Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 286
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 147(12)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32467242

RESUMO

Macrophages are key regulators of developmental processes, including those involved in mammary gland development. We have previously demonstrated that the atypical chemokine receptor ACKR2 contributes to the control of ductal epithelial branching in the developing mammary gland by regulating macrophage dynamics. ACKR2 is a chemokine-scavenging receptor that mediates its effects through collaboration with inflammatory chemokine receptors (iCCRs). Here, we reveal reciprocal regulation of branching morphogenesis in the mammary gland, whereby stromal ACKR2 modulates levels of the shared ligand CCL7 to control the movement of a key population of CCR1-expressing macrophages to the ductal epithelium. In addition, oestrogen, which is essential for ductal elongation during puberty, upregulates CCR1 expression on macrophages. The age at which girls develop breasts is decreasing, which raises the risk of diseases including breast cancer. This study presents a previously unknown mechanism controlling the rate of mammary gland development during puberty and highlights potential therapeutic targets.


Assuntos
Macrófagos/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Receptores de Quimiocinas/metabolismo , Animais , Quimiocina CCL3/deficiência , Quimiocina CCL3/genética , Quimiocina CCL3/metabolismo , Quimiocina CCL5/deficiência , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Epitélio/metabolismo , Estradiol/farmacologia , Feminino , Lectinas Tipo C/metabolismo , Macrófagos/citologia , Glândulas Mamárias Animais/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Receptores CCR1/deficiência , Receptores CCR1/genética , Receptores CCR1/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética , Regulação para Cima/efeitos dos fármacos
2.
FASEB J ; 35(10): e21917, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34533865

RESUMO

The resolution of inflammation facilitates proper wound healing and limits tissue repair short of exaggerated fibrotic scarring. The atypical chemokine receptor (ACKR)2/D6 scavenges inflammatory chemokines, while IFN-ß is a recently unveiled pro-resolving cytokine. Both effector molecules limit acute inflammatory episodes and promote their resolution in various organs. Here, we found fibrotic skin lesions from ACKR2-/- mice presented increased epidermal and dermal thickening, atrophy of the subcutaneous adipose tissue, augmented disorientation of collagen deposition, and enhanced deformation and loss of hair follicles compared to WT counterparts. In addition, affected skin sections from ACKR2-/- mice contained reduced levels of the pro-resolving mediators IFN-ß and IL-10, but increased levels of the pro-inflammatory chemokines CCL2 and 3, the pro-fibrotic cytokine TGF-ß, and the immune-stimulating cytokine IL-12. Notably, treatment with exogenous IFN-ß rescued, at least in part, all the pro-fibrotic outcomes and lesion size in ACKR2-/- mice and promoted expression of the pro-resolving enzyme 12/15-lipoxygenase (LO) in both ACKR2-/- and WT mice. Moreover, Ifnb-/- mice displayed enhanced pro-fibrotic indices upon exposure to bleomycin. These findings suggest ACKR2 is an important mediator in limiting inflammatory skin fibrosis and acts via IFN-ß production to promote the resolution of inflammation and minimize tissue scaring.


Assuntos
Alopecia/metabolismo , Fibrose/metabolismo , Interferon beta/metabolismo , Receptores de Quimiocinas/metabolismo , Pele/metabolismo , Alopecia/genética , Alopecia/patologia , Animais , Colágeno/metabolismo , Fibrose/genética , Fibrose/patologia , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interferon beta/deficiência , Interferon beta/genética , Interleucina-10/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética , Pele/patologia
3.
PLoS Biol ; 17(5): e3000287, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31141500

RESUMO

Atypical chemokine receptor 2 (ACKR2) is a chemokine-scavenging receptor. ACKR2-/-embryos display a reduction in size of a novel, to our knowledge, embryonic skin macrophage population referred to as 'intermediate' cells. CC chemokine receptor 2 (CCR2)-/-embryos display an identical phenotype, indicating that these cells require CCR2 to enable them to populate embryonic skin. Further analysis revealed that ACKR2-/-embryos have higher circulating concentrations of the CCR2 ligand, CC ligand 2 (CCL2); thus, ACKR2 regulates intraembryonic CCL2 levels. We show that ACKR2 is strongly expressed by trophoblasts and that it blocks movement of inflammatory chemokines, such as CCL2, from the maternal decidua into the embryonic circulation. We propose that trophoblastic ACKR2 is responsible for ensuring chemokine compartmentalisation on the maternal decidua, without which chemokines enter the embryonic circulation, disrupting gradients essential for directed intraembryonic cell migration. Overall, therefore, we describe a novel, to our knowledge, molecular mechanism whereby maternal decidual chemokines can function in a compartmentalised fashion without interfering with intraembryonic leukocyte migration. These data suggest similar functions for other atypical chemokine receptors in the placenta and indicate that defects in such receptors may have unanticipated developmental consequences.


Assuntos
Quimiocinas/metabolismo , Mamíferos/metabolismo , Placenta/metabolismo , Animais , Movimento Celular , Decídua/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Gravidez , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/metabolismo , Pele/embriologia , Pele/metabolismo , Transcrição Gênica , Saco Vitelino/metabolismo
4.
J Neurosci ; 40(36): 6991-7007, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32801154

RESUMO

Pathologic features of Alzheimer's disease (AD) include accumulation of amyloid ß (Aß) and hyperphosphorylated tau protein. We have shown previously that the chemokine-like receptor 1 (CMKLR1) is a functional receptor for Aß, and CMKLR1 contributes to the uptake of Aß. However, it is unclear whether CMKLR1 ameliorates or aggravates the process of AD. Here, we show that deletion of the gene coding for CMKLR1 significantly increased Aß deposits in brains of both male and female amyloid ß precursor protein/presenilin-1 mice. However, it markedly decreased the mortality of these mice. Behavioral studies found that CMKLR1 deficiency improved cognitive impairment of male and female amyloid ß precursor protein/presenilin-1 mice and intracerebroventricular-streptozotocin injection AD mice. We further explored the effect of CMKLR1 on tau pathology. We found that CMKLR1 deficiency or inhibition attenuated the hyperphosphorylation of tau in brains of AD mice in vivo and in the neuronal cells in vitro The expression of CMKLR1 on the neurons affected tau phosphorylation by participating in tau seeding. Together, these results uncover a novel mechanism of CMKLR1 in the pathologic process of AD and suggest that inhibiting the promotion effect of CMKLR1 on tau seeding may provide a new strategy for the treatment of AD.SIGNIFICANCE STATEMENT Evidence suggests that inflammation is involved in the pathologic progression of AD. The chemokine-like receptor 1 (CMKLR1), belonging to the family of GPCRs, is able to bind and uptake amyloid ß. We show here, for the first time, that, although CMKLR1 deficiency increased amyloid ß deposits in AD mice, it reduced the mortality and improved the cognitive deficits of AD mice. We furthermore show that CMKLR1 deficiency or inhibition attenuated tau hyperphosphorylation in brains of AD model mice in vivo and in neuronal cells in vitro Finally, we first discovered that the expression of CMKLR1 on neurons affected tau phosphorylation by participating in tau seeding. These findings suggest that inhibition of CMKLR1 may provide a new strategy for the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Cognição , Receptores de Quimiocinas/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/fisiologia , Fosforilação , Presenilina-1/genética , Presenilina-1/metabolismo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/metabolismo
5.
Histochem Cell Biol ; 156(2): 133-146, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33993340

RESUMO

Immunosuppressive drugs such as cyclosporine A (CSA) can disrupt thymic structure and functions, ultimately inducing syngeneic/autologous graft-versus-host disease together with involuted medullas. To elucidate the effects of CSA on the thymus more precisely, we analyzed the effects of CSA on the thymus and T cell system using rats. In addition to confirming the phenomena already reported, we newly found that the proportion of recent thymic emigrants also greatly decreased, suggesting impaired supply. Immunohistologically, the medullary thymic epithelial cells (mTECs) presented with a relative decrease in the subset with a competent phenotype and downregulation of class II major histocompatibility complex molecules. In control rats, thymic dendritic cells (DCs) comprised two subsets, XCR1+SIRP1α-CD4- and XCR1-SIRP1α+CD4+. The former had a tendency to selectively localize in the previously-reported epithelium-containing areas of the rat medullas, and the number was significantly reduced by CSA treatment. The epithelium-free areas, another unique domains in the rat medullas, contained significantly more Foxp3+ thymic Tregs. With CSA treatment, the epithelium-free areas presented strong involution, and the number and distribution of Tregs in the medulla were greatly reduced. These results suggest that CSA inhibits the production of single-positive thymocytes, including Tregs, and disturbs the microenvironment of the thymic medulla, with a decrease of the competent mTECs and disorganization of epithelium-free areas and DC subsets, leading to a generation of autoreactive T cells with selective medullary involution.


Assuntos
Ciclosporina/farmacologia , Células Epiteliais/efeitos dos fármacos , Fatores de Transcrição Forkhead/análise , Imunossupressores/farmacologia , Linfócitos T Reguladores/efeitos dos fármacos , Timo/efeitos dos fármacos , Animais , Ciclosporina/administração & dosagem , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Células Epiteliais/patologia , Fatores de Transcrição Forkhead/metabolismo , Imuno-Histoquímica , Imunossupressores/administração & dosagem , Injeções Subcutâneas , Masculino , Imagem Óptica , Ratos , Ratos Endogâmicos Lew , Receptores de Quimiocinas/análise , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/metabolismo , Linfócitos T Reguladores/patologia , Timócitos/efeitos dos fármacos , Timócitos/patologia , Timo/patologia
6.
Am J Physiol Endocrinol Metab ; 318(3): E371-E380, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910029

RESUMO

Excess androgen-induced obesity has become a public health problem, and its prevalence has increased substantially in recent years. Chemokine-like receptor 1 (CMKLR1), a receptor of chemerin secreted by adipose tissue, is linked to adipocyte differentiation, adipose tissue development, and obesity. However, the effect of CMKLR1 signaling on androgen-mediated adiposity in vivo remains unclear. Using CMKLR1-knockout mice, we constructed an androgen-excess female mouse model through 5α-dihydrotestosterone (DHT) treatment and an androgen-deficient male mouse model by orchidectomy (ORX). For mechanism investigation, we used 2-(α-Naphthoyl) ethyltrimethylammonium iodide (α-NETA), an antagonist of CMKLR1, to suppress CMKLR1 in vivo and wortmannin, a PI3K signaling antagonist, to treat brown adipose tissue (BAT) explant cultures in vitro. Furthermore, we used histological examination and quantitative PCR, as well as Western blot analysis, glucose tolerance tests, and biochemical analysis of serum, to describe the phenotypes and the changes in gene expression. We demonstrated that excess androgen in the female mice resulted in larger cells in the white adipose tissue (WAT) and the BAT, whereas androgen deprivation in the male mice induced a reduction in cell size. Both of these adipocyte size effects could be attenuated in the CMKLR1-knockout mice. CMKLR1 deficiency influenced the effect of androgen treatment on adipose tissue by regulating the mRNA expression of the androgen receptor (AR) and adipocyte markers (such as Fabp4 and Cidea). Moreover, suppression of CMKLR1 by α-NETA could also reduce the extent of the adipocyte cell enlargement caused by DHT. Furthermore, we found that DHT could reduce the levels of phosphorylated ERK (pERK) in the BAT, while CMKLR1 inactivation inhibited this effect, which had been induced by DHT, through the PI3K signaling pathway. These findings reveal an antiobesity role of CMKLR1 deficiency in regulating lipid accumulation, highlighting the scientific importance for the further development of small-molecule CMKLR1 antagonists as fundamental research tools and/or as potential drugs for use in the treatment of adiposity.


Assuntos
Androgênios/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Receptores de Quimiocinas/deficiência , Adipócitos/metabolismo , Adipócitos/ultraestrutura , Tecido Adiposo Marrom/efeitos dos fármacos , Androgênios/deficiência , Animais , Peso Corporal , Tamanho Celular , Di-Hidrotestosterona/farmacologia , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naftalenos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Compostos de Amônio Quaternário/farmacologia , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/genética , Wortmanina/farmacologia
7.
Immunity ; 34(2): 237-46, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21333554

RESUMO

Tolerance to food antigen manifests in the absence and/or suppression of antigen-specific immune responses locally in the gut but also systemically, a phenomenon known as oral tolerance. Oral tolerance is thought to originate in the gut-draining lymph nodes, which support the generation of FoxP3(+) regulatory T (Treg) cells. Here we use several mouse models to show that Treg cells, after their generation in lymph nodes, need to home to the gut to undergo local expansion to install oral tolerance. Proliferation of Treg cells in the intestine and production of interleukin-10 by gut-resident macrophages was blunted in mice deficient in the chemokine (C-X3-C motif) receptor 1 (CX3CR1). We propose a model of stepwise oral tolerance induction comprising the generation of Treg cells in the gut-draining lymph nodes, followed by migration into the gut and subsequent expansion of Treg cells driven by intestinal macrophages.


Assuntos
Quimiotaxia de Leucócito , Tolerância Imunológica/imunologia , Imunidade nas Mucosas/imunologia , Mucosa/citologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Receptor 1 de Quimiocina CX3C , Divisão Celular , Diarreia/etiologia , Diarreia/imunologia , Hipersensibilidade Alimentar/complicações , Hipersensibilidade Alimentar/imunologia , Fatores de Transcrição Forkhead/análise , Fatores de Transcrição Forkhead/deficiência , Interleucina-10/biossíntese , Interleucina-10/genética , Linfonodos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mucosa/imunologia , Ovalbumina/toxicidade , Receptores de Quimiocinas/deficiência , Receptores de Retorno de Linfócitos
8.
Blood ; 130(10): 1223-1234, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28743719

RESUMO

CCRL2 is a 7-transmembrane domain receptor that shares structural and functional similarities with the family of atypical chemokine receptors (ACKRs). CCRL2 is upregulated by inflammatory signals and, unlike other ACKRs, it is not a chemoattractant-scavenging receptor, does not activate ß-arrestins, and is widely expressed by many leukocyte subsets. Therefore, the biological role of CCRL2 in immunity is still unclear. We report that CCRL2-deficient mice have a defect in neutrophil recruitment and are protected in 2 models of inflammatory arthritis. In vitro, CCRL2 was found to constitutively form homodimers and heterodimers with CXCR2, a main neutrophil chemotactic receptor. By heterodimerization, CCRL2 could regulate membrane expression and promote CXCR2 functions, including the activation of ß2-integrins. Therefore, upregulation of CCRL2 observed under inflammatory conditions is functional to finely tune CXCR2-mediated neutrophil recruitment at sites of inflammation.


Assuntos
Artrite/metabolismo , Artrite/patologia , Neutrófilos/patologia , Receptores de Quimiocinas/metabolismo , Receptores de Interleucina-8B/metabolismo , Animais , Artrite/complicações , Antígenos CD18/metabolismo , Sobrevivência Celular , Modelos Animais de Doenças , Inflamação/complicações , Inflamação/patologia , Camundongos Knockout , Infiltração de Neutrófilos , Conformação Proteica , Multimerização Proteica , Receptores CCR , Receptores de Quimiocinas/química , Receptores de Quimiocinas/deficiência , Receptores de Interleucina-8B/química , Transdução de Sinais
9.
Circ Res ; 120(11): 1789-1799, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28302649

RESUMO

RATIONALE: Nonclassical mouse monocyte (CX3CR1high, Ly-6Clow) patrolling along the vessels of the microcirculation is critical for endothelial homeostasis and inflammation. Because of technical challenges, it is currently not established how patrolling occurs in large arteries. OBJECTIVE: This study was undertaken to elucidate the molecular, migratory, and functional phenotypes of patrolling monocytes in the high shear and pulsatile environment of large arteries in healthy, hyperlipidemic, and atherosclerotic conditions. METHODS AND RESULTS: Applying a new method for stable, long-term 2-photon intravital microscopy of unrestrained large arteries in live CX3CR1-GFP (green fluorescent protein) mice, we show that nonclassical monocytes patrol inside healthy carotid arteries at a velocity of 36 µm/min, 3× faster than in microvessels. The tracks are less straight but lead preferentially downstream. The number of patrolling monocytes is increased 9-fold by feeding wild-type mice a Western diet or by applying topical TLR7/8 (Toll-like receptor) agonists. A similar increase is seen in CX3CR1+/GFP/apoE-/- mice on chow diet, with a further 2- to 3-fold increase on Western diet (22-fold over healthy). In plaque conditions, monocytes are readily captured onto the endothelium from free flow. Stable patrolling is unaffected in CX3CR1-deficient mice and involves the contribution of LFA-1 (lymphocyte-associated antigen 1) and α4 integrins. The endothelial damage in atherosclerotic carotid arteries was assessed by electron microscopy and correlates with the number of intraluminal patrollers. Abolishing patrolling monocytes in Nr4a1-/- apoE-/- mice leads to pronounced endothelial apoptosis. CONCLUSIONS: Arterial patrolling is a prominent new feature of nonclassical monocytes with unique molecular and kinetic properties. It is highly upregulated in hyperlipidemia and atherosclerosis in a CX3CR1-independent fashion and plays a potential role in endothelial protection.


Assuntos
Artérias/metabolismo , Aterosclerose/metabolismo , Dieta Ocidental/efeitos adversos , Endotélio Vascular/metabolismo , Monócitos/metabolismo , Receptores de Quimiocinas/deficiência , Animais , Artérias/patologia , Aterosclerose/patologia , Receptor 1 de Quimiocina CX3C , Endotélio Vascular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
J Neurosci ; 37(44): 10541-10553, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28951447

RESUMO

Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex.SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity.


Assuntos
Potenciais Evocados Visuais/fisiologia , Microglia/metabolismo , Plasticidade Neuronal/fisiologia , Receptores de Quimiocinas/deficiência , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/metabolismo , Animais , Receptor 1 de Quimiocina CX3C , Comunicação Celular/fisiologia , Corpos Geniculados/crescimento & desenvolvimento , Corpos Geniculados/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Visão Monocular/fisiologia
11.
Kidney Int ; 93(4): 826-841, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29395335

RESUMO

The atypical chemokine receptor 2 (ACKR2), also named D6, regulates local levels of inflammatory chemokines by internalization and degradation. To explore potential anti-inflammatory functions of ACKR2 in glomerulonephritis, we induced autologous nephrotoxic nephritis in C57/BL6 wild-type and Ackr2-deficient mice. Renal ACKR2 expression increased and localized to interstitial lymphatic endothelium during nephritis. At two weeks Ackr2-/-mice developed increased albuminuria and urea levels compared to wild-type mice. Histological analysis revealed increased structural damage in the glomerular and tubulointerstitial compartments within Ackr2-/- kidneys. This correlated with excessive renal leukocyte infiltration of CD4+ T cells and mononuclear phagocytes with increased numbers in the tubulointerstitium but not glomeruli in knockout mice. Expression of inflammatory mediators and especially markers of fibrotic tissue remodeling were increased along with higher levels of ACKR2 inflammatory chemokine ligands like CCL2 in nephritic Ackr2-/- kidneys. In vitro, Ackr2 deficiency in TNF-stimulated tubulointerstitial tissue but not glomeruli increased chemokine levels. These results are in line with ACKR2 expression in interstitial lymphatic endothelial cells, which also assures efflux of activated leukocytes into regional lymph nodes. Consistently, nephritic Ackr2-/- mice showed reduced adaptive cellular immune responses indicated by decreased regional T-cell activation. However, this did not prevent aggravated injury in the kidneys of Ackr2-/- mice with nephrotoxic nephritis due to simultaneously increased tubulointerstitial chemokine levels, leukocyte infiltration and fibrosis. Thus, ACKR2 is important in limiting renal inflammation and fibrotic remodeling in progressive nephrotoxic nephritis. Hence, ACKR2 may be a potential target for therapeutic interventions in immune complex glomerulonephritis.


Assuntos
Glomerulonefrite/prevenção & controle , Doenças do Complexo Imune/prevenção & controle , Glomérulos Renais/metabolismo , Túbulos Renais/metabolismo , Receptores de Quimiocinas/metabolismo , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Quimiotaxia de Leucócito , Modelos Animais de Doenças , Progressão da Doença , Fibrose , Glomerulonefrite/imunologia , Glomerulonefrite/metabolismo , Glomerulonefrite/patologia , Doenças do Complexo Imune/imunologia , Doenças do Complexo Imune/metabolismo , Doenças do Complexo Imune/patologia , Mediadores da Inflamação/metabolismo , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Túbulos Renais/imunologia , Túbulos Renais/patologia , Ativação Linfocitária , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Fagocitário Mononuclear/imunologia , Sistema Fagocitário Mononuclear/metabolismo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética , Transdução de Sinais
12.
Biochim Biophys Acta ; 1861(11): 1614-1622, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27417459

RESUMO

Brown adipose tissue (BAT) plays essential role in metabolic- and thermoregulation and displays morphological and functional plasticity in response to environmental and metabolic challenges. BAT is a heterogeneous tissue containing adipocytes and various immune-related cells, however, their interaction in regulation of BAT function is not fully elucidated. Fractalkine is a chemokine synthesized by adipocytes, which recruits fractalkine receptor (CX3CR1)-expressing leukocytes into the adipose tissue. Using transgenic mice, in which the fractalkine receptor, Cx3cr1 gene was replaced by Gfp, we evaluated whether deficiency in fractalkine signaling affects BAT remodeling and function in high-fat-diet - induced obesity. Homo- and heterozygote male CX3CR1-GFP mice were fed with normal or fat enriched (FatED) diet for 10weeks. Interscapular BAT was collected for molecular biological analysis. Heterozygous animals in which fractalkine signaling remains intact, gain more weight during FatED than CX3CR1 deficient gfp/gfp homozygotes. FatED in controls resulted in macrophage recruitment to the BAT with increased expression of proinflammatory mediators (Il1a, b, Tnfa and Ccl2). Local BAT inflammation was accompanied by increased expression of lipogenic enzymes and resulted in BAT "whitening". By contrast, fractalkine receptor deficiency prevented accumulation of tissue macrophages, selectively attenuated the expression of Tnfa, Il1a and Ccl2, increased BAT expression of lipolytic enzymes (Atgl, Hsl and Mgtl) and upregulated genes involved thermo-metabolism (Ucp1, Pparg Pgc1a) in response to FatED. These results highlight the importance of fractalkine-CX3CR1 interaction in recruitment of macrophages into the BAT of obese mice which might contribute to local tissue inflammation, adipose tissue remodeling and regulation of metabolic-related genes.


Assuntos
Tecido Adiposo Marrom/metabolismo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Receptores de Quimiocinas/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores/metabolismo , Peso Corporal , Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1/deficiência , Quimiocina CX3CL1/metabolismo , Temperatura Baixa , Dieta Hiperlipídica , Proteínas de Fluorescência Verde/metabolismo , Mediadores da Inflamação/metabolismo , Lipogênese/genética , Lipólise/genética , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Receptores de Quimiocinas/deficiência , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
13.
BMC Neurosci ; 18(1): 11, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28061814

RESUMO

BACKGROUND: The fractalkine/CX3C chemokine receptor 1 (CX3CR1) pathway has been identified to play an essential role in the chemotaxis of microglia, leukocyte trafficking and microglia/macrophage recruitment. It has also been shown to be important in the regulation of the inflammatory response in the early phase after experimental stroke. The present study was performed to investigate if CX3CR1 deficiency affects microglia during the first 14 days with consequences for tissue damage after experimental stroke. RESULTS: CX3CR1 deficiency significantly increased the number of intersections of GFP positive microglia in the proximal peri-infarct area at 2, 7 and 14 days following tMCAO compared to heterozygous and wildtype littermates. In addition, the length of microglial branches increased until day 7 in CX3CR1 knockout mice while the presence of a functional CX3CR1 allele resulted in a gradual reduction of their length following tMCAO. After stroke, wildtype, heterozygous and CX3CR1 deficient mice did not show differences in the composite neuroscore and assessment of infarct volumes from CX3CR1 wildtype, heterozygous and deficient mice revealed no differences between the genotypes 7 and 14 days after stroke. CONCLUSION: Results demonstrate that CX3CR1 deficiency affects the morphology of GFP positive microglia located in the proximal peri-infarct region during the first 14 days after tMCAO. Our data also indicate that CX3CR1 deficiency does not affect definite infarct volumes. Modulation of the CX3CR1 pathway may have implication for microglia function contributing to mechanisms of tissue reorganization in the post-ischemic brain.


Assuntos
Microglia/metabolismo , Microglia/patologia , Receptores de Quimiocinas/deficiência , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Receptor 1 de Quimiocina CX3C , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Receptores de Quimiocinas/genética , Recuperação de Função Fisiológica/fisiologia , Fatores de Tempo
14.
FASEB J ; 30(1): 380-93, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26443824

RESUMO

Adequate inflammatory response predominated by macrophage infiltration is essential to acute skeletal muscle injury repair. The majority of intramuscular macrophages express the chemokine receptor CX3CR1. We studied the role of CX3CR1 in regulating intramuscular macrophage number and function in acute injury repair by using a loss-of-function approach. Muscle injury repair was delayed in CX3CR1(GFP/GFP) mice as compared with wild-type (WT) controls. CX3CR1 was predominantly expressed by macrophages but not by myogenic cells or capillary endothelia cells in injured muscles. Intramuscular macrophage number and subset composition were not altered by CX3CR1 deficiency. Intramuscular macrophage phagocytosis function was impaired by CX3CR1 deficiency as demonstrated by increased number of necrotic fibers (+115%) and percentage of necrotic area (+204%) at 7 d, increased number of intramuscular neutrophils at 3 (+89%) but not 1 d, reduced number of phagocytosing macrophages (-12%) and phagocytosed beads within macrophages (-15%) in CX3CR1(GFP/GFP) mice as compared with WT controls. The mRNA expression of CD36 (-50%), CD14 (-43%), IGF-1 (-53%), and IL-6 (-40%) was reduced in CX3CR1-deficient macrophages as compared with WT controls. We conclude that CX3CR1 is important to acute skeletal muscle injury repair by regulating macrophage phagocytosis function and trophic growth factor production.


Assuntos
Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Fagocitose , Receptores de Quimiocinas/metabolismo , Regeneração , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Receptor 1 de Quimiocina CX3C , Células Cultivadas , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética
15.
Int J Colorectal Dis ; 32(3): 315-324, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27942903

RESUMO

PURPOSE: Inflammatory conditions like inflammatory bowel diseases (IBD) are characterized by increased immune cell infiltration. The chemokine ligand CX3CL1 and its receptor CX3CR1 have been shown to be involved in leukocyte adhesion, transendothelial recruitment, and chemotaxis. Therefore, the objective of this study was to describe CX3CL1-CX3CR1-mediated signaling in the induction of immune cell recruitment during experimental murine colitis. METHODS: Acute colitis was induced by dextran sodium sulfate (DSS), and sepsis was induced by injection of lipopolysaccharide (LPS). Serum concentrations of CX3CR1 and CX3CL1 were measured by ELISA. Wild-type and CX3CR1-/- mice were challenged with DSS, and on day 6, intravital microscopy was performed to monitor colonic leukocyte and platelet recruitment. Intestinal inflammation was assessed by disease activity, histopathology, and neutrophil infiltration. RESULTS: CX3CR1 was upregulated in DSS colitis and LPS-induced sepsis. CX3CR1-/- mice were protected from disease severity and intestinal injury in DSS colitis, and CX3CR1 deficiency resulted in reduced rolling of leukocytes and platelets. CONCLUSIONS: In the present study, we provide evidence for a crucial role of CX3CL1-CX3CR1 in experimental colitis, in particular for intestinal leukocyte recruitment during murine colitis. Our findings suggest that CX3CR1 blockade represents a potential therapeutic strategy for treatment of IBD.


Assuntos
Quimiocina CX3CL1/metabolismo , Colite/induzido quimicamente , Colite/genética , Regulação para Baixo , Leucócitos/patologia , Receptores de Quimiocinas/genética , Animais , Plaquetas/patologia , Receptor 1 de Quimiocina CX3C , Adesão Celular , Colite/metabolismo , Colite/patologia , Colo/irrigação sanguínea , Colo/patologia , Sulfato de Dextrana , Suscetibilidade a Doenças , Inflamação/metabolismo , Inflamação/patologia , Migração e Rolagem de Leucócitos , Leucócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microvasos/patologia , Infiltração de Neutrófilos , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/metabolismo
16.
J Neurosci ; 35(18): 6987-96, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25948251

RESUMO

Photoreceptor degeneration in age-related macular degeneration (AMD) is associated with an infiltration and chronic accumulation of mononuclear phagocytes (MPs). We have previously shown that Cx3cr1-deficient mice develop age- and stress- related subretinal accumulation of MPs, which is associated with photoreceptor degeneration. Cx3cr1-deficient MPs have been shown to increase neuronal apoptosis through IL-1ß in neuroinflammation of the brain. The reason for increased IL-1ß secretion from Cx3cr1-deficient MPs, and whether IL-1ß is responsible for increased photoreceptor apoptosis in Cx3cr1-deficient mice, has not been elucidated. Here we show that Cx3cr1-deficient MPs express increased surface P2X7 receptor (P2RX7), which stimulates IL-1ß maturation and secretion. P2RX7 and IL-1ß inhibition efficiently blunted Cx3cr1-MP-dependent photoreceptor apoptosis in a monocyte/retina coculture system and in light-induced subretinal inflammation of Cx3cr1-deficient mice in vivo. Our results provide an explanation for increased CX3CR1-dependent IL-1ß secretion and suggest that IL-1ß or P2RX7 inhibition can help inhibit the inflammation-associated photoreceptor cell loss in late AMD, including geographic atrophy, for which no efficient treatment currently exists.


Assuntos
Interleucina-1beta/metabolismo , Degeneração Macular/metabolismo , Sistema Fagocitário Mononuclear/metabolismo , Células Fotorreceptoras/metabolismo , Receptores de Quimiocinas/deficiência , Receptores Purinérgicos P2X7/biossíntese , Animais , Receptor 1 de Quimiocina CX3C , Técnicas de Cocultura , Feminino , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Fagocitário Mononuclear/patologia , Fagócitos/metabolismo , Fagócitos/patologia , Células Fotorreceptoras/patologia , Regulação para Cima/fisiologia
17.
Am J Respir Cell Mol Biol ; 55(5): 657-666, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27285858

RESUMO

LPS-induced lung injury in the mouse is one of the most robust experimental models used for studies of acute lung injury (ALI) and acute respiratory distress syndrome in humans. Prior clinical and experimental studies support an important role for complement activation, particularly production of C5a, in the pathophysiology of human ALI/acute respiratory distress syndrome. In the mouse model, however, the precise role of C5a and its receptors is unclear. C5L2, an enigmatic second receptor for C5a, has been characterized, and results have generated substantial debate regarding its in vivo function. Our previous work with human neutrophils revealed a unique role for C5L2 in negatively modulating C5a-C5a receptor (C5aR)-mediated cellular activation, in which antibody-mediated blockade of C5L2 resulted in augmented C5a-C5aR responses. Here, we demonstrate that C5L2-/- mice (BALB/c background) administered intranasal LPS exhibit significantly more airway edema and hemorrhage than do wild-type animals. Bronchoalveolar lavage fluid and lung homogenates have significantly more neutrophils and myeloperoxidase activity, as well as proinflammatory cytokines and chemokines. When a blocking antibody against the C5aR was administered before LPS administration, the increased neutrophilic infiltration and cytokine levels were reversed. Thus, our data show not only that C5a contributes significantly to LPS-induced ALI in the mouse, but also that C5L2 plays an important antiinflammatory role in this model through actions resulting at least in part from negative modulation of C5a receptor activation.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Receptores de Quimiocinas/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/fisiopatologia , Administração Intranasal , Animais , Líquido da Lavagem Broncoalveolar , Quimiocinas/genética , Quimiocinas/metabolismo , Edema/complicações , Edema/patologia , Edema/fisiopatologia , Regulação da Expressão Gênica , Hemorragia/complicações , Hemorragia/patologia , Hemorragia/fisiopatologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Pulmão/patologia , Camundongos Endogâmicos BALB C , Neutrófilos/metabolismo , Peroxidase/metabolismo , Receptor da Anafilatoxina C5a , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/deficiência , Mecânica Respiratória , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
18.
J Neuroinflammation ; 13(1): 196, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27562117

RESUMO

BACKGROUND: Alphaviruses can cause fatal encephalitis in humans. Natural infections occur via the bite of infected mosquitos, but aerosol transmissibility makes some of these viruses potential bioterrorism agents. Central nervous system (CNS) host responses contribute to alphavirus pathogenesis in experimental models and are logical therapeutic targets. We investigated whether reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) activity within the CNS contributes to fatal alphavirus encephalitis in mice. METHODS: Infected animals were treated systemically with the angiotensin receptor-blocking drug, telmisartan, given its ability to cross the blood-brain barrier, selectively block type-1 angiotensin receptors (AT1R), and inhibit Nox-derived ROS production in vascular smooth muscle and other extraneural tissues. Clinical, virological, biochemical, and histopathological outcomes were followed over time. RESULTS: The importance of the angiotensin II (Ang II)/AT1R axis in disease pathogenesis was confirmed by demonstrating increased Ang II levels in the CNS following infection, enhanced disease survival when CNS Ang II production was suppressed, increased AT1R expression on microglia and tissue-infiltrating myeloid cells, and enhanced disease survival in AT1R-deficient mice compared to wild-type (WT) controls. Systemic administration of telmisartan protected WT mice from lethal encephalitis caused by two different alphaviruses in a dose-dependent manner without altering virus replication or exerting any anti-inflammatory effects in the CNS. Infection triggered up-regulation of multiple Nox subunits in the CNS, while drug treatment inhibited local Nox activity, ROS production, and oxidative neuronal damage. Telmisartan proved ineffective in Nox-deficient mice, demonstrating that this enzyme is its main target in this experimental setting. CONCLUSIONS: Nox-derived ROS, likely arising from CNS myeloid cells triggered by AT1R signaling, are pathogenic during fatal alphavirus encephalitis in mice. Systemically administered telmisartan at non-hypotensive doses targets Nox activity in the CNS to exert a neuroprotective effect. Disruption of this pathway may have broader implications for the treatment of related infections as well as for other CNS diseases driven by oxidative injury.


Assuntos
Sistema Nervoso Central/patologia , Encefalomielite Equina/patologia , Células Mieloides/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais/fisiologia , ATPases Associadas a Diversas Atividades Celulares , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Receptor 1 de Quimiocina CX3C , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/virologia , DNA Helicases/genética , DNA Helicases/metabolismo , Modelos Animais de Doenças , Encefalomielite Equina/tratamento farmacológico , Encefalomielite Equina/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/deficiência , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/classificação , Células Mieloides/ultraestrutura , Células Mieloides/virologia , Neurônios/patologia , Neurônios/ultraestrutura , Consumo de Oxigênio/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Telmisartan
19.
Am J Pathol ; 185(4): 927-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25794704

RESUMO

Macrophages are increasingly recognized as a potential therapeutic target in myocardial fibrosis via interactions with fibroblasts. We have characterized macrophage depletion and inhibition of nonclassical macrophage migration, in addition to direct interactions between nonclassical macrophages and fibroblasts in angiotensin II (AngII)-mediated, hypertensive myocardial fibrosis. Macrophage depletion was achieved by daily i.v. clodronate liposomes (-1 day to +3 days) during AngII infusion. Cx3cr1(-/-) mice were used to inhibit nonclassical macrophage migration. Macrophage phenotype (F4/80, CD11b, Ly6C) was characterized by immunofluorescence and flow cytometry. Collagen was assessed by Sirius Red/Fast Green. Quantitative real-time RT-PCR was performed for transcript levels. AngII/wild-type (WT) mice displayed significant infiltrate and fibrosis compared with saline/WT, which was virtually ablated by clodronate liposomes independent of hypertension. In vitro data supported M2 macrophages promoting fibroblast differentiation and collagen production. AngII/Cx3cr1(-/-) mice, however, significantly increased macrophage infiltrate and fibrosis relative to AngII/WT. AngII/Cx3cr1(-/-) mice also showed an M1 phenotypic shift relative to WT mice in, which the predominant phenotype was Ly6C(low), CD206(+) (M2). Myocardial IL-1ß was significantly up-regulated, whereas transforming growth factor ß down-regulated with this M1 shift. We demonstrated that infiltrating macrophages are critical to AngII-mediated myocardial fibrosis by preventing the development of fibrosis after liposomal depletion of circulating monocytes. Our findings also suggest that some macrophages, namely M2, may confer a protective myocardial environment that may prevent excessive tissue injury.


Assuntos
Macrófagos/metabolismo , Miocárdio/patologia , Actinas/metabolismo , Administração Intravenosa , Angiotensina II/administração & dosagem , Angiotensina II/farmacologia , Animais , Antígenos Ly/metabolismo , Receptor 1 de Quimiocina CX3C , Ácido Clodrônico/administração & dosagem , Ácido Clodrônico/farmacologia , Colágeno/biossíntese , Eletrocardiografia , Fibrose , Mediadores da Inflamação/metabolismo , Lipossomos/administração & dosagem , Lipossomos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Miocárdio/metabolismo , Células NIH 3T3 , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/metabolismo
20.
J Immunol ; 193(10): 5218-28, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25297873

RESUMO

Inflammatory chemokines produced in the placenta can direct the migration of placental leukocytes using chemokine receptors that decorate the surface of these cells. Fetal trophoblasts can also express receptors for inflammatory chemokines, and they are one of the few cell types that express atypical chemokine receptor 2 (ACKR2), previously known as D6. ACKR2 binds many inflammatory CC chemokines but cannot stimulate cell migration or activate signaling pathways used by conventional chemokine receptors. Existing evidence suggests that ACKR2 is a specialized chemokine scavenger, but its function in primary human trophoblasts has not been explored. In mice, ACKR2 is thought to be dispensable for the reproductive success of unchallenged females that have conceived naturally, but it can suppress inflammation-induced abortion and aid the survival of implanted allogeneic embryos. In this article, we demonstrate that cultured primary human trophoblasts express ACKR2 far more strongly than genes encoding conventional receptors for inflammatory CC chemokines. Moreover, these cells are capable of the rapid internalization and efficient scavenging of extracellular chemokine, and this is mediated by ACKR2. We also report that in unchallenged DBA/1j mice, Ackr2 deficiency increases the incidence of stillbirth and neonatal death, leads to structural defects in the placenta, and can decrease fetal weight. Loss of Ackr2 specifically from fetal cells makes a key contribution to the placental defects. Thus, primary human trophoblasts use ACKR2 to scavenge chemokines, and ACKR2 deficiency can cause abnormal placental structure and reduced neonatal survival.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Placenta/metabolismo , Receptores de Quimiocinas/genética , Trofoblastos/metabolismo , Animais , Animais Recém-Nascidos , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CCL26 , Quimiocinas CC/genética , Quimiocinas CC/imunologia , Feminino , Desenvolvimento Fetal , Feto , Humanos , Lactente , Longevidade , Camundongos , Camundongos Endogâmicos DBA , Camundongos Knockout , Placenta/imunologia , Placenta/patologia , Gravidez , Cultura Primária de Células , Receptores de Quimiocinas/deficiência , Receptores de Quimiocinas/imunologia , Transdução de Sinais , Trofoblastos/imunologia , Trofoblastos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA