Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(5): 1352-1364.e14, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415841

RESUMO

Hedgehog protein signals mediate tissue patterning and maintenance by binding to and inactivating their common receptor Patched, a 12-transmembrane protein that otherwise would suppress the activity of the 7-transmembrane protein Smoothened. Loss of Patched function, the most common cause of basal cell carcinoma, permits unregulated activation of Smoothened and of the Hedgehog pathway. A cryo-EM structure of the Patched protein reveals striking transmembrane domain similarities to prokaryotic RND transporters. A central hydrophobic conduit with cholesterol-like contents courses through the extracellular domain and resembles that used by other RND proteins to transport substrates, suggesting Patched activity in cholesterol transport. Cholesterol activity in the inner leaflet of the plasma membrane is reduced by PTCH1 expression but rapidly restored by Hedgehog stimulation, suggesting that PTCH1 regulates Smoothened by controlling cholesterol availability.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Microscopia Crioeletrônica , Dimerização , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Receptor Patched-1/química , Receptor Patched-1/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transdução de Sinais
2.
Genes Dev ; 34(17-18): 1161-1176, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820036

RESUMO

Medulloblastoma is a malignant childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH) subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs), and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional corepressor BCOR are recurrent and enriched in SHH medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9-10 ) in GNPs during development. This mutation leads to reduced expression of C-terminally truncated BCOR (BCORΔE9-10). While BcorΔE9-10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9-10 combined with loss of the SHH receptor gene Ptch1 resulted in fully penetrant medulloblastomas. In Ptch1+/- ;BcorΔE9-10 tumors, the growth factor gene Igf2 was aberrantly up-regulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/- GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/- ;BcorΔE9-10 tumors. Overall, our data suggests that BCOR-PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.


Assuntos
Neoplasias Cerebelares/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas Repressoras/genética , Animais , Carcinogênese/genética , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Humanos , Camundongos , Mutação , Receptor Patched-1/genética , Proteínas do Grupo Polycomb/genética , Proteínas Repressoras/metabolismo , Deleção de Sequência
3.
Dev Biol ; 515: 92-101, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39029571

RESUMO

Congenital lung malformations are fatal at birth in their severe forms. Prevention and early intervention of these birth defects require a comprehensive understanding of the molecular mechanisms of lung development. We find that the loss of inturned (Intu), a cilia and planar polarity effector gene, severely disrupts growth and branching morphogenesis of the mouse embryonic lungs. Consistent with our previous results indicating an important role for Intu in ciliogenesis and hedgehog (Hh) signaling, we find greatly reduced number of primary cilia in both the epithelial and mesenchymal tissues of the lungs. We also find significantly reduced expression of Gli1 and Ptch1, direct targets of Hh signaling, suggesting disruption of cilia-dependent Hh signaling in Intu mutant lungs. An agonist of the Hh pathway activator, smoothened, increases Hh target gene expression and tubulogenesis in explanted wild type, but not Intu mutant, lungs, suggesting impaired Hh signaling response underlying lung morphogenetic defects in Intu mutants. Furthermore, removing both Gli2 and Intu completely abolishes branching morphogenesis of the lung, strongly supporting a mechanism by which Intu regulates lung growth and patterning through cilia-dependent Hh signaling. Moreover, a transcriptomics analysis identifies around 200 differentially expressed genes (DEGs) in Intu mutant lungs, including known Hh target genes Gli1, Ptch1/2 and Hhip. Genes involved in muscle differentiation and function are highly enriched among the DEGs, consistent with an important role of Hh signaling in airway smooth muscle differentiation. In addition, we find that the difference in gene expression between the left and right lungs diminishes in Intu mutants, suggesting an important role of Intu in asymmetrical growth and patterning of the mouse lungs.


Assuntos
Cílios , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Pulmão , Transdução de Sinais , Animais , Camundongos , Padronização Corporal/genética , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Pulmão/embriologia , Pulmão/metabolismo , Morfogênese/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética
4.
Mol Cell ; 66(1): 154-162.e10, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28344083

RESUMO

Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Receptor Smoothened/metabolismo , Animais , Células CHO , Cílios/metabolismo , Cricetulus , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Células HEK293 , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Células NIH 3T3 , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Fenótipo , Processamento de Proteína Pós-Traducional , Interferência de RNA , Receptor Smoothened/genética , Transfecção
5.
Biochemistry ; 63(12): 1534-1542, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38804064

RESUMO

Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8) is a crucial epigenetic regulator that plays a multifaceted role in governing a spectrum of vital cellular processes, encompassing proliferation, apoptosis, migration, tumor suppression, and differentiation. It has emerged as a key player in neuronal differentiation by orchestrating the expression of neuronal lineage-committed genes. The present study uncovers the role of ZMYND8 in regulating the Sonic Hedgehog (SHH) signaling axis, which is crucial for neuronal differentiation. Genetic deletion of ZMYND8 leads to a significant reduction in SHH pathway genes, GLI1, and PTCH1 expression during all-trans-retinoic acid (ATRA)-induced differentiation. ZMYND8 and RNA pol II S5P are found to co-occupy the GLI1 and PTCH1 gene promoters, positively impacting their gene transcription upon ATRA treatment. Interestingly, ZMYND8 is found to counteract the inhibitory effects of Cyclopamine that block the upstream SHH pathway protein SMO, resulting in enhanced neurite formation in neuroblastoma cells following their treatment with ATRA. These results indicate that ZMYND8 is an epigenetic regulator of the SHH signaling pathway and has tremendous therapeutic potential in ATRA-mediated differentiation of neuroblastoma.


Assuntos
Diferenciação Celular , Proteínas Hedgehog , Neuroblastoma , Transdução de Sinais , Proteínas Supressoras de Tumor , Humanos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tretinoína/farmacologia
6.
Carcinogenesis ; 45(5): 351-357, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38310539

RESUMO

Immune checkpoint inhibitors (ICIs) have become prominent therapies for gastrointestinal cancer (GC). However, it is urgent to screen patients who can benefit from ICIs. Protein patched homolog 1 (PTCH1) is a frequently altered gene in GC. We attempt to explore the association between PTCH1 mutation and immunotherapy efficacy. The Memorial Sloan Kettering Cancer Center (MSKCC) cohort (n = 236) with GC (esophageal, gastric and colorectal cancers) patients receiving ICIs was used for discovery and the Peking University Cancer Hospital (PUCH) GC cohort (n = 92) was used for validation. Overall survival (OS) and tumor mutational burden (TMB) of the PTCH1 mutant-type (PTCH1-MUT) and PTCH1 wild-type (PTCH1-WT) groups were compared. Furthermore, GC data were collected from The Cancer Genome Atlas to assess the potential mechanisms. In the MSKCC cohort, PTCH1-MUT group showed significantly better OS (P = 0.017) and higher TMB. Multivariate analysis showed that PTCH1 mutation was associated with better OS. In the PUCH cohort, PTCH1-MUT group showed significantly longer OS (P = 0.036) and progression-free survival, and higher durable clinical benefit and TMB. Immune cell infiltration analysis revealed that PTCH1-MUT group had significantly higher distributions of CD8 T cells, CD4 T cells, NK cells, mast cells and M1 cells. The PTCH1-MUT group showed significantly higher expression of most immune-related genes. Gene set enrichment analysis showed that the PTCH1-MUT group had enriched INF-γ response, INF-α response, glycolysis and reactive oxygen species pathway gene sets. PTCH1 mutation may represent a potential biomarker for predicting ICIs response in GC. Nevertheless, prospective cohort studies should be performed to further validate our results.


Assuntos
Biomarcadores Tumorais , Neoplasias Gastrointestinais , Inibidores de Checkpoint Imunológico , Mutação , Receptor Patched-1 , Humanos , Receptor Patched-1/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Biomarcadores Tumorais/genética , Feminino , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/patologia , Masculino , Pessoa de Meia-Idade , Idoso , Prognóstico , Adulto
7.
Oncologist ; 29(5): 377-383, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38438322

RESUMO

Adult medulloblastoma (MB) is a rare disease affecting 0.6 persons per million adults over 19 years of age. The SHH-activated/TP53-wild type is the most common subtype, accounting for 60% of adult MBs, being characterized by mutations in PTCH1, SMO, or the TERT promoter. Several small studies demonstrate objective but short-lived responses to SMO inhibitors such as vismodegib or sonidegib. Like other oncogene-addicted solid tumors, detection of the corresponding drivers through liquid biopsy could aid in the molecular diagnosis and monitoring of the disease through less invasive procedures. However, most studies have only evaluated cerebrospinal fluid as the ctDNA reservoir, and very limited evidence exists on the role of liquid biopsy in plasma in patients with primary central nervous system tumors, including MB. We present the case of a 26-year-old patient with a recurrent MB, in which next-generation sequencing (FoundationOne CDx) revealed a mutation in PTCH1, allowing the patient to be treated with vismodegib in second line, resulting in a durable benefit lasting for 1 year. Using an in-house digital PCR probe, the PTCH1 mutation could be tracked in ctDNA during treatment with first-line chemotherapy and while on treatment with vismodegib, demonstrating a precise correlation with the radiological and clinical behavior of the disease.


Assuntos
Anilidas , DNA Tumoral Circulante , Meduloblastoma , Mutação , Receptor Patched-1 , Piridinas , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/sangue , Meduloblastoma/patologia , Piridinas/uso terapêutico , Receptor Patched-1/genética , Adulto , Anilidas/uso terapêutico , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/sangue , Masculino , Feminino
8.
Microb Pathog ; 192: 106723, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823465

RESUMO

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Assuntos
Enterotoxinas , Proteínas Hedgehog , Transdução de Sinais , Linfócitos T , Timo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Feminino , Gravidez , Ratos , Timo/metabolismo , Timo/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Efeitos Tardios da Exposição Pré-Natal/imunologia , Diferenciação Celular/efeitos dos fármacos , Ratos Sprague-Dawley , Masculino
9.
Am J Med Genet A ; 194(10): e63788, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38864234

RESUMO

Gorlin syndrome can be caused by pathogenic/likely pathogenic (P/LP) variants in the tumor suppressor gene PTCH1 (9q22.1-q31), which encodes the receptor for the sonic hedgehog (SHH) ligand. We present a 12-month-old boy clinically diagnosed with Gorlin syndrome who was found to have significantly delayed development, palmar pitting, palmar and plantar keratosis, short hands, frontal bossing, coarse face, hypertelorism, a bifid rib, misaligned and missing teeth, and SHH-activated medulloblastoma. Genetic testing, including a pediatric cancer panel and genome sequencing with peripheral blood, failed to identify any P/LP variants in PTCH1. Paired tumor/normal exome sequencing was performed, which identified a germline NM_000264.5 (PTCH1): c.361_362ins? alteration through manual review of sequencing reads. Clinical RNA sequencing further demonstrated an Alu insertion at this region (PTCH1: c.361_362insAlu), providing molecular confirmation of Gorlin syndrome. This finding exemplifies a unique mechanism for PTCH1 disruption in the germline and highlights the importance of comprehensive analysis, including manual review of DNA sequencing reads and the utility of RNA analysis to detect variant types which may not be identified by routine genetic screening techniques.


Assuntos
Síndrome do Nevo Basocelular , Mutação em Linhagem Germinativa , Receptor Patched-1 , Humanos , Síndrome do Nevo Basocelular/genética , Síndrome do Nevo Basocelular/patologia , Síndrome do Nevo Basocelular/diagnóstico , Receptor Patched-1/genética , Masculino , Mutação em Linhagem Germinativa/genética , Lactente , Exoma/genética , Sequenciamento do Exoma , Análise de Sequência de RNA , Fenótipo , Predisposição Genética para Doença
10.
J Neurooncol ; 169(2): 269-279, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38884661

RESUMO

BACKGROUND: Glioma stem cells (GSCs), which are known for their therapy resistance, play a substantial role in treatment inefficacy for glioblastoma multiforme (GBM). TRIM37, a member of the tripartite motif (TRIM) protein family initially linked to a rare growth disorder, has been recognized for its oncogenic role. However, the mechanism by which TRIM37 regulates tumor growth in glioma and GSCs is unclear. METHODS: For the in vitro experiments, gene expression was measured by western blotting, RT-qPCR, and immunofluorescence. Cell viability was detected by CCK-8, and cell apoptosis was detected by flow cytometry. The interaction between Enhancer of Zeste Homolog 2 (EZH2) and TRIM37 was verified by co-immunoprecipitation (Co-IP). The interaction between EZH2 and the PTCH1 promoter was verified using dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP). For the in vivo experiments, an orthotopically implanted glioma mouse model was used to validate tumor growth. RESULTS: The expression of TRIM37 is higher in GSCs compared with matched non-GSCs. TRIM37 knockdown promotes apoptosis, decreased stemness in GSCs, and reduces tumor growth in GSCs xenografts of nude mice. TRIM37 and EZH2 co-localize in the nucleus and interact with each other. TRIM37 knockdown or EZH2 inhibition downregulates the protein expressions associated with the Sonic Hedgehog (SHH) pathway. EZH2 epigenetically downregulates PTCH1 to activate SHH pathway in GSCs. CONCLUSIONS: TRIM37 maintains the cell growth and stemness in GSCs through the interaction with EZH2. EZH2 activates SHH stem cell signaling pathway by downregulating the expression of SHH pathway suppressor PTCH1. Our findings suggest that TRIM37 may be a potential therapeutic target for GBM.


Assuntos
Neoplasias Encefálicas , Proteína Potenciadora do Homólogo 2 de Zeste , Glioma , Proteínas Hedgehog , Células-Tronco Neoplásicas , Receptor Patched-1 , Transdução de Sinais , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Humanos , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Glioma/metabolismo , Glioma/genética , Glioma/patologia , Camundongos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Camundongos Nus , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Biol Rep ; 51(1): 740, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874802

RESUMO

BACKGROUND: Sonic Hedgehog (SHH) is a fundamental signaling pathway that controls tissue reconstruction, stem cell biology, and differentiation and has a role in gut tissue homeostasis and development. Dysregulation of SHH leads to the development of HCC. METHODS, AND RESULTS: The present study was conducted to compare the effects of mesenchymal stem cells (MSCs) and curcumin on SHH molecular targets in an experimental model of HCC in rats. One hundred rats were divided equally into the following groups: control group, HCC group, HCC group received MSCs, HCC group received curcumin, and HCC group received MSCs and curcumin. Histopathological examinations were performed, and gene expression of SHH signaling target genes (SHH, PTCH1, SMOH, and GLI1) was assessed by real-time PCR in rat liver tissue. Results showed that SHH target genes were significantly upregulated in HCC-untreated rat groups and in MSC-treated groups, with no significant difference between them. Administration of curcumin with or without combined administration of MSCs led to a significant down-regulation of SHH target genes, with no significant differences between both groups. As regards the histopathological examination of liver tissues, both curcumin and MSCs, either through separate use or their combined use, led to a significant restoration of normal liver pathology. CONCLUSIONS: In conclusion, SHH signaling is upregulated in the HCC experimental model. MSCs do not inhibit the upregulated SHH target genes in HCC. Curcumin use with or without MSCs administration led to a significant down-regulation of SHH signaling in HCC and a significant restoration of normal liver pathology.


Assuntos
Carcinoma Hepatocelular , Curcumina , Proteínas Hedgehog , Neoplasias Hepáticas , Células-Tronco Mesenquimais , Transdução de Sinais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Animais , Curcumina/farmacologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transdução de Sinais/efeitos dos fármacos , Ratos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Modelos Animais de Doenças , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Fígado/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526656

RESUMO

Hedgehog signaling is fundamental in animal embryogenesis, and its dysregulation causes cancer and birth defects. The pathway is triggered when the Hedgehog ligand inhibits the Patched1 membrane receptor, relieving repression that Patched1 exerts on the GPCR-like protein Smoothened. While it is clear how loss-of-function Patched1 mutations cause hyperactive Hedgehog signaling and cancer, how other Patched1 mutations inhibit signaling remains unknown. Here, we develop quantitative single-cell functional assays for Patched1, which, together with mathematical modeling, indicate that Patched1 inhibits Smoothened enzymatically, operating in an ultrasensitive regime. Based on this analysis, we propose that Patched1 functions in cilia, catalyzing Smoothened deactivation by removing cholesterol bound to its extracellular, cysteine-rich domain. Patched1 mutants associated with holoprosencephaly dampen signaling by three mechanisms: reduced affinity for Hedgehog ligand, elevated catalytic activity, or elevated affinity for the Smoothened substrate. Our results clarify the enigmatic mechanism of Patched1 and explain how Patched1 mutations lead to birth defects.


Assuntos
Proteínas Hedgehog/metabolismo , Mutação/genética , Receptor Patched-1/genética , Transdução de Sinais , Regulação Alostérica , Animais , Biocatálise , Colesterol/metabolismo , Cílios/metabolismo , Holoprosencefalia/genética , Ligantes , Camundongos , Modelos Biológicos , Receptor Patched-1/metabolismo , Fenótipo , Domínios Proteicos , Receptor Smoothened/química , Receptor Smoothened/metabolismo
13.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731849

RESUMO

Tumors of the head and neck, more specifically the squamous cell carcinoma, often show upregulation of the Hedgehog signaling pathway. However, almost nothing is known about its role in the sinonasal adenocarcinoma, either in intestinal or non-intestinal subtypes. In this work, we have analyzed immunohistochemical staining of six Hedgehog pathway proteins, sonic Hedgehog (SHH), Indian Hedgehog (IHH), Patched1 (PTCH1), Gli family zinc finger 1 (GLI1), Gli family zinc finger 2 (GLI2), and Gli family zinc finger 3 (GLI3), on 21 samples of sinonasal adenocarcinoma and compared them with six colon adenocarcinoma and three salivary gland tumors, as well as with matching healthy tissue, where available. We have detected GLI2 and PTCH1 in the majority of samples and also GLI1 in a subset of samples, while GLI3 and the ligands SHH and IHH were generally not detected. PTCH1 pattern of staining shows an interesting pattern, where healthy samples are mostly positive in the stromal compartment, while the signal shifts to the tumor compartment in tumors. This, taken together with a stronger signal of GLI2 in tumors compared to non-tumor tissues, suggests that the Hedgehog pathway is indeed activated in sinonasal adenocarcinoma. As Hedgehog pathway inhibitors are being tested in combination with other therapies for head and neck squamous cell carcinoma, this could provide a therapeutic option for patients with sinonasal adenocarcinoma as well.


Assuntos
Adenocarcinoma , Proteínas Hedgehog , Imuno-Histoquímica , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Masculino , Feminino , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Pessoa de Meia-Idade , Projetos Piloto , Idoso , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Neoplasias dos Seios Paranasais/metabolismo , Neoplasias dos Seios Paranasais/patologia , Adulto , Regulação Neoplásica da Expressão Gênica , Proteínas do Tecido Nervoso , Proteínas Nucleares
14.
Molecules ; 29(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39274874

RESUMO

Activation of the Hedgehog (Hh) signaling pathway is often associated with the progression of various types of cancer. The purpose of study was to search for inhibitors of the Hh signaling pathway among eight compounds belonging to the group of isoxazolyl steroids. The evaluation of the effectiveness of the compounds was based on the analysis of their cytotoxicity, effect on the cell cycle, on the expression of key Hh-signaling-pathway genes (Ptch1, Smo, and Gli1) and putative target genes MMP-2 and MMP-9. Four compounds with the most pronounced cytotoxic effect were identified: compounds 1, 2 (HeLa cells) and 3, 4 (A549 cells). Compounds 1 and 2 significantly reduced the expression of the Ptch1, Smo, Gli1 genes, but had the opposite effect on MMP-2 gene expression: Compound 1 increased it, and compound 2 decreased it. Compounds 3 and 4 did not have a noticeable inhibitory effect on the expression of the Shh pathway receptors, but significantly inhibited MMP-2 and MMP-9 expression. Thus, it was shown that inhibition of the Shh signaling pathway by isoxazolyl steroids can have the opposite effect on MMPs gene expression, which is what should be taken into account in further studies of these compounds as therapeutic agents.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog , Transdução de Sinais , Esteroides , Humanos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Transdução de Sinais/efeitos dos fármacos , Esteroides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células A549 , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Linhagem Celular Tumoral , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Antineoplásicos/farmacologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Receptor Smoothened/antagonistas & inibidores , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Ciclo Celular/efeitos dos fármacos
15.
Am J Physiol Cell Physiol ; 325(3): C770-C779, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37575058

RESUMO

Patched homolog 1 (PTCH1) has been proven to facilitate cell proliferation and self-renewal in esophageal cancer (EC). The present study intended to exploit the influence of PTCH1 on EC cells and the potential mechanisms. PTCH1 and methyltransferase-like 3 (METTL3) expression were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot in EC cell lines. Following the loss- and gain-of-function assays, cell proliferation was examined by cell counting kit (CCK)-8 and clone formation assays, invasion and migration by Transwell and scratch assays, and the sphere-forming ability of stem cells by cell sphere-forming assay. The expression of stemness genes NANOG homeobox protein (NANOG), octamer-binding transcription factor 4 (Oct4), and sex-determining region Y-box 2 (SOX2) was detected by Western blot. Methylated RNA immunoprecipitation (Me-RIP) assay was performed to test N6-methyladenosine (m6A) modification levels of PTCH1 mRNA, RIP and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) assays to assess the binding of METTL3 to PTCH1, and actinomycin D treatment to examine PTCH1 mRNA stability. A xenograft tumor model in nude mice was established for further in vivo verification. PTCH1 and METTL3 expression was high in EC cells. Knockdown of METTL3 reduced m6A level and stability of PTCH1 mRNA. Knockdown of PTCH1 or METTL3 declined invasion, proliferation, migration, and NANOG, Oct4, and SOX2 levels in EC cells, and reduced sphere-forming abilities of EC stem cells. Overexpression of PTCH1 abolished the suppressive effect of METTL3 knockdown on EC cells in vitro. METTL3 knockdown repressed tumor growth in nude mice, which was negated by further overexpressing PTCH1. METTL3 facilitated growth and stemness of EC cells via upregulation of PTCH1 expression by enhancing PTCH1 m6A modification.NEW & NOTEWORTHY PTCH1 has been proved to facilitate cell proliferation and self-renewal in esophageal cancer. We studied the upstream regulation mechanism of PTCH1 by METTL3 through m6A modification. Our results provide a new target and theoretical basis for the treatment of esophageal cancer.


Assuntos
Neoplasias Esofágicas , Metiltransferases , Camundongos , Animais , Humanos , Metilação , Metiltransferases/genética , Camundongos Nus , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Células-Tronco/metabolismo , Neoplasias Esofágicas/genética , RNA Mensageiro/genética
16.
Development ; 147(23)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33060130

RESUMO

The Hedgehog (HH) pathway controls multiple aspects of craniofacial development. HH ligands signal through the canonical receptor PTCH1, and three co-receptors: GAS1, CDON and BOC. Together, these co-receptors are required during embryogenesis to mediate proper HH signaling. Here, we investigated the individual and combined contributions of GAS1, CDON and BOC to HH-dependent mammalian craniofacial development. Notably, individual deletion of either Gas1 or Cdon results in variable holoprosencephaly phenotypes in mice, even on a congenic background. In contrast, we find that Boc deletion results in facial widening that correlates with increased HH target gene expression. In addition, Boc deletion in a Gas1 null background partially ameliorates the craniofacial defects observed in Gas1 single mutants; a phenotype that persists over developmental time, resulting in significant improvements to a subset of craniofacial structures. This contrasts with HH-dependent phenotypes in other tissues that significantly worsen following combined deletion of Gas1 and Boc Together, these data indicate that BOC acts as a multi-functional regulator of HH signaling during craniofacial development, alternately promoting or restraining HH pathway activity in a tissue-specific fashion.


Assuntos
Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular/genética , Desenvolvimento Embrionário/genética , Imunoglobulina G/genética , Receptores de Superfície Celular/genética , Animais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Proteínas Ligadas por GPI/genética , Deleção de Genes , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Holoprosencefalia/patologia , Humanos , Camundongos , Receptor Patched-1/genética , Transdução de Sinais/genética
17.
PLoS Biol ; 18(2): e3000620, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32053600

RESUMO

Primary cilia are lost during cancer development, but the mechanism regulating cilia degeneration is not determined. While transcription factor nuclear factor-erythroid 2-like 2 (NRF2) protects cells from oxidative, proteotoxic, and metabolic stress in normal cells, hyperactivation of NRF2 is oncogenic, although the detailed molecular mechanisms by which uncontrolled NRF2 activation promotes cancer progression remain unclear. Here, we report that NRF2 suppresses hedgehog (Hh) signaling through Patched 1 (PTCH1) and primary ciliogenesis via p62/sequestosome 1 (SQSTM1). PTCH1, a negative regulator of Hh signaling, is an NRF2 target gene, and as such, hyperactivation of NRF2 impairs Hh signaling. NRF2 also suppresses primary cilia formation through p62-dependent inclusion body formation and blockage of Bardet-Biedl syndrome 4 (BBS4) entrance into cilia. Simultaneous ablation of PTCH1 and p62 completely abolishes NRF2-mediated inhibition of both primary ciliogenesis and Hh signaling. Our findings reveal a previously unidentified role of NRF2 in controlling a cellular organelle, the primary cilium, and its associated Hh signaling pathway and also uncover a mechanism by which NRF2 hyperactivation promotes tumor progression via primary cilia degeneration and aberrant Hh signaling. A better understanding of the crosstalk between NRF2 and primary cilia/Hh signaling could not only open new avenues for cancer therapeutic discovery but could also have significant implications regarding pathologies other than cancer, including developmental disorders, in which improper primary ciliogenesis and Hh signaling play a major role.


Assuntos
Cílios/fisiologia , Proteínas Hedgehog/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Elementos de Resposta Antioxidante , Células Cultivadas , Cílios/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Corpos de Inclusão/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
18.
J Med Genet ; 59(9): 916-919, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34916233

RESUMO

Gorlin-Goltz syndrome (GGS) or nevoid basal cell carcinoma syndrome is a rare tumour-overgrowth syndrome associated with multiple developmental anomalies and a wide variety of tumours. Here, we describe a case of a man aged 23 years with GGS with bilateral giant tumours adjacent to both adrenals that raised the suspicion of malignancy on imaging. Histological analysis of both surgically resected tumours revealed perivascular epitheloid cell tumours (PEComas) that were independent of the adrenals. Exome sequencing of the patient's blood sample revealed a novel germline heterozygous frameshift mutation in the PTCH1 gene. As a second hit, a somatic five nucleotide long deletion in the PTCH1 gene was demonstrated in the tumour DNA of both PEComas. To the best of our knowledge, this is the first report on PEComa in GGS, and this finding also raises the potential relevance of PTCH1 mutations and altered sonic hedgehog signalling in PEComa pathogenesis. The presence of the same somatic mutation in the bilateral tumours might indicate the possibility of a postzygotic somatic mutation that along with the germline mutation of the same gene could represent an intriguing genetic phenomenon (type 2 segmental mosaicism).


Assuntos
Síndrome do Nevo Basocelular , Receptor Patched-1 , Neoplasias de Células Epitelioides Perivasculares , Síndrome do Nevo Basocelular/genética , Síndrome do Nevo Basocelular/patologia , Proteínas Hedgehog/genética , Humanos , Masculino , Mosaicismo , Mutação , Receptor Patched-1/genética , Adulto Jovem
19.
Proc Natl Acad Sci U S A ; 117(33): 20127-20138, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747535

RESUMO

Medulloblastoma is the most common malignant brain tumor in children. Here we describe a medulloblastoma model using Induced pluripotent stem (iPS) cell-derived human neuroepithelial stem (NES) cells generated from a Gorlin syndrome patient carrying a germline mutation in the sonic hedgehog (SHH) receptor PTCH1. We found that Gorlin NES cells formed tumors in mouse cerebellum mimicking human medulloblastoma. Retransplantation of tumor-isolated NES (tNES) cells resulted in accelerated tumor formation, cells with reduced growth factor dependency, enhanced neurosphere formation in vitro, and increased sensitivity to Vismodegib. Using our model, we identified LGALS1 to be a GLI target gene that is up-regulated in both Gorlin tNES cells and SHH-subgroup of medulloblastoma patients. Taken together, we demonstrate that NES cells derived from Gorlin patients can be used as a resource to model medulloblastoma initiation and progression and to identify putative targets.


Assuntos
Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Células-Tronco Neurais/fisiologia , Anilidas/farmacologia , Animais , Síndrome do Nevo Basocelular/genética , Síndrome do Nevo Basocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Galectina 1/genética , Galectina 1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas Hedgehog/genética , Humanos , Camundongos , Neoplasias Experimentais , Receptor Patched-1/genética , Piridinas/farmacologia
20.
Genomics ; 114(6): 110507, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36265746

RESUMO

The Hedgehog (HH) signaling plays key roles in embryogenesis and organogenesis, and its dysfunction causes a variety of human birth defects. Orofacial cleft (OFC) is one of the most common congenital craniofacial defects, and its etiology is closely related to mutations in multiple components in the HH pathway, including the PTCH1 receptor. A quantity of PTCH1 variants have been associated with OFC, but the pathogenicity and underlying mechanism of these variants have not been functionally validated. In our previous studies, we identified two PTCH1 variants (A392V and R945X) in two families with hereditary OFC. Here we explore the functional consequences of these two variants. In zebrafish embryos, microinjection of wild type PTCH1 mRNA causes curved body axis and craniofacial anomalies. In contrast, microinjection of A392V and R945X PTCH1 mRNAs results in much milder phenotypes, suggesting these two variants are loss-of-function mutations. In mammalian cells, A392V and R945X mutations reverse the inhibitory effect of PTCH1 on HH signaling. Biochemically, the two mutants PTCH1 show lower expression levels and shortened half-life, indicting these mutations decrease the stability of PTCH1. A392V and R945X mutations also appear to cause PTCH1 to localize away from vesicles. Taken together, our findings indicate that A392V and R945X variants are loss-of-function mutations that disrupt the function of PTCH1 and thus cause dysregulation of HH signaling, leading to the pathogenesis of OFC.


Assuntos
Fenda Labial , Fissura Palatina , Receptor Patched-1 , Proteínas de Peixe-Zebra , Animais , Humanos , Fenda Labial/genética , Fissura Palatina/genética , Proteínas Hedgehog/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Receptor Patched-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA