RESUMO
Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology-informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.
Assuntos
Chaperonas Moleculares/genética , Técnicas de Sonda Molecular , Proteoma/genética , Deficiências na Proteostase/genética , Proteostase/genética , Animais , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Meia-Vida , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Chaperonas Moleculares/metabolismo , Agregados Proteicos , Engenharia de Proteínas/métodos , Dobramento de Proteína/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteoma/química , Proteoma/metabolismo , Proteostase/efeitos dos fármacos , Deficiências na Proteostase/metabolismo , Deficiências na Proteostase/patologia , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.
Assuntos
Benzamidas/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Heptanos/farmacologia , Lisossomos/efeitos dos fármacos , Proteínas de Transporte Vesicular/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/uso terapêutico , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Mutação da Fase de Leitura , Heptanos/uso terapêutico , Humanos , Receptores de Imidazolinas/antagonistas & inibidores , Receptores de Imidazolinas/genética , Receptores de Imidazolinas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/citologia , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mucina-1/química , Mucina-1/genética , Mucina-1/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas de Transporte Vesicular/químicaRESUMO
Aggregates of human islet amyloid polypeptide (IAPP) in the pancreas of patients with type 2 diabetes (T2D) are thought to contribute to ß cell dysfunction and death. To understand how IAPP harms cells and how this might be overcome, we created a yeast model of IAPP toxicity. Ste24, an evolutionarily conserved protease that was recently reported to degrade peptides stuck within the translocon between the cytoplasm and the endoplasmic reticulum, was the strongest suppressor of IAPP toxicity. By testing variants of the human homolog, ZMPSTE24, with varying activity levels, the rescue of IAPP toxicity proved to be directly proportional to the declogging efficiency. Clinically relevant ZMPSTE24 variants identified in the largest database of exomes sequences derived from T2D patients were characterized using the yeast model, revealing 14 partial loss-of-function variants, which were enriched among diabetes patients over 2-fold. Thus, clogging of the translocon by IAPP oligomers may contribute to ß cell failure.
Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/toxicidade , Proteínas de Membrana/química , Proteínas de Membrana/genética , Metaloendopeptidases/química , Metaloendopeptidases/genética , Modelos Biológicos , Mutagênese , Agregados Proteicos/fisiologia , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
Emerging Artemisinin (ART) resistance in Plasmodium falciparum (Pf) poses challenges for the discovery of novel drugs to tackle ART-resistant parasites. Concentrated efforts toward the ART resistance mechanism indicated a strong molecular link of ART resistance with upregulated expression of unfolded protein response pathways involving Prefoldins (PFDs). However, a complete characterization of PFDs as molecular players taking part in ART resistance mechanism, and discovery of small molecule inhibitors to block this process have not been identified to date. Here, we functionally characterized all Pf Prefoldin subunits (PFD1-6) and established a causative role played by PFDs in ART resistance by demonstrating their expression in intra-erythrocytic parasites along with their interactions with Kelch13 protein through immunoprecipitation coupled MS/MS analysis. Systematic biophysical interaction analysis between all subunits of PFDs revealed their potential to form a complex. The role of PFDs in ART resistance was confirmed in orthologous yeast PFD6 mutants, where PfPFD6 expression in yeast mutants reverted phenotype to ART resistance. We identified an FDA-approved drug "Biperiden" that restricts the formation of Prefoldin complex and inhibits its interaction with its key parasite protein substrates, MSP-1 and α-tubulin-I. Moreover, Biperiden treatment inhibits the parasite growth in ART-sensitive Pf3D7 and resistant Pf3D7k13R539T strains. Ring survival assays that are clinically relevant to analyze ART resistance in Pf3D7k13R539T parasites demonstrate the potency of BPD to inhibit the growth of survivor parasites. Overall, our study provides the first evidence of the role of PfPFDs in ART resistance mechanisms and opens new avenues for the management of resistant parasites.
Assuntos
Antimaláricos , Artemisininas , Resistência a Medicamentos , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Resposta a Proteínas não Dobradas , Plasmodium falciparum/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Artemisininas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos , Antimaláricos/farmacologia , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/genética , Malária Falciparum/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genéticaRESUMO
Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.
Assuntos
Fatores de Transcrição de Choque Térmico , Metformina , Miócitos Cardíacos , Resposta a Proteínas não Dobradas , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Cardiomegalia/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/metabolismo , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Metformina/farmacologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacosRESUMO
Mitochondrial function is controlled by two separate genomes. This feature makes mitochondria prone to proteotoxic stress when a stoichiometric imbalance occurs in the protein complexes that perform oxidative phosphorylation, which consist of both nuclear- and mitochondrial-encoded proteins. Such a proteotoxic stress is known to induce the mitochondrial unfolded protein response (UPRmt) in animals. It is unknown whether UPRmt occurs in plants. Here, we induced a mitonuclear protein imbalance in Arabidopsis through chemical or genetic interference. Mitochondrial proteotoxic stress activated a plant-specific UPRmt and impaired plant growth and development. The plant UPRmt pathway is triggered by a transient oxidative burst, activating MAPK and hormonal (involving ethylene and auxin) signaling, which are all geared to repair proteostasis. This also establishes phytohormones as bona fide plant mitokines. Our data ascertain that mitochondrial protein quality control pathways, such as the UPRmt, are conserved in plants and that hormone signaling is an essential mediator that regulates mitochondrial proteostasis.
Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Doxiciclina/farmacologia , Regulação da Expressão Gênica de Plantas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Mapas de Interação de Proteínas , Explosão Respiratória , Transdução de Sinais , Fatores de Tempo , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
The proper balance of synthesis, folding, modification, and degradation of proteins, also known as protein homeostasis, is vital to cellular health and function. The unfolded protein response (UPR) is activated when the mechanisms maintaining protein homeostasis in the endoplasmic reticulum become overwhelmed. However, prolonged or strong UPR responses can result in elevated inflammation and cellular damage. Previously, we discovered that the enzyme filamentation induced by cyclic-AMP (Fic) can modulate the UPR response via posttranslational modification of binding immunoglobulin protein (BiP) by AMPylation during homeostasis and deAMPylation during stress. Loss of fic in Drosophila leads to vision defects and altered UPR activation in the fly eye. To investigate the importance of Fic-mediated AMPylation in a mammalian system, we generated a conditional null allele of Fic in mice and characterized the effect of Fic loss on the exocrine pancreas. Compared to controls, Fic-/- mice exhibit elevated serum markers for pancreatic dysfunction and display enhanced UPR signaling in the exocrine pancreas in response to physiological and pharmacological stress. In addition, both fic-/- flies and Fic-/- mice show reduced capacity to recover from damage by stress that triggers the UPR. These findings show that Fic-mediated AMPylation acts as a molecular rheostat that is required to temper the UPR response in the mammalian pancreas during physiological stress. Based on these findings, we propose that repeated physiological stress in differentiated tissues requires this rheostat for tissue resilience and continued function over the lifetime of an animal.
Assuntos
AMP Cíclico , Proteínas de Drosophila , Drosophila melanogaster , Estresse do Retículo Endoplasmático , Nucleotidiltransferases , Estresse Fisiológico , Resposta a Proteínas não Dobradas , Animais , Camundongos , Alelos , AMP Cíclico/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Nucleotidiltransferases/deficiência , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/enzimologia , Pâncreas/metabolismo , Pâncreas/fisiopatologia , Estresse Fisiológico/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
RNA sequencing (RNA-seq) is a powerful technique for understanding cellular state and dynamics. However, comprehensive transcriptomic characterization of multiple RNA-seq datasets is laborious without bioinformatics training and skills. To remove the barriers to sequence data analysis in the research community, we have developed "RNAseqChef" (RNA-seq data controller highlighting expression features), a web-based platform of systematic transcriptome analysis that can automatically detect, integrate, and visualize differentially expressed genes and their biological functions. To validate its versatile performance, we examined the pharmacological action of sulforaphane (SFN), a natural isothiocyanate, on various types of cells and mouse tissues using multiple datasets in vitro and in vivo. Notably, SFN treatment upregulated the ATF6-mediated unfolded protein response in the liver and the NRF2-mediated antioxidant response in the skeletal muscle of diet-induced obese mice. In contrast, the commonly downregulated pathways included collagen synthesis and circadian rhythms in the tissues tested. On the server of RNAseqChef, we simply evaluated and visualized all analyzing data and discovered the NRF2-independent action of SFN. Collectively, RNAseqChef provides an easy-to-use open resource that identifies context-dependent transcriptomic features and standardizes data assessment.
Assuntos
Perfilação da Expressão Gênica , Internet , Isotiocianatos , RNA-Seq , Software , Sulfóxidos , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/normas , Isotiocianatos/farmacologia , Sulfóxidos/farmacologia , RNA-Seq/métodos , RNA-Seq/normas , Especificidade de Órgãos/efeitos dos fármacos , Reprodutibilidade dos Testes , Camundongos Obesos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fígado/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Antioxidantes/metabolismo , Visualização de DadosRESUMO
Senescence in bone marrow mesenchymal stem cells (BMSCs), triggered by excessive oxidative stress, plays a crucial role in the onset of postmenopausal osteoporosis. Recent studies underscore the importance of mitochondrial rehabilitation and quality control as key determinants in the modulation of oxidative stress and cellular senescence. MitoTEMPO, a mitochondria-targeted antioxidant, has been shown to mitigate the heightened levels of reactive oxygen species (ROS). In our research, we observed that BMSCs from ovariectomized (OVX) rats displayed premature senescence, which was attributed to combined mitochondrial and lysosomal dysfunction, a condition that worsens with extended estrogen deprivation. Treatment with MitoTEMPO effectively reversed these effects, reinstating lysosomal functionality and suppressing the mitochondrial unfolded protein response (UPRmt). Subsequent in vivo experiments corroborated these observations, revealing that MitoTEMPO administration in OVX rats curtailed trabecular bone loss and reduced the expression of p53, HSP60, and CLPP in the trabecular bone region of the proximal tibia. Overall, our findings suggest that MitoTEMPO holds promise as a therapeutic agent to counteract senescence in OVX-BMSCs, offering a potential strategy for treating postmenopausal osteoporosis.
Assuntos
Antioxidantes , Senescência Celular , Células-Tronco Mesenquimais , Mitocôndrias , Ovariectomia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Feminino , Senescência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ratos , Ratos Sprague-Dawley , Compostos Organotiofosforados/farmacologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Proteína Supressora de Tumor p53/metabolismo , Humanos , Compostos Organofosforados , PiperidinasRESUMO
BACKGROUND: The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved mitochondrial response that is critical for maintaining mitochondrial and energetic homeostasis under cellular stress after tissue injury and disease. Here, we ask whether UPRmt may be a potential therapeutic target for ischemic stroke. METHODS: We performed the middle cerebral artery occlusion and oxygen-glucose deprivation models to mimic ischemic stroke in vivo and in vitro, respectively. Oligomycin and meclizine were used to trigger the UPRmt. We used 2,3,5-triphenyltetrazolium chloride staining, behavioral tests, and Nissl staining to evaluate cerebral injury in vivo. The Cell Counting Kit-8 assay and the Calcein AM Assay Kit were conducted to test cerebral injury in vitro. RESULTS: Inducing UPRmt with oligomycin protected neuronal cultures against oxygen-glucose deprivation. UPRmt could also be triggered with meclizine, and this Food and Drug Administration-approved drug also protected neurons against oxygen-glucose deprivation. Blocking UPRmt with siRNA against activating transcription factor 5 eliminated the neuroprotective effects of meclizine. In a mouse model of focal cerebral ischemia, pretreatment with meclizine was able to induce UPRmt in vivo, which reduced infarction and improved neurological outcomes. CONCLUSIONS: These findings suggest that the UPRmt is important in maintaining the survival of neurons facing ischemic/hypoxic stress. The UPRmt mechanism may provide a new therapeutic avenue for ischemic stroke.
Assuntos
Isquemia Encefálica , Glucose , Mitocôndrias , Neurônios , Resposta a Proteínas não Dobradas , Animais , Masculino , Camundongos , Isquemia Encefálica/metabolismo , Células Cultivadas , Glucose/deficiência , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Oxigênio/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
The impact of primary and secondary injuries of spinal cord injury (SCI) results in the demise of numerous neurons, and there is still no efficacious pharmacological intervention for it. Recently, studies have shown that endoplasmic reticulum stress (ERS) plays a pivotal role in recovery of neurological function after spinal cord injury. As a process to cope with intracellular accumulation of misfolded and unfolded proteins which triggers ERS, the unfolded protein response (UPR) plays an important role in maintaining protein homeostasis. And, a recently disclosed small molecule AA147, which selectively activates activating transcription factor 6 (ATF6), has shown promising pharmacological effects in several disease models. Thus, it seems feasible to protect the neurons after spinal cord injury by modulating UPR. In this study, primary neurons were isolated from E17-19 C57BL/6J mouse embryos and we observed that AA147 effectively promoted the survival of neurons and alleviated neuronal apoptosis after oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro. This was evident through a decrease in the proportion of PI-positive and TUNEL-positive cells, an increase in BCL-2 expression, and a decrease in the expression of BAX and C-caspase3. In in-vivo experiments, these findings were corroborated by TUNEL staining and immunohistochemistry. It was also found that AA147 enhanced three arms of the unfolded protein response with reduced CHOP expression. Besides, AA147 mitigated the accumulation of ROS in neurons probably by upregulating catalase expression. Furthermore, spinal cord injury models of C57BL/6J mice were established and behavioral experiments revealed that AA147 facilitated the recovery of motor function following SCI. Thus, pharmacologic activation of ATF6 represents a promise therapeutic approach to ameliorate the prognosis of SCI.
Assuntos
Fator 6 Ativador da Transcrição , Sobrevivência Celular , Neurônios , Traumatismos da Medula Espinal , Animais , Feminino , Masculino , Camundongos , Fator 6 Ativador da Transcrição/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacosRESUMO
BACKGROUND: Resistance to chemotherapy is a major problem in the treatment of patients with triple-negative breast cancer (TNBC). Preclinical data suggest that TNBC is dependent on proteasomes; however, clinical observations indicate that the efficacy of proteasome inhibitors in TNBC may be limited, suggesting the need for combination therapies. METHODS: We compared bortezomib and carfilzomib and their combinations with nelfinavir and lopinavir in TNBC cell lines and primary cells with regard to their cytotoxic activity, functional proteasome inhibition, and induction of the unfolded protein response (UPR). Furthermore, we evaluated the involvement of sXBP1, ABCB1, and ABCG2 in the cytotoxic activity of drug combinations. RESULTS: Carfilzomib, via proteasome ß5 + ß2 inhibition, is more cytotoxic in TNBC than bortezomib, which inhibits ß5 + ß1 proteasome subunits. The cytotoxicity of carfilzomib was significantly potentiated by nelfinavir or lopinavir. Carfilzomib with lopinavir induced endoplasmic reticulum stress and pro-apoptotic UPR through the accumulation of excess proteasomal substrate protein in TNBC in vitro. Moreover, lopinavir increased the intracellular availability of carfilzomib by inhibiting carfilzomib export from cells that express high levels and activity of ABCB1, but not ABCG2. CONCLUSION: Proteasome inhibition by carfilzomib combined with nelfinavir/lopinavir represents a potential treatment option for TNBC, warranting further investigation.
Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Bortezomib , Sinergismo Farmacológico , Inibidores da Protease de HIV , Lopinavir , Nelfinavir , Oligopeptídeos , Neoplasias de Mama Triplo Negativas , Resposta a Proteínas não Dobradas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Oligopeptídeos/farmacologia , Inibidores da Protease de HIV/farmacologia , Nelfinavir/farmacologia , Linhagem Celular Tumoral , Lopinavir/farmacologia , Feminino , Bortezomib/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacosRESUMO
Hepatocellular carcinoma (HCC) is a common cause of cancer-associated death worldwide. The mitochondrial unfolded protein response (UPRmt) not only maintains mitochondrial integrity but also regulates cancer progression and drug resistance. However, no study has used the UPRmt to construct a prognostic signature for HCC. This work aimed to establish a novel signature for predicting patient prognosis, immune cell infiltration, immunotherapy, and chemotherapy response based on UPRmt-related genes (MRGs). Transcriptional profiles and clinical information were obtained from the TCGA and ICGC databases. Cox regression and LASSO regression analyses were applied to select prognostic genes and develop a risk model. The TIMER algorithm was used to investigate immunocytic infiltration in the high- and low-risk subgroups. Here, two distinct clusters were identified with different prognoses, immune cell infiltration statuses, drug sensitivities, and response to immunotherapy. A risk score consisting of seven MRGs (HSPD1, LONP1, SSBP1, MRPS5, YME1L1, HDAC1 and HDAC2) was developed to accurately and independently predict the prognosis of HCC patients. Additionally, the expression of core MRGs was confirmed by immunohistochemistry (IHC) staining, single-cell RNA sequencing, and spatial transcriptome analyses. Notably, the expression of prognostic MRGs was significantly correlated with sorafenib sensitivity in HCC and markedly downregulated in sorafenib-treated HepG2 and Huh7 cells. Furthermore, the knockdown of LONP1 decreased the proliferation, invasion, and migration of HepG2 cells, suggesting that upregulated LONP1 expression contributed to the malignant behaviors of HCC cells. To our knowledge, this is the first study to investigate the consensus clustering algorithm, prognostic potential, immune microenvironment infiltration and drug sensitivity based on the expression of MRGs in HCC. In summary, the UPRmt-related classification and prognostic signature could assist in determining the prognosis and personalized therapy of HCC patients from the perspectives of predictive, preventative and personalized medicine.
Assuntos
Carcinoma Hepatocelular , Imunoterapia , Neoplasias Hepáticas , Mitocôndrias , Sorafenibe , Resposta a Proteínas não Dobradas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/diagnóstico , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Prognóstico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Masculino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Feminino , Linhagem Celular TumoralRESUMO
The endoplasmic reticulum (ER) responds to cellular stress by initiating an unfolded protein response (UPR) that mitigates misfolded protein accumulation by promoting protein degradation pathways. Chronic ER stress leads to UPR-mediated apoptosis and is a common underlying feature of various diseases, highlighting the modulators of the UPR as attractive targets for therapeutic intervention. Ataxia-telangiectasia mutated protein kinase (ATM) is a stress-responsive kinase that initiates autophagy in response to reactive oxygen species (ROS), and ATM deficiency is associated with increased ER stress markers in vitro. However, whether ATM participates in the UPR remains unclear. In this in vitro study, a novel role for ATM in the ER stress response is described using the well-characterized HEK293 cells treated with the common ER stress-inducing agent, tunicamycin, with and without the potent ATM inhibitor, KU-60019. We show for the first time that ATM is activated in a time-dependent manner downstream of UPR initiation in response to tunicamycin treatment. Furthermore, we demonstrate that ATM is required for p62-bound protein cargo degradation through the autophagy pathway in response to ER stress. Lastly, our data suggest a protective role for ATM in ER stress-mediated oxidative stress and mitochondrial apoptosis. Taken together, we highlight ATM as a potential novel drug target in ER stress-related diseases.
Assuntos
Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Autofagia , Estresse do Retículo Endoplasmático , Estresse Oxidativo , Tunicamicina , Humanos , Autofagia/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismoRESUMO
PURPOSE: Rapid proliferation and nutrition starvation in the tumor microenvironment pose significant challenges to cellular protein homeostasis. The accumulation of misfolded proteins in the endoplasmic reticulum lumen induces stress on cells and causes irreversible damage to cells if unresolved. Emerging reports emphasize the influence of the tumor microenvironment on therapeutic molecule efficacy and treatment outcomes. Hence, we aimed to understand the influence of tamoxifen on the cellular adaptation to endoplasmic reticulum stress during metabolic stress in breast cancer cells. METHODS: Nutrition deprivation induces endoplasmic reticulum stress (ER stress), and the unfolded protein response (UPR) in breast cancer cells was confirmed by a Thioflavin B assay and western blotting. Tamoxifen-indued ER-phagy was studied using an MCD assay, confocal microscopy, and western blotting. RESULTS: Nutrition deprivation induces ER stress in breast cancer cells. Interestingly, tamoxifen modulates the nutrition deprivation-induced endoplasmic reticulum stress through enhancing the selective ER-phagy, a specialized autophagy. The tamoxifen-induced ER-phagy is mediated by AMPK activation. The pharmacological inhibition of AMPK blocks tamoxifen-induced ER-phagy and tamoxifen modulatory effect on ER stress during nutrition deprivation. CONCLUSION: Tamoxifen modulates ER stress by inducing ER-phagy through AMPK, thereby, may support breast cancer cell survival during nutrition deprivation conditions.
Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Neoplasias da Mama , Estresse do Retículo Endoplasmático , Tamoxifeno , Resposta a Proteínas não Dobradas , Humanos , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Autofagia/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Células MCF-7RESUMO
BACKGROUND: Tobacco smoking is the leading cause of preventable death and disease worldwide, with over 8 million annual deaths attributed to cigarette smoking. This study investigates the impact of cigarette smoke and heated tobacco products (HTPs) on microglial function, focusing on toxicological profiles, inflammatory responses, and oxidative stress using ISO standard and clinically relevant conditions of exposure. METHODS: We assessed cell viability, reactive oxygen species (ROS) production, lipid peroxidation, mitochondrial function, unfolded protein response, and inflammation in human microglial cells (HMC3) exposed to cigarette smoke, HTP aerosol or nicotine. RESULTS: Our findings show that cigarette smoke significantly reduces microglial viability, increases ROS formation, induces lipid peroxidation, and reduces intracellular glutathione levels. Cigarette smoke also alters the expression of genes involved in mitochondrial dynamics and biogenesis, leading to mitochondrial dysfunction. Additionally, cigarette smoke impairs the unfolded protein response, activates the NF-κB pathway, and induces a pro-inflammatory state characterized by increased TNF and IL-18 expression. Furthermore, cigarette smoke causes DNA damage and decreases the expression of the aging marker Klotho ß. In contrast, HTP, exhibited a lesser degree of microglial toxicity, with reduced ROS production, lipid peroxidation, and mitochondrial dysfunction compared to conventional cigarettes. CONCLUSION: These results highlight the differential toxicological profile of cigarette smoke and HTP on microglial cells, suggesting a potential harm reduction strategy for neurodegenerative disease for smokers unwilling or unable to quit.
Assuntos
Sobrevivência Celular , Inflamação , Peroxidação de Lipídeos , Microglia , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Fumaça , Produtos do Tabaco , Resposta a Proteínas não Dobradas , Estresse Oxidativo/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Produtos do Tabaco/efeitos adversos , Fumaça/efeitos adversos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Linhagem Celular , Temperatura Alta , NF-kappa B/metabolismo , Nicotiana/efeitos adversos , Dano ao DNARESUMO
AIMS: Septic cardiomyopathy is characterized by impaired contractile function and mitochondrial activity dysregulation. Salvianolic acid B (Sal B) is a potent therapeutic compound derived from the traditional Chinese medicine Salvia miltiorrhiza. This study explored the protective effects of Sal B on septic heart injury, emphasizing the mitochondrial unfolded protein response (UPRmt). MATERIALS AND METHODS: An in vivo mouse model of lipopolysaccharide (LPS)-induced heart injury was utilized to assess Sal B's protective role in septic cardiomyopathy. Additionally, cell models stimulated by LPS were developed to investigate the mechanisms of Sal B on UPRmt. Quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence were employed for molecular analysis. RESULTS: Sal B, administered at doses of 10, 30, and 60 mg/kg, demonstrated protective effects on cardiac contractile function, reduced heart inflammation, and mitigated cardiac injury in LPS-exposed mice. In cardiomyocytes, LPS induced apoptosis, elevated mitochondrial ROS levels, promoted mitochondrial fission, and decreased mitochondrial membrane potential, all of which were alleviated by Sal B. Mechanistically, Sal B was found to induce UPRmt both in vivo and in vitro. ATF5, identified as a UPRmt activator, was modulated by LPS and Sal B, resulting in increased ATF5 expression and its translocation from the cytosol to the nucleus. ATF5-siRNA delivery reversed UPRmt upregulation, exacerbating mitochondrial dysfunction in LPS-stimulated cardiomyocytes and counteracting the mitochondrial function enhancement in Sal B-treated cardiomyocytes. CONCLUSIONS: This study provides evidence that Sal B confers cardiac protection by enhancing UPRmt, highlighting its potential as a therapeutic approach for mitigating mitochondrial dysfunction in septic cardiomyopathy.
Assuntos
Benzofuranos , Cardiomiopatias , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas , Miócitos Cardíacos , Resposta a Proteínas não Dobradas , Animais , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/metabolismo , Benzofuranos/farmacologia , Camundongos , Masculino , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Lipopolissacarídeos/toxicidade , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , DepsídeosRESUMO
BACKGROUND: Histone deacetylase 6 (HDAC6) inhibitor CAY10603 has been identified as a potential therapeutic agent for the treatment of diabetic kidney disease (DKD). The objective of this study was to investigate the therapeutic effects of CAY10603 in mice with acute kidney injury (AKI) and chronic kidney diseases (CKD). METHODS: Renal immunohistology was performed to assess the expression levels of HDAC6 in both human and mouse kidney samples. C57BL/6J mice were intraperitoneal injected with lipopolysaccharide (LPS) to induce AKI; CD-1 mice were fed with adenine diet to induce adenine-nephropathy as CKD model. Serum creatinine, blood urea nitrogen and uric acid were measured to reflect renal function; renal histology was applied to assess kidney damage. Western blot and immunohistology were used to analyze the unfolded protein response (UPR) level. RESULTS: HDAC6 was significantly upregulated in renal tubular epithelial cells (RTECs) of both AKI and CKD patients as well as mice. In the murine models of AKI induced by LPS and adenine-induced nephropathy, CAY10603 exhibited notable protective effects, including improvement in biochemical indices and pathological changes. In vivo and in vitro studies revealed that CAY10603 effectively suppressed the activation of activating transcription factor 6 (ATF6) branch of UPR triggered by thapsigargin (Tg), a commonly employed endoplasmic reticulum (ER) stressor. Consistent with these findings, CAY10603 also displayed substantial inhibition of ATF6 activation in RTECs from both murine models of LPS-induced AKI and adenine-induced nephropathy. CONCLUSIONS: Collectively, these results suggest that CAY10603 holds promise as a potential therapeutic agent for both acute and chronic kidney injury.
Assuntos
Fator 6 Ativador da Transcrição , Injúria Renal Aguda , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica , Resposta a Proteínas não Dobradas , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Humanos , Fator 6 Ativador da Transcrição/metabolismo , Camundongos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/induzido quimicamente , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Masculino , Resposta a Proteínas não Dobradas/efeitos dos fármacos , LipopolissacarídeosRESUMO
BACKGROUND: Alzheimer's disease is a neurological disease characterized by the build-up of amyloid beta peptide (Aß) and lipopolysaccharide (LPS), which causes synapse dysfunction, cell death, and neuro-inflammation. A maladaptive unfolded protein response (UPR), excessive autophagy, and pyroptosis aggravate the disease. Melatonin (MEL) and hydroxybutyrate (BHB) have both shown promise in terms of decreasing Aß pathology. The goal of this study was to see how BHB and MEL affected the UPR, autophagy, and pyroptosis pathways in Aß1-42 and LPS-induced SH-SY5Y cells. MATERIALS AND METHODS: Human neuroblastoma SH-SY5Y cells were treated with BHB, MEL, or a combination of the two after being exposed to A ß1-42 and LPS. Cell viability was determined using the MTT test, and gene expression levels of UPR (ATF6, PERK, and CHOP), autophagy (Beclin-1, LC3II, P62, and Atg5), and pyroptosis-related markers (NLRP3, TXNIP, IL-1ß, and NFκB1) were determined using quantitative Real-Time PCR (qRT-PCR). For statistical analysis, one-way ANOVA was employed, followed by Tukey's post hoc test. RESULTS: BHB and MEL significantly increased SH-SY5Y cell viability in the presence of A ß1-42 and LPS. Both compounds inhibited the expression of maladaptive UPR and autophagy-related genes, as well as inflammatory and pyroptotic markers caused by Aß1-42 and LPS-induced SH-SY5Y cells. CONCLUSION: BHB and MEL rescue neurons in A ß1-42 and LPS-induced SH-SY5Y cells by reducing maladaptive UPR, excessive autophagy, and pyroptosis. More research is needed to fully comprehend the processes behind their beneficial effects and to discover their practical applications in the treatment of neurodegenerative disorders.
Assuntos
Ácido 3-Hidroxibutírico , Peptídeos beta-Amiloides , Autofagia , Lipopolissacarídeos , Melatonina , Fragmentos de Peptídeos , Piroptose , Resposta a Proteínas não Dobradas , Humanos , Melatonina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Autofagia/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Linhagem Celular Tumoral , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Ácido 3-Hidroxibutírico/farmacologia , Fragmentos de Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologiaRESUMO
BACKGROUND: CPUK02 (15-Oxosteviol benzyl ester) is a semi-synthetic derivative of stevioside known for its anticancer effects. It has been reported that the natural compound of stevioside and its associated derivatives enhances the sensitivity of cancer cells to conventional anti-cancer agents by inducing endoplasmic reticulum (ER) stress. In response to ER stress, autophagy and unfolded protein responses (UPR) are activated to restore cellular homeostasis. Consequently, the primary aim of this study is to investigate the impact of CPUK02 treatment on UPR and autophagy markers in two colorectal cancer cell lines. METHODS: HCT116 and SW480 cell lines were treated with various concentrations of CPUK02 for 72 h. The expression levels of several proteins and enzymes were evaluated to investigate the influence of CPUK02 on autophagy and UPR pathways. These include glucose-regulated protein 78 (GRP78), Inositol-requiring enzyme 1-α (IRE1-α), spliced X-box binding protein 1 (XBP-1 s), protein kinase R-like ER kinase (PERK), C/EBP homologous protein (CHOP), Beclin-1, P62 and Microtubule-associated protein 1 light chain 3 alpha (LC3ßII). The evaluation was conducted using western blotting and quantitative real-time PCR techniques. RESULTS: The results obtained indicate that the treatment with CPUK02 reduced the expression of UPR markers, including GRP78 and IRE1-α at protein levels and XBP-1 s, PERK, and CHOP at mRNA levels in both HCT116 and SW480 cell lines. Furthermore, CPUK02 also influenced autophagy by decreasing Beclin-1 and increasing P62 and LC3ßII at mRNA levels in both HCT116 and SW480 treated cells. CONCLUSIONS: The study findings suggest CPUK02 may exert its cytotoxic effects by inhibiting UPR and autophagy flux in colorectal cancer cells.