N bond in t4D-HP to form a radical intermediate that captures a hydrogen atom from the cysteine. Activation of the Cδ-H bond in t4D-HP to bring about dehydration of t4D-HP possesses an extremely high energy barrier, thus rendering the dehydration pathway implausible in HplG. On the basis of the current calculations, conserved residue Glu429 plays a pivotal role in the isomerization pathway: the hydrogen bonding between it and t4D-HP weakens the hydroxyalkyl Cγ-Hγ bond, and it acts as a proton acceptor to trigger the cleavage of the C-N bond in t4D-HP. Our current QM/MM calculations rationalize the origin of the experimentally observed chemoselectivity of HplG and propose an H-bond-assisted bond activation strategy in radical-containing enzymes. These findings have general implications on radical-mediated enzymatic catalysis and expand our understanding of how nature wisely and selectively activates the C-H bond to modulate catalytic selectivity.


Assuntos
Cisteína , Ácido Glutâmico , Simulação de Dinâmica Molecular , Teoria Quântica , Cisteína/química , Cisteína/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Radicais Livres/química , Radicais Livres/metabolismo , Ligação de Hidrogênio
19.
Environ Sci Technol ; 58(18): 8065-8075, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38597221

RESUMO

We report a previously unrecognized but efficient reductive degradation pathway in peroxydisulfate (PDS)-driven soil remediation. With supplements of naturally occurring low-molecular-weight organic acids (LMWOAs) in anaerobic biochar-activated PDS systems, degradation rates of 12 γ-hexachlorocyclohexanes (HCH)-spiked soils boosted from 40% without LMWOAs to a maximum of 99% with 1 mM malic acid. Structural analysis revealed that an increase in α-hydroxyl groups and a diminution in pKa1 values of LMWOAs facilitated the formation of reductive carboxyl anion radicals (COO•-) via electrophilic attack by SO4•-/•OH. Furthermore, degradation kinetics were strongly correlated with soil organic matter (SOM) contents than iron minerals. Combining a newly developed in situ fluorescence detector of reductive radicals with quenching experiments, we showed that for soils with high, medium, and low SOM contents, dominant reactive species switched from singlet oxygen/semiquinone radicals to SO4•-/•OH and then to COO•- (contribution increased from 30.8 to 66.7%), yielding superior HCH degradation. Validation experiments using SOM model compounds highlighted critical roles of redox-active moieties, such as phenolic - OH and quinones, in radical formation and conversion. Our study provides insights into environmental behaviors related to radical activation of persulfate in a broader soil horizon and inspiration for more advanced reduction technologies.


Assuntos
Solo , Solo/química , Radicais Livres/química , Poluentes do Solo/química , Oxirredução , Halogenação
20.
Environ Sci Technol ; 58(28): 12664-12673, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953777

RESUMO

Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (•OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH ∼ 7.0). •OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, •OH generation, and ATZ oxidation by •OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.


Assuntos
Poluentes Químicos da Água , Cinética , Radicais Livres/química , Poluentes Químicos da Água/química , Oxirredução , Ferro/química , Compostos de Ferro/química , Minerais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA