Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.493
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34081922

RESUMO

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Assuntos
Apresentação Cruzada/imunologia , Gelsolina/metabolismo , Imunidade , Lectinas Tipo C/metabolismo , Neoplasias/imunologia , Receptores Imunológicos/metabolismo , Receptores Mitogênicos/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apresentação Cruzada/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Gelsolina/química , Gelsolina/deficiência , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutação/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Análise de Sobrevida
2.
Nat Immunol ; 22(2): 140-153, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33349708

RESUMO

Type 1 conventional dendritic (cDC1) cells are necessary for cross-presentation of many viral and tumor antigens to CD8+ T cells. cDC1 cells can be identified in mice and humans by high expression of DNGR-1 (also known as CLEC9A), a receptor that binds dead-cell debris and facilitates XP of corpse-associated antigens. Here, we show that DNGR-1 is a dedicated XP receptor that signals upon ligand engagement to promote phagosomal rupture. This allows escape of phagosomal contents into the cytosol, where they access the endogenous major histocompatibility complex class I antigen processing pathway. The activity of DNGR-1 maps to its signaling domain, which activates SYK and NADPH oxidase to cause phagosomal damage even when spliced into a heterologous receptor and expressed in heterologous cells. Our data reveal the existence of innate immune receptors that couple ligand binding to endocytic vesicle damage to permit MHC class I antigen presentation of exogenous antigens and to regulate adaptive immunity.


Assuntos
Apresentação de Antígeno , Apresentação Cruzada , Células Dendríticas/metabolismo , Lectinas Tipo C/metabolismo , Fagossomos/metabolismo , Receptores Imunológicos/metabolismo , Receptores Mitogênicos/metabolismo , Linfócitos T/metabolismo , Animais , Morte Celular , Técnicas de Cocultura , Células Dendríticas/imunologia , Células HEK293 , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Lectinas Tipo C/genética , Ligantes , Camundongos , NADPH Oxidases/metabolismo , Fagossomos/genética , Fagossomos/imunologia , Fosforilação , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/genética , Receptores Mitogênicos/genética , Transdução de Sinais , Quinase Syk/metabolismo , Linfócitos T/imunologia
3.
Immunity ; 54(3): 484-498.e8, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33581044

RESUMO

Pathologic roles of innate immunity in neurologic disorders are well described, but their beneficial aspects are less understood. Dectin-1, a C-type lectin receptor (CLR), is largely known to induce inflammation. Here, we report that Dectin-1 limited experimental autoimmune encephalomyelitis (EAE), while its downstream signaling molecule, Card9, promoted the disease. Myeloid cells mediated the pro-resolution function of Dectin-1 in EAE with enhanced gene expression of the neuroprotective molecule, Oncostatin M (Osm), through a Card9-independent pathway, mediated by the transcription factor NFAT. Furthermore, we find that the Osm receptor (OsmR) functioned specifically in astrocytes to reduce EAE severity. Notably, Dectin-1 did not respond to heat-killed Mycobacteria, an adjuvant to induce EAE. Instead, endogenous Dectin-1 ligands, including galectin-9, in the central nervous system (CNS) were involved to limit EAE. Our study reveals a mechanism of beneficial myeloid cell-astrocyte crosstalk regulated by a Dectin-1 pathway and identifies potential therapeutic targets for autoimmune neuroinflammation.


Assuntos
Astrócitos/imunologia , Encéfalo/patologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Lectinas Tipo C/metabolismo , Esclerose Múltipla/imunologia , Células Mieloides/imunologia , Inflamação Neurogênica/imunologia , Receptores Mitogênicos/metabolismo , Animais , Comunicação Celular , Células Cultivadas , Modelos Animais de Doenças , Galectinas/metabolismo , Regulação da Expressão Gênica , Lectinas Tipo C/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glicoproteína Mielina-Oligodendrócito/imunologia , Oncostatina M/genética , Oncostatina M/metabolismo , Subunidade beta de Receptor de Oncostatina M/metabolismo , Fragmentos de Peptídeos/imunologia , Receptores Mitogênicos/genética , Transdução de Sinais
4.
Nature ; 633(8029): 442-450, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39143217

RESUMO

Regulation of neutrophil activation is critical for disease control. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA and neutrophil-derived proteins, are formed following pro-inflammatory signals; however, if this process is uncontrolled, NETs contribute to disease pathogenesis, exacerbating inflammation and host tissue damage1,2. Here we show that myeloid inhibitory C-type lectin-like (MICL), an inhibitory C-type lectin receptor, directly recognizes DNA in NETs; this interaction is vital to regulate neutrophil activation. Loss or inhibition of MICL functionality leads to uncontrolled NET formation through the ROS-PAD4 pathway and the development of an auto-inflammatory feedback loop. We show that in the context of rheumatoid arthritis, such dysregulation leads to exacerbated pathology in both mouse models and in human patients, where autoantibodies to MICL inhibit key functions of this receptor. Of note, we also detect similarly inhibitory anti-MICL autoantibodies in patients with other diseases linked to aberrant NET formation, including lupus and severe COVID-19. By contrast, dysregulation of NET release is protective during systemic infection with the fungal pathogen Aspergillus fumigatus. Together, we show that the recognition of NETs by MICL represents a fundamental autoregulatory pathway that controls neutrophil activity and NET formation.


Assuntos
Artrite Reumatoide , Armadilhas Extracelulares , Ativação de Neutrófilo , Neutrófilos , Animais , Feminino , Humanos , Masculino , Camundongos , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Aspergillus fumigatus/imunologia , Aspergillus fumigatus/patogenicidade , Autoanticorpos/imunologia , Autoanticorpos/farmacologia , COVID-19/imunologia , COVID-19/virologia , Modelos Animais de Doenças , DNA/metabolismo , DNA/imunologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/imunologia , Retroalimentação Fisiológica , Inflamação/imunologia , Inflamação/metabolismo , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/deficiência , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Mitogênicos/antagonistas & inibidores , Receptores Mitogênicos/deficiência , Receptores Mitogênicos/imunologia , Receptores Mitogênicos/metabolismo
5.
Cell ; 156(4): 744-58, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24529377

RESUMO

The clinical benefit conferred by vascular endothelial growth factors (VEGF)-targeted therapies is variable, and tumors from treated patients eventually reinitiate growth. Here, we identify a glycosylation-dependent pathway that compensates for the absence of cognate ligand and preserves angiogenesis in response to VEGF blockade. Remodeling of the endothelial cell (EC) surface glycome selectively regulated binding of galectin-1 (Gal1), which upon recognition of complex N-glycans on VEGFR2, activated VEGF-like signaling. Vessels within anti-VEGF-sensitive tumors exhibited high levels of α2-6-linked sialic acid, which prevented Gal1 binding. In contrast, anti-VEGF refractory tumors secreted increased Gal1 and their associated vasculature displayed glycosylation patterns that facilitated Gal1-EC interactions. Interruption of ß1-6GlcNAc branching in ECs or silencing of tumor-derived Gal1 converted refractory into anti-VEGF-sensitive tumors, whereas elimination of α2-6-linked sialic acid conferred resistance to anti-VEGF. Disruption of the Gal1-N-glycan axis promoted vascular remodeling, immune cell influx and tumor growth inhibition. Thus, targeting glycosylation-dependent lectin-receptor interactions may increase the efficacy of anti-VEGF treatment.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Células Endoteliais/metabolismo , Galectina 1/genética , Galectina 1/metabolismo , Glicosilação , Humanos , Hipóxia , Camundongos , Receptores Mitogênicos/metabolismo
6.
Immunol Rev ; 314(1): 50-68, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36424898

RESUMO

Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.


Assuntos
Neutrófilos , Transdução de Sinais , Humanos , Receptores Mitogênicos/metabolismo , Lectinas Tipo C/metabolismo
7.
J Biol Chem ; 300(3): 105765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367667

RESUMO

CLEC12A, a member of the C-type lectin receptor family involved in immune homeostasis, recognizes MSU crystals released from dying cells. However, the molecular mechanism underlying the CLEC12A-mediated recognition of MSU crystals remains unclear. Herein, we reported the crystal structure of the human CLEC12A-C-type lectin-like domain (CTLD) and identified a unique "basic patch" site on CLEC12A-CTLD that is necessary for the binding of MSU crystals. Meanwhile, we determined the interaction strength between CLEC12A-CTLD and MSU crystals using single-molecule force spectroscopy. Furthermore, we found that CLEC12A clusters at the cell membrane and seems to serve as an internalizing receptor of MSU crystals. Altogether, these findings provide mechanistic insights for understanding the molecular mechanisms underlying the interplay between CLEC12A and MSU crystals.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Ácido Úrico , Humanos , Gota/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/imunologia , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Ácido Úrico/química , Ácido Úrico/imunologia , Domínios Proteicos , Cristalografia por Raios X , Imagem Individual de Molécula , Linhagem Celular
8.
EMBO J ; 40(19): e108375, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375000

RESUMO

New SARS-CoV-2 variants are continuously emerging with critical implications for therapies or vaccinations. The 22 N-glycan sites of Spike remain highly conserved among SARS-CoV-2 variants, opening an avenue for robust therapeutic intervention. Here we used a comprehensive library of mammalian carbohydrate-binding proteins (lectins) to probe critical sugar residues on the full-length trimeric Spike and the receptor binding domain (RBD) of SARS-CoV-2. Two lectins, Clec4g and CD209c, were identified to strongly bind to Spike. Clec4g and CD209c binding to Spike was dissected and visualized in real time and at single-molecule resolution using atomic force microscopy. 3D modelling showed that both lectins can bind to a glycan within the RBD-ACE2 interface and thus interferes with Spike binding to cell surfaces. Importantly, Clec4g and CD209c significantly reduced SARS-CoV-2 infections. These data report the first extensive map and 3D structural modelling of lectin-Spike interactions and uncovers candidate receptors involved in Spike binding and SARS-CoV-2 infections. The capacity of CLEC4G and mCD209c lectins to block SARS-CoV-2 viral entry holds promise for pan-variant therapeutic interventions.


Assuntos
Receptores Mitogênicos/metabolismo , SARS-CoV-2/metabolismo , Animais , Sítios de Ligação/fisiologia , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Glicosilação , Células HEK293 , Humanos , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica/fisiologia , Células Vero , Internalização do Vírus
9.
Int Immunol ; 36(6): 279-290, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386511

RESUMO

C-type lectin receptors (CLRs) are a family of pattern recognition receptors, which detect a broad spectrum of ligands via small carbohydrate-recognition domains (CRDs). CLEC12A is an inhibitory CLR that recognizes crystalline structures such as monosodium urate crystals. CLEC12A also recognizes mycolic acid, a major component of mycobacterial cell walls, and suppresses host immune responses. Although CLEC12A could be a therapeutic target for mycobacterial infection, structural information on CLEC12A was not available. We report here the crystal structures of human CLEC12A (hCLEC12A) in ligand-free form and in complex with 50C1, its inhibitory antibody. 50C1 recognizes human-specific residues on the top face of hCLEC12A CRD. A comprehensive alanine scan demonstrated that the ligand-binding sites of mycolic acid and monosodium urate crystals may overlap with each other, suggesting that CLEC12A utilizes a common interface to recognize different types of ligands. Our results provide atomic insights into the blocking and ligand-recognition mechanisms of CLEC12A and leads to the design of CLR-specific inhibitors.


Assuntos
Lectinas Tipo C , Receptores Mitogênicos , Lectinas Tipo C/imunologia , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Humanos , Receptores Mitogênicos/química , Receptores Mitogênicos/imunologia , Receptores Mitogênicos/metabolismo , Cristalografia por Raios X , Ligantes , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Ácido Úrico/química , Ácido Úrico/metabolismo , Ácido Úrico/imunologia
10.
Mol Ther ; 32(7): 2299-2315, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38715364

RESUMO

Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination. Uniquely, increasing neutralizing and antibody-dependent cytotoxicity activities across the sarbecovirus family was observed, suggesting antibody affinity maturation over time. Consistently and remarkably, RBD-specific follicular T helper cells and germinal center B cells persisted up to 12 months after immunization. Furthermore, Clec9A-RBD immunization induced a durable mono- and poly-functional T-helper 1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants of concern, including Omicron subvariants, and with a robust CD8+ T cell signature. Uniquely, Clec9A-RBD single-shot systemic immunization effectively primed RBD-specific cellular and humoral immunity in lung and resulted in significant protection against homologous SARS-CoV-2 challenge as evidenced by limited body weight loss and approximately 2 log10 decrease in lung viral loads compared with non-immunized controls. Therefore, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal protective immunity against rapidly evolving SARS-CoV2 variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Células Dendríticas , Imunidade nas Mucosas , Lectinas Tipo C , SARS-CoV-2 , Animais , Camundongos , Células Dendríticas/imunologia , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Anticorpos Antivirais/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Feminino , Glicoproteína da Espícula de Coronavírus/imunologia , Receptores Mitogênicos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Receptores Imunológicos
11.
Development ; 148(6)2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-33658224

RESUMO

Starch accumulation is key for the maturity of rice pollen grains; however, the regulatory mechanism underlying this process remains unknown. Here, we have isolated a male-sterile rice mutant, abnormal pollen 1 (ap1), which produces nonviable pollen grains with defective starch accumulation. Functional analysis revealed that AP1 encodes an active L-type lectin receptor-like kinase (L-LecRLK). AP1 is localized to the plasma membrane and its transcript is highly accumulated in pollen during the starch synthesis phase. RNA-seq and phosphoproteomic analysis revealed that the expression/phosphorylation levels of numerous genes/proteins involved in starch and sucrose metabolism pathway were significantly altered in the mutant pollen, including a known rice UDP-glucose pyrophosphorylase (OsUGP2). We further found that AP1 physically interacts with OsUGP2 to elevate its enzymatic activity, likely through targeted phosphorylation. These findings revealed a novel role of L-LecRLK in controlling pollen maturity via modulating sucrose and starch metabolism.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Pólen/genética , Amido/genética , Regulação da Expressão Gênica de Plantas/genética , Lectinas/genética , Proteínas Mutantes/genética , Oryza/crescimento & desenvolvimento , Fosfotransferases/genética , Proteínas de Plantas/isolamento & purificação , Pólen/crescimento & desenvolvimento , Receptores Mitogênicos/genética , Amido/metabolismo
12.
Plant Physiol ; 193(1): 721-735, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37103588

RESUMO

Root-knot nematodes (Meloidogyne spp., RKN) are responsible for extensive crop losses worldwide. During infection, they penetrate plant roots, migrate between plant cells, and establish feeding sites, known as giant cells, near the root vasculature. Previously, we found that nematode perception and early responses in plants were similar to those of microbial pathogens and required the BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE3 (BAK1/SERK3) coreceptor in Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum). Here, we implemented a reverse genetic screen for resistance or sensitivity to RKN using Arabidopsis T-DNA alleles of genes encoding transmembrane receptor-like kinases to identify additional receptors involved in this process. This screen identified a pair of allelic mutations with enhanced resistance to RKN in a gene we named ENHANCED RESISTANCE TO NEMATODES1 (ERN1). ERN1 encodes a G-type lectin receptor kinase (G-LecRK) with a single-pass transmembrane domain. Further characterization showed that ern1 mutants displayed stronger activation of MAP kinases, elevated levels of the defense marker MYB51, and enhanced H2O2 accumulation in roots upon RKN elicitor treatments. Elevated MYB51 expression and ROS bursts were also observed in leaves of ern1 mutants upon flg22 treatment. Complementation of ern1.1 with 35S- or native promoter-driven ERN1 rescued the RKN infection and enhanced defense phenotypes. Our results indicate that ERN1 is an important negative regulator of immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Tylenchoidea , Animais , Arabidopsis/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Lectinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Tylenchoidea/fisiologia , Solanum lycopersicum/genética , Receptores Mitogênicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Doenças das Plantas/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo
13.
J Rheumatol ; 51(2): 130-133, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302188

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA)-associated interstitial lung disease (ILD) is one of the most common and prognostic organ manifestations of RA. Therefore, to allow effective treatment, it is of crucial importance to diagnose RA-ILD at the earliest possible stage. So far, the gold standard of early detection has been high-resolution computed tomography (HRCT) of the lungs. This procedure involves considerable radiation exposure for the patient and is therefore unsuitable as a routine screening measure for ethical reasons. Here, we propose the analysis of characteristic gene expression patterns as a biomarker to aid in the early detection and initiation of appropriate, possibly antifibrotic, therapy. METHODS: To investigate unique molecular patterns of RA-ILD, whole blood samples were taken from 12 female patients with RA-ILD (n = 7) or RA (n = 5). The RNA was extracted, sequenced by RNA-Seq, and analyzed for characteristic differences in the gene expression patterns between patients with RA-ILD and those with RA without ILD. RESULTS: The differential gene expression analysis revealed 9 significantly upregulated genes in RA-ILD compared to RA without ILD: arginase 1 (ARG1), thymidylate synthetase (TYMS), sortilin 1 (SORT1), marker of proliferation Ki-67 (MKI67), olfactomedin 4 (OLFM4), baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5), membrane spanning 4-domains A4A (MS4A4A), C-type lectin domain family 12 member A (CLEC12A), and the long intergenic nonprotein coding RNA (LINC02967). CONCLUSION: All gene products of these genes (except for LINC02967) are known from the literature to be involved in the pathogenesis of fibrosis. Further, for some, a contribution to the development of pulmonary fibrosis has even been demonstrated in experimental studies. Therefore, the results presented here provide an encouraging perspective for using specific gene expression patterns as biomarkers for the early detection and differential diagnosis of RA-ILD as a routine screening test.


Assuntos
Artrite Reumatoide , Doenças Pulmonares Intersticiais , Humanos , Feminino , Artrite Reumatoide/complicações , Artrite Reumatoide/genética , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/genética , Biomarcadores , Perfilação da Expressão Gênica , RNA , Receptores Mitogênicos , Lectinas Tipo C
14.
Biochem Biophys Res Commun ; 649: 47-54, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36745969

RESUMO

Chronic systemic inflammation leads to sever disorders and diseases. It is of great importance to explore novel target for effective treatment. Discoidin domain receptor 2 (Ddr2) is a member of receptor tyrosine kinase (RTK) family and is implicated in skeletal and fat hemostasis. However, the role of Ddr2 in myeloid cells remains obscure. In this study, we conditionally deleted Ddr2 in myeloid lineage cells to generate cKO mice to investigate the role of Ddr2 in myeloid lineage cells. We found that cKO mice exhibited more severe inflammation both in collagen antibody-induced arthritis (CAIA) and high-fat diet (HFD)-induced obesity, indicating the protective role of Ddr2 against inflammation. Mechanistically, Ddr2 promotes macrophage repolarization from the M1 to M2 phenotype, and protect against systemic inflammation. Our study reveals for the first time that Ddr2 modulates macrophage repolarization and plays critical roles in macrophage-mediated inflammation, providing potential target for the intervention of inflammation and related diseases.


Assuntos
Artrite , Receptor com Domínio Discoidina 2 , Animais , Camundongos , Dieta Hiperlipídica , Receptor com Domínio Discoidina 2/genética , Receptores com Domínio Discoidina , Inflamação , Receptores Proteína Tirosina Quinases/genética , Receptores Mitogênicos/genética
15.
BMC Plant Biol ; 23(1): 294, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37264342

RESUMO

BACKGROUND: Plant immunity relies on the perception of immunogenic signals by cell-surface and intracellular receptors and subsequent activation of defense responses like programmed cell death. Under certain circumstances, the fine-tuned innate immune system of plants results in the activation of autoimmune responses that cause constitutive defense responses and spontaneous cell death in the absence of pathogens. RESULTS: Here, we characterized the onset of leaf death 12 (old12) mutant that was identified in the Arabidopsis accession Landsberg erecta. The old12 mutant is characterized by a growth defect, spontaneous cell death, plant-defense gene activation, and early senescence. In addition, the old12 phenotype is temperature reversible, thereby exhibiting all characteristics of an autoimmune mutant. Mapping the mutated locus revealed that the old12 phenotype is caused by a mutation in the Lectin Receptor Kinase P2-TYPE PURINERGIC RECEPTOR 2 (P2K2) gene. Interestingly, the P2K2 allele from Landsberg erecta is conserved among Brassicaceae. P2K2 has been implicated in pathogen tolerance and sensing extracellular ATP. The constitutive activation of defense responses in old12 results in improved resistance against Pseudomonas syringae pv. tomato DC3000. CONCLUSION: We demonstrate that old12 is an auto-immune mutant and that allelic variation of P2K2 contributes to diversity in Arabidopsis immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lectinas/genética , Lectinas/metabolismo , Resistência à Doença/fisiologia , Folhas de Planta/metabolismo , Mutação , Proteínas de Transporte/genética , Fenótipo , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Pseudomonas syringae/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas
16.
Blood ; 137(8): 1037-1049, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33094319

RESUMO

Emerging immunotherapies such as chimeric antigen receptor T cells have advanced the treatment of acute lymphoblastic leukemia. In contrast, long-term control of acute myeloid leukemia (AML) cannot be achieved by single lineage-specific targeting while sparing benign hematopoiesis. In addition, heterogeneity of AML warrants combinatorial targeting, and several suitable immunotargets (HAVCR2/CD33 and HAVCR2/CLEC12A) have been identified in adult AML. However, clinical and biologic characteristics of AML differ between children and the elderly. Here, we analyzed 36 bone marrow (BM) samples of pediatric AML patients and 13 age-matched healthy donors using whole RNA sequencing of sorted CD45dim and CD34+CD38-CD45dim BM populations and flow cytometry for surface expression of putative target antigens. Pediatric AML clusters apart from healthy myeloid BM precursors in principal-component analysis. Known immunotargets of adult AML, such as IL3RA, were not overexpressed in pediatric AML compared with healthy precursors by RNA sequencing. CD33 and CLEC12A were the most upregulated immunotargets on the RNA level and showed the highest surface expression on AML detected by flow cytometry. KMT2A-mutated infant AML clusters separately by RNA sequencing and overexpresses FLT3, and hence, CD33/FLT3 cotargeting is an additional specific option for this subgroup. CLEC12A and CD33/CLEC12Adouble-positive expression was absent in CD34+CD38-CD45RA-CD90+ hematopoietic stem cells (HSCs) and nonhematopoietic tissue, while CD33 and FLT3 are expressed on HSCs. In summary, we show that expression of immunotargets in pediatric AML differs from known expression profiles in adult AML. We identify CLEC12A and CD33 as preferential generic combinatorial immunotargets in pediatric AML and CD33 and FLT3 as immunotargets specific for KMT2A-mutated infant AML.


Assuntos
Regulação Leucêmica da Expressão Gênica , Lectinas Tipo C/genética , Leucemia Mieloide Aguda/genética , Receptores Mitogênicos/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Imunoterapia , Lactente , Lectinas Tipo C/imunologia , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/terapia , Masculino , Receptores Mitogênicos/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Transcriptoma , Regulação para Cima
17.
Immunity ; 40(3): 309-11, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24656042

RESUMO

Immune activation as a result of the recognition of damage-associated molecular patterns needs to be controlled. In this issue of Immunity, Neumann et al. (2014) demonstrates that Clec12a is a receptor for dead cells through the recognition of uric acid crystals and contributes to the dampening of the responses.


Assuntos
Morte Celular , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Receptores Mitogênicos/metabolismo , Ácido Úrico/metabolismo , Animais
18.
Immunity ; 40(3): 389-99, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24631154

RESUMO

Recognition of cell death by the innate immune system triggers inflammatory responses. However, how these reactions are regulated is not well understood. Here, we identify the inhibitory C-type lectin receptor Clec12a as a specific receptor for dead cells. Both human and mouse Clec12a could physically sense uric acid crystals (monosodium urate, MSU), which are key danger signals for cell-death-induced immunity. Clec12a inhibited inflammatory responses to MSU in vitro, and Clec12a-deficient mice exhibited hyperinflammatory responses after being challenged with MSU or necrotic cells and after radiation-induced thymocyte killing in vivo. Thus, we identified a negative regulatory MSU receptor that controls noninfectious inflammation in response to cell death that has implications for autoimmunity and inflammatory disease.


Assuntos
Morte Celular , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Receptores Mitogênicos/metabolismo , Ácido Úrico/metabolismo , Animais , Morte Celular/genética , Morte Celular/imunologia , Linhagem Celular , Inflamação/genética , Inflamação/imunologia , Lectinas Tipo C/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Ativação de Neutrófilo/genética , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores Mitogênicos/genética , Ácido Úrico/imunologia
19.
Bioorg Chem ; 130: 106215, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384067

RESUMO

Discoidin domain receptors (DDRs) are one of the less explored targets for the treatment of cancer which belong to receptor tyrosine kinases family. Discoidin domain receptors (DDRs) are a collagen-activated receptor tyrosine kinase and essential for controlling cellular functions like proliferation, morphogenesis, adhesion, differentiation, invasion, matrix remodeling, and migration. Although there are many targets and their inhibitors are reported which treat cancer. But most of drugs were amalgamated with moderate to severe side effects. This results in untreated cancerous cells. One of the reasons that cancer is considered challenging to treat because the targets were mutating rapidly and the inhibitor become less potent. The target identification is a tedious task for the researchers from the early 1990 s till date. When it comes to cancer, there has not been any magical stick to treat it undisputedly. Therefore, need for discovery of new receptor may helpful to overcome these difficulties. The development of DDR inhibitors has received a lot of attention ever since the target was discovered. In this review we have reported the development of most promising DDR1 and DDR2 small molecule inhibitors from the perspective of medicinal chemistry. We have also discussed about the clinical trials, recent patents, selectivity biological activity, and structure-activity relationship (SAR) of DDR1 and DDR2 inhibitors.


Assuntos
Antineoplásicos , Receptores com Domínio Discoidina , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores com Domínio Discoidina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/química , Relação Estrutura-Atividade
20.
Mol Divers ; 27(5): 2297-2314, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36322341

RESUMO

Discoidin domain receptor 1 (DDR1) (EC Number 2.7.10.1) has recently been considered as a promising therapeutic target for idiopathic pulmonary fibrosis (IPF). However, none of the currently discovered DDR1 inhibitors have been included in clinical studies due to low target specificity or druggability limitations, necessitating various approaches to develop novel DDR1 inhibitors. In this study, to assure target specificity, a docking assessment of the DDR1 crystal structures was undertaken to find the well-differentiated crystal structure, and 4CKR was identified among many crystal structures. Then, using the best pharmacophore model and molecular docking, virtual screening of the ChEMBL database was done, and five potential molecules were identified as promising inhibitors of DDR1. Subsequently, all hit compound complex systems were validated using molecular dynamics simulations and MM/PBSA methods to assess the stability of the system after ligand binding to DDR1. Based on molecular dynamics simulations and hydrogen-bonding occupancy analysis, the DDR1-Cpd2, DDR1-Cpd17, and DDR1-Cpd18 complex systems exhibited superior stability compared to the DDR1-Cpd1 and DDR-Cpd33 complex systems. Meanwhile, when targeting DDR1, the descending order of the five hit molecules' binding free energies was Cpd17 (- 145.820 kJ/mol) > Cpd2 (- 131.818 kJ/mol) > Cpd18 (- 130.692 kJ/mol) > Cpd33 (- 129.175 kJ/mol) > Cpd1 (- 126.103 kJ/mol). Among them, Cpd2, Cpd17, and Cpd18 showed improved binding characteristics, indicating that they may be potential DDR1 inhibitors. In this research, we developed a high-hit rate, effective screening method that serves as a theoretical guide for finding DDR1 inhibitors for the development of IPF therapeutics.


Assuntos
Receptor com Domínio Discoidina 1 , Receptores Proteína Tirosina Quinases , Receptores Proteína Tirosina Quinases/química , Receptores com Domínio Discoidina , Receptores Mitogênicos/química , Receptores Mitogênicos/metabolismo , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA