Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 493(7431): 181-6, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23222542

RESUMO

Cellulose, the most abundant biological macromolecule, is an extracellular, linear polymer of glucose molecules. It represents an essential component of plant cell walls but is also found in algae and bacteria. In bacteria, cellulose production frequently correlates with the formation of biofilms, a sessile, multicellular growth form. Cellulose synthesis and transport across the inner bacterial membrane is mediated by a complex of the membrane-integrated catalytic BcsA subunit and the membrane-anchored, periplasmic BcsB protein. Here we present the crystal structure of a complex of BcsA and BcsB from Rhodobacter sphaeroides containing a translocating polysaccharide. The structure of the BcsA-BcsB translocation intermediate reveals the architecture of the cellulose synthase, demonstrates how BcsA forms a cellulose-conducting channel, and suggests a model for the coupling of cellulose synthesis and translocation in which the nascent polysaccharide is extended by one glucose molecule at a time.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biocatálise , Membrana Celular/metabolismo , Celulose/metabolismo , Rhodobacter/química , Rhodobacter/metabolismo , Sequência de Aminoácidos , Transporte Biológico , Domínio Catalítico , Membrana Celular/química , Celulose/biossíntese , Cristalografia por Raios X , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína , Rhodobacter/citologia , Rhodobacter/enzimologia
2.
Arch Microbiol ; 200(10): 1487-1492, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30167725

RESUMO

An alkali-tolerant, Gram-stain-negative, motile, rod-to-oval-shaped, yellowish brown-colored, phototrophic bacterium, designated as strain JA916T, was isolated from an alkaline brown pond in Gujarat, India. The DNA G + C content of the strain JA916T was 65.1 mol%. Strain JA916T grew well at pH 10. Respiratory quinone was Q-10 and major fatty acid was C18:1ω7c/C18:1ω6c, with significant quantities of C15:02OH observed. Strain JA916T shared the highest 16S rRNA gene sequence similarity with the type strains of Rhodobacter johrii (98.4%), followed by Rhodobacter megalophilus (98.3%), Rhodobacter sphaeroides (98.3%), Rhodobacter azotoformans (97.9%) and other members of the genus Rhodobacter (< 97%). 16S rRNA gene-based phylogenetic tree shows that strain JA916T formed a distinct sub-clade with Rhodobacter johrii, Rhodobacter megalophilus, Rhodobacter sphaeroides and Rhodobacter azotoformans. Further, rpoB-based phylogenetic analysis showed lower similarity with closely related species (≤ 93.0%) of the genus Rhodobacter, which suggests that JA916T is a novel species of the genus Rhodobacter. DNA-DNA hybridization values between strain JA916T and related type strains were less than 40%. Phenotypic, chemotaxonomical and phylogenetic differences showed that strain JA916T was distinct from other species of the genus Rhodobacter, suggesting strain JA916T represents a new species of the genus for which the name Rhodobacter alkalitolerans sp. nov. is proposed. Type strain is JA916T (= KCTC 15473T = LMG 28749T).


Assuntos
Lagoas/microbiologia , Rhodobacter/classificação , Composição de Bases , DNA Bacteriano/química , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Rhodobacter/química , Rhodobacter/genética , Rhodobacter/isolamento & purificação
3.
Biochim Biophys Acta Bioenerg ; 1858(10): 847-853, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28760394

RESUMO

The ancient metabolism of photoferrotrophy is likely to have played a key role in the biogeochemical cycle of iron on Early Earth leading to the deposition of Banded Iron Formations prior to the emergence of oxygenic photosynthesis. Extant organisms still performing this metabolism provide a convenient window to peer into its molecular mechanisms. Here we report the molecular structure of FoxE, the putative terminal iron oxidase of Rhodobacter ferrooxidans SW2. This protein is organized as a trimer with two hemes and a disulfide bridge per monomer. The distance between hemes, their solvent exposure and the surface electrostatics ensure a controlled electron transfer rate. They also guarantee segregation between electron capture from ferrous iron and electron release to downstream acceptors, which do not favor the precipitation of ferric iron. Combined with the functional characterization of this protein, the structure reveals how iron oxidation can be performed in the periplasmic space of this Gram-negative bacterium at circumneutral pH, while minimizing the risk of mineral precipitation and cell encrustation.


Assuntos
Compostos Ferrosos/química , Ferro/química , Oxirredutases/química , Rhodobacter/química , Sequência de Aminoácidos , Dissulfetos/química , Transporte de Elétrons/fisiologia , Elétrons , Heme/química , Estrutura Molecular , Oxirredução , Oxigênio/química , Fotossíntese/fisiologia
4.
Biochemistry ; 55(20): 2821-31, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27074410

RESUMO

Translocator protein 18 kDa (TSPO) was previously known as the peripheral benzodiazepine receptor (PBR) in eukaryotes, where it is mainly localized to the mitochondrial outer membrane. Considerable evidence indicates that it plays regulatory roles in steroidogenesis and apoptosis and is involved in various human diseases, such as metastatic cancer, Alzheimer's and Parkinson's disease, inflammation, and anxiety disorders. Ligands of TSPO are widely used as diagnostic tools and treatment options, despite there being no clear understanding of the function of TSPO. An ortholog in the photosynthetic bacterium Rhodobacter was independently discovered as the tryptophan-rich sensory protein (TspO) and found to play a role in the response to changes in oxygen and light conditions that regulate photosynthesis and respiration. As part of this highly conserved protein family found in all three kingdoms, the rat TSPO is able to rescue the knockout phenotype in Rhodobacter, indicating functional as well as structural conservation. Recently, a major breakthrough in the field was achieved: the determination of atomic-resolution structures of TSPO from different species by several independent groups. This now allows us to reexamine the function of TSPO with a molecular perspective. In this review, we focus on recently determined structures of TSPO and their implications for potential functions of this ubiquitous multifaceted protein. We suggest that TSPO is an ancient bacterial receptor/stress sensor that has developed additional interactions, partners, and roles in its mitochondrial outer membrane environment in eukaryotes.


Assuntos
Evolução Molecular , Membranas Mitocondriais , Proteínas Mitocondriais , Receptores de GABA , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ratos , Receptores de GABA/química , Receptores de GABA/genética , Receptores de GABA/metabolismo , Rhodobacter/química , Rhodobacter/genética , Rhodobacter/metabolismo , Relação Estrutura-Atividade
5.
Org Biomol Chem ; 12(42): 8480-7, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25227873

RESUMO

Detergents are widely used for membrane protein research; however, membrane proteins encapsulated in micelles formed by conventional detergents tend to undergo structural degradation, necessitating the development of new agents with enhanced efficacy. Here we prepared several hydrophobic variants of ganglio-tripod amphiphiles (TPAs) derived from previously reported TPAs and evaluated for a multi-subunit, pigment protein superassembly. In this study, TPA-16 was found to be most efficient in protein solubilization while TPA-15 proved most favourable in long-term protein stability. The current study combined with previous TPA studies enabled us to elaborate on a few detergent structure-property relationships that could provide useful guidelines for novel amphiphile design.


Assuntos
Proteínas de Bactérias/química , Detergentes/química , Proteínas de Membrana/química , Micelas , Rhodobacter/química , Tensoativos/química , Proteínas de Bactérias/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/isolamento & purificação , Estabilidade Proteica , Solubilidade
6.
J Am Chem Soc ; 133(35): 14071-81, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21790140

RESUMO

In the Rhodobacter (Rba.) species of photosynthetic purple bacteria, a single transmembrane α-helix, PufX, is found within the core complex, an essential photosynthetic macromolecular assembly that performs the absorption and the initial processing of light energy. Despite its structural simplicity, many unresolved questions surround PufX, the most important of which is its location within the photosynthetic core complex. One proposed placement of PufX is at the center of a core complex dimer, where two PufX helices associate in the membrane and form a homodimer. Inability for PufX of certain Rba. species to form a homodimer is thought to lead to monomeric core complexes. In the present study, we employ a combination of computational and experimental techniques to test the hypothesized homodimerization of PufX. We carry out a systematic investigation to measure the dimerization affinity of PufX from four Rba. species, Rba. blasticus , Rba. capsulatus , Rba. sphaeroides , and Rba. veldkampii , using a molecular dynamics-based free-energy method, as well as experimental TOXCAT assays. We found that the four PufX helices have substantially different dimerization affinities. Both computational and experimental techniques demonstrate that species with dimeric core complexes have PufX that can potentially form a homodimer, whereas the one species with monomeric core complexes has a PufX with little to no dimerization propensity. Our analysis of the helix-helix interface revealed a number of positions that may be important for PufX dimerization and the formation of a hydrogen-bond network between these GxxxG-containing helices. Our results suggest that the different oligomerization states of core complexes in various Rba. species can be attributed, among other factors, to the different propensity of its PufX helix to homodimerize.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Rhodobacter/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Multimerização Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência
7.
Anal Chem ; 83(3): 719-26, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21208007

RESUMO

Nuclear magnetic resonance (NMR) has become a key technology in metabolomics, with the use of stable isotope labeling and advanced heteronuclear multidimensional NMR techniques. In this paper, we focus on the evaluation of extraction solvents to improve NMR-based methodologies for metabolomics. Line broadening is a serious barrier to detecting signals and the annotation of metabolites using multidimensional NMR. We evaluated a series of NMR solvents for easy and versatile single-step extraction using the (13)C-labeled photosynthetic bacterium Rhodobacter sphaeroides, which shows pronounced broadening of NMR signals. The performance of each extraction solvent was judged using 2D (1)H-(13)C heteronuclear single quantum coherence (HSQC) spectra, considering three metrics: (1) distribution of the line width at half height, (2) number of observed signals, and (3) the total observed signal intensity. Considering the total rank values for the three metrics, we chose methanol-d(4) (MeOD) as a semipolar extraction solvent that can sufficiently sharpen the line width and affords better-quality NMR spectra. We also evaluated the series of extraction solvents by means of inductively coupled plasma optical emission spectroscopy (ICP-OES) based ionomics approach. It was also indicated that MeOD is useful for excluding paramagnetic ions as well as macromolecules in an easy single-step extraction. MeOD extraction also appeared to be effective for other bacterial and animal samples. An additional advantage of this semipolar solvent is that it supplements the aqueous (polar) buffer system reported by many groups. The flexible, appropriate application of polar and semipolar extraction should contribute to the large-scale analysis of metabolites.


Assuntos
Metabolômica/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Solventes/química , Animais , Arabidopsis/química , Bombyx/química , Isótopos de Carbono/química , Escherichia coli/química , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Populus/química , Rhodobacter/química
8.
Front Immunol ; 12: 675909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113349

RESUMO

The lipopolysaccharides (LPSs) of Rhodobacter are reported to be TLR4 antagonists. Accordingly, the extract of Rhodobacter azotoformans (RAP99) is used as a health supplement for humans and animals in Japan to regulate immune responses in vivo. We previously analyzed the LPS structure of RAP99 (RAP99-LPS) and found it is different from that of E. coli-LPS but similar to lipid A from Rhodobacter sphaeroides (RSLA), a known antagonist of TLR4, with both having three C14 fatty acyl groups, two C10 fatty acyl groups, and two phosphates. Here we show that RAP99-LPS has an immune stimulatory activity and acts as a TLR4 agonist. Pretreatment of RAP99-LPS suppressed E. coli-LPS-mediated weight loss, suggesting it is an antagonist against E. coli-LPS like other LPS isolated from Rhodobacter. However, injections of RAP99-LPS caused splenomegaly and increased immune cell numbers in C57BL/6 mice but not in C3H/HeJ mice, suggesting that RAP99-LPS stimulates immune cells via TLR4. Consistently, RAP99-LPS suppressed the lung metastasis of B16F1 tumor cells and enhanced the expression of TLR3-mediated chemokines. These results suggest that RAP99-LPS is a TLR4 agonist that enhances the activation status of the immune system to promote anti-viral and anti-tumor activity in vivo.


Assuntos
Quimiocinas/genética , Lipopolissacarídeos/farmacologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Rhodobacter/química , Receptor 3 Toll-Like/fisiologia , Receptor 4 Toll-Like/agonistas , Animais , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Fator de Transcrição STAT3/fisiologia
9.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(10): 2807-11, 2010 Oct.
Artigo em Zh | MEDLINE | ID: mdl-21137426

RESUMO

The aim of this study is to reveal the interaction relationships between lauryl dimethylamine N-oxide (LDAO) and peripheral light-harvesting complex (LH2) as well as the influence of LDAO on structure and function of LH2. In the present work, the effects of LDAO on the conformation and release processes of bacteriochlorophyll (BChl) of LH2 when incubated under different temperature and pH in the presence and absence of LDAO were investigated by spectroscopy. The results indicated that (1) the presence of LDAO resulted in alterations in the conformation, alpha-helix content, and spectra of Tyr and B850 band of LH2 at room temperature and pH 8.0. Moreover, energy transfer efficiency of LH2 was enhanced markedly in the presence of LDAO. (2) At 60 degrees C, both the B800 and B850 band of LH2 were released and transited into free BChl at pH 8.0. However, the release rates of bacteriochlorophylls of B800 and B850 band from LH2 were slowed down and the release processes were changed when incubated in the presence of LDAO. Hence, the stability of LH2 was improved in the presence of LDAO. (3) The accelerated release processes of bacteriochlorophylls of B800 and B850 band of LH2 were induced to transform into bacteriopheophytin (BPhe) and free BChl by LDAO in strong acid and strong alkalic solution at room temperature. However, the kinetic patterns of the B800 and B850 band were remarkably different. The release and self-assemble processes of B850 in LH2 were observed in strong acid solution without LDAO. Therefore, the different release behaviors of B800 and B850 of LH2 are induced by LDAO under different extreme environmental conditions.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofilas/química , Dimetilaminas/química , Complexos de Proteínas Captadores de Luz/química , Rhodobacter/química , Transferência de Energia , Cinética , Feofitinas/química , Estrutura Secundária de Proteína
10.
Wei Sheng Wu Xue Bao ; 50(4): 500-5, 2010 Apr.
Artigo em Zh | MEDLINE | ID: mdl-20560353

RESUMO

OBJECTIVE: In order to reveal the relationships of compositions and content of pigment in pigment-protein complexes (PPC) and hydrogen photoevolution from anoxygenic phototrophic bacteria. METHODS: We isolated and identified pigment-protein complexes using a separation strategy of subsequent fractionated ammonium-sulfate precipitation, ion exchange column chromatography, absorption spectra and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) from hydrogen-producing Rhodobacter azotoformans R7. We investigated the characterizations of the peripheral light-harvesting complex (LH2) with an unusual absorption spectrum by surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS), high performance liquid chromatography-mass spectrometry (HPLC-MS) and fluorescence spectra. RESULTS: We acquired three types of PPC, the reaction center and core light-harvesting complex (RC-LH1) and two kinds of LH2, from strain R7 incubated anaerobically in the light. The two LH2 showed the different absorption spectra, one of them displayed unusual absorption spectrum with the maximum absorption band at 423 nm. The unusual LH2 consisted of two kinds of protein subunits with the molecular weight of 5556.8 Da and 5697.8 Da and carotenoid of spheroidene series with the molecular weight of 562 Da. It was also capable of transferring energy from carotenoid to bacterialcholorophyll and from B800 bacterialcholorophyll to B850 bacterialcholorophyll. CONCLUSIONS: Rhodobacter azotoformans R7 with hydrogen-producing capacity could photosynthesize two types of LH2 under anaerobically in the light, one of them presented novel spectral property.


Assuntos
Proteínas de Bactérias/química , Carotenoides/química , Dicroísmo Circular/métodos , Rhodobacter/química , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Carotenoides/farmacologia , Conformação Proteica
11.
Carbohydr Res ; 473: 104-114, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30658251

RESUMO

Lipopolysaccharides (LPS) are components of the Gram-negative bacterial cell surface that stimulate the host innate immune system through the Toll-like receptor (TLR) 4-MD-2 complex. Rhodobacter sp. have been reported to produce LPS that lack endotoxic activity, and instead act as antagonists of other endotoxins. In this report, we focused on LPS, especially the lipooligosaccharide (LOS) fraction produced by Rhodobacter azotoformans that shows production of IL-8, but has an inverse correlation with IL-6 production. We analyzed their molecular structure by using mass spectrometry and nuclear magnetic resonance spectroscopy and report a novel LOS consisting of a shorter glycan structure containing glucuronic acid but not heptoses. A novel glycan structure, Glcα(1 → 4)GlcAα(1 → 4)KDOα(2 → 4)[Glcα(1 → 5)]KDOα(2 → 6)[4-phosphate]GlcNß(1 → 6) GlcNα1-phosphate, was proposed using NMR methods. The structure was consistent with one obtained based on MS. The MS analysis further revealed the existence of structural variation caused by extension with hexoses. The acyl composition in lipid A was suggested to contain three C14 fatty acyl chains (3-OH-14:0 or 3-oxo-14:0 at N2 of GlcN-1, 3-OH-14:0 at N2 of GlcN-2, that carried another 14:1 Δ7 on its ß-hydroxyl group) and two C10 fatty acyl chains (3-OH-10:0 at O3 of both GlcN), which are same as those found in lipid A from Rhodobacter sphaeroides.


Assuntos
Lipopolissacarídeos/química , Rhodobacter/química , Hidrazinas/química , Concentração de Íons de Hidrogênio , Hidrólise
12.
Int J Biol Macromol ; 127: 240-249, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30641192

RESUMO

An exopolysaccharide (EPS) producing bacterial strain was isolated from the surface of marine macroalgae (Padina sp.). Based on polyphasic taxonomy, the strain CDR-SL 7Cii was assigned to the genus Rhodobacter and found to be the closest relative of the species Rhodobacter johrii. The strain was able to produce 6.2 g/l of EPS upon fermentation using R2A medium enriched with 2.5% glucose. FT-IR analysis revealed the presence of hydroxyl, carboxyl and diacyl-ester functional groups in the purified EPS. Further Chromatographic study revealed that R. johrii synthesized a high molecular weight anionic exopolysaccharide composed of glucose, glucuronic acid, rhamnose and galactose in a molar ratio of 3:1.5:0.25:0.25. The 1D and 2D NMR spectroscopy (COSY/HSQC) analysis revealed the presence of 1,6 linked-α-d-Glcp, 1,4 linked-ß-d-Glcp, 1,3 linked-ß-d-GlcA, 1,3 linked-ß-d-Galp, 1,6 linked-ß-d-Galf and 3-α-l-Rhmp residues. Moreover, the purified EPS has shown stability towards elevated temperature and also acted as a bio-emulsifier to create a high pH and temperature stable emulsion of hydrocarbon/water indicating its industrial potential. This is the first report of EPS production by a strain of Rhodobacter johrii.


Assuntos
Organismos Aquáticos , Temperatura Alta , Polissacarídeos Bacterianos , Rhodobacter , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Configuração de Carboidratos , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/isolamento & purificação , Rhodobacter/química , Rhodobacter/metabolismo
13.
Int J Biol Macromol ; 131: 74-80, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30851328

RESUMO

Rhodobacter sp. BT18, a phototrophic salt-resistant bacterium, was isolated from brackish water and screened for the production of exopolysaccharides (EPS). The effect of different light sources on the growth of Rhodobacter sp. BT18 was investigated. The effect on the growth order was found to be blue > white > green > red > yellow > dark. Based on Box-Behnken design, the studied variables (pH 7.0, 35 °C, and 30% of sucrose concentration under 60 h of incubation with blue light illumination) were found to be ideal for the maximum production of EPS (582.5 mg/L). Scanning electron microscopy images revealed the porous nature of EPS. Fourier transform spectroscopy and X-ray diffraction were applied to study the functional groups and the crystalline nature of the EPS, respectively. The emulsification index of the EPS was >75% and the maximum flocculating activity was about 75.4% at 30 mg/L concentration of EPS. In addition, EPS showed effective arsenic (64%) and lead (51%) chelating activities in liquid solutions. The multiple environmental applications of the EPS produced by Rhodobacter sp. BT18 make it be a promising alternative for emulsification, flocculation and metal removal in various industries.


Assuntos
Luz , Polissacarídeos Bacterianos/biossíntese , Rhodobacter/química , Rhodobacter/fisiologia , Águas Salinas , Microbiologia da Água , Quelantes/química , Quelantes/farmacologia , Emulsões , Concentração de Íons de Hidrogênio , Filogenia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , RNA Ribossômico 16S/genética , Rhodobacter/isolamento & purificação , Rhodobacter/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
14.
Nat Commun ; 10(1): 1191, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867430

RESUMO

Τhe morphology, physiology and immunology, of solid tumors exhibit spatial heterogeneity which complicates our understanding of cancer progression and therapy response. Understanding spatial heterogeneity necessitates high resolution in vivo imaging of anatomical and pathophysiological tumor information. We introduce Rhodobacter as bacterial reporter for multispectral optoacoustic (photoacoustic) tomography (MSOT). We show that endogenous bacteriochlorophyll a in Rhodobacter gives rise to strong optoacoustic signals >800 nm away from interfering endogenous absorbers. Importantly, our results suggest that changes in the spectral signature of Rhodobacter which depend on macrophage activity inside the tumor can be used to reveal heterogeneity of the tumor microenvironment. Employing non-invasive high resolution MSOT in longitudinal studies we show spatiotemporal changes of Rhodobacter spectral profiles in mice bearing 4T1 and CT26.WT tumor models. Accessibility of Rhodobacter to genetic modification and thus to sensory and therapeutic functions suggests potential for a theranostic platform organism.


Assuntos
Técnicas Biossensoriais/métodos , Macrófagos/imunologia , Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Rhodobacter/química , Nanomedicina Teranóstica/métodos , Animais , Bacterioclorofila A/química , Bacterioclorofila A/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Humanos , Estudos Longitudinais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/imunologia , Rhodobacter/metabolismo , Tomografia Computadorizada por Raios X/métodos , Microambiente Tumoral/imunologia
15.
J Mol Biol ; 228(2): 672-86, 1992 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-1453470

RESUMO

The molecular structure of the high-potential iron-sulfur protein (HiPIP) isolated from the phototrophic bacterium, Rhodocyclus tenuis, has been solved and refined to a nominal resolution of 1.5 A with a crystallographic R-factor of 17.3% for all measured X-ray data from 30 A to 1.5 A. It is the smallest of the HiPIP structures studied thus far with 62 amino acid residues. Crystals used in the investigation belonged to the space group P2(1) with unit cell dimensions of a = 36.7 A, b = 52.6 A, c = 27.6 A and beta = 90.8 degrees and contained two molecules per asymmetric unit. The structure was solved by a combination of multiple isomorphous replacement with two heavy-atom derivatives, anomalous scattering from the iron-sulfur cluster, symmetry averaging and solvent flattening. The folding motif for this HiPIP is characterized by one small alpha-helix, six Type I turns, an approximate Type II turn and one Type I' turn. As in other HiPIPs, the iron-sulfur cluster is co-ordinated by four cysteinyl ligands and exhibits a cubane-like motif. These cysteinyl ligands are all located in Type I turns. The hydrogen bonding around the metal cluster in the R. tenuis protein is similar to the patterns observed in the Chromatium vinosum and Ectothiorhodospira halophila HiPIPs. Several of the amino acid residues invariant in the previously determined C. vinosum and E. halophila structures are not retained in the R. tenuis molecule. There are 13 solvent molecules structurally conserved between the two R. tenuis HiPIP molecules in the asymmetric unit, some of which are important for stabilizing surface loops. Interestingly, while it is assumed that this HiPIP functions as a monomer in solution, the two molecules in the asymmetric unit pack as a dimer and are related to each other by an approximate twofold rotation axis.


Assuntos
Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter/química , Ligação de Hidrogênio , Oxirredução , Conformação Proteica , Difração de Raios X
16.
J Mol Biol ; 243(5): 891-905, 1994 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-7525973

RESUMO

The structure of the membrane channel porin from the phototrophic bacteria Rhodopseudomonas blastica has been refined at 1.96 A resolution yielding an R-factor of 17.6%. The final model consists of all 289 amino acid residues, 247 water molecules and three detergent molecules modelled as n-octyltetraoxyethylene. One of these detergent molecules binds together with its two symmetry-related molecules tightly in a pocket at the molecular 3-fold axis. This pocket may bind three alkyl chains of a lipopolysaccharide which in turn would stabilize the trimer and could possibly play a role in membrane insertion. The overall shape of this porin resembles OmpF of Escherichia coli more than the only known sequence-related porin from Rhodobacter capsulatus. The membrane contacting surface is similar in all structurally known porins; it shows exceptional frequencies of amino acid residues and side-chain rotamers. The 46-residue loop beta 5-beta 6 of the porin is shown to be tightly fastened to the beta-barrel, excluding an in vivo loop movement that closes the pore. The trimer interface region has the structure of a water-soluble protein with an extensive non-polar core and numerous hydrogen bonds at the surface. The loops at the external end of the barrel are long and rigid whereas those at the periplasmic barrel end are short and mobile. The crystal packing is discussed.


Assuntos
Canais Iônicos/química , Porinas/química , Rhodobacter/química , Rodopseudomonas/química , Sequência de Aminoácidos , Sequência de Bases , Cristalografia por Raios X , Ligação de Hidrogênio , Dados de Sequência Molecular , Estrutura Molecular , Conformação Proteica
17.
J Mol Biol ; 296(4): 1153-62, 2000 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-10686111

RESUMO

Many of the membrane-bound protein complexes of respiratory and photosynthetic systems are reactive with quinones. To date, no clear structural relationship between sites that bind quinone has been defined, apart from that in the homologous family of "type II" photosynthetic reaction centres. We show here that a structural element containing a weak sequence motif is common to the Q(A) and Q(B) sites of bacterial reaction centres and the Q(i) site of the mitochondrial bc(1) complex. Analyses of sequence databases indicate that this element may also be present in the PsaA/B subunits of photosystem I, in the ND4 and ND5 subunits of complex I and, possibly, in the mitochondrial alternative quinol oxidase. This represents a first step in the structural classification of quinone binding sites.


Assuntos
Benzoquinonas/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Chlamydomonas/química , Chlorobi/química , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Dados de Sequência Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I , Estrutura Terciária de Proteína , Rhodobacter/química , Homologia de Sequência de Aminoácidos , Vitamina K 1/metabolismo
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 137: 1153-7, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25305606

RESUMO

Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination.


Assuntos
Proteínas de Bactérias/química , Ficobiliproteínas/química , Protoporfirinas/química , Rhodobacter/química , Espectrofotometria/métodos
19.
FEBS Lett ; 368(2): 243-7, 1995 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-7628614

RESUMO

The peripheral light-harvesting bacteriochlorophyll-carotenoid-protein complex B800-850 (LHII) has been isolated from membranes of semi-aerobic dark-grown cells of Rhodobacter sulfidophilus strain W4. A reversed-phase HPLC system resolved one beta- and one alpha-polypeptide in the ratio 1:1. The material obtained was of high purity and suitable for direct microsequence analysis. The primary structures of the beta- and alpha-polypeptides have been determined. The beta-polypeptide consists of 51 amino acid residues, yielding a molecular mass of 5512 Da and having 64.7% hydrophobicity. The alpha-polypeptide consists of 52 amino acid residues, with a calculated molecular mass of 5661 Da and 75% hydrophobicity. The significance of uncommon structure motives with respect to the unusual spectroscopic characteristics of this light-harvesting complex is discussed.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter/química , Sequência de Aminoácidos , Membrana Celular/química , Cromatografia Líquida de Alta Pressão/métodos , Dados de Sequência Molecular , Peso Molecular , Fragmentos de Peptídeos/isolamento & purificação , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Análise de Sequência
20.
Antioxid Redox Signal ; 3(5): 825-38, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11761330

RESUMO

The application of electronic structure methods to the prediction of geometries, spin densities, and hyperfine couplings for biologically relevant quinones and semiquinones is reviewed. It is demonstrated that hybrid-type density functional methods are particularly suitable for such studies. Hydrogen bonding to the semiquinone oxygen by appropriate donors is shown to lead to a redistribution of spin density in the carbonyl group of the semiquinone. Experimental trends are well reproduced by the calculated values. Symmetric and asymmetric models of hydrogen bonding are modelled. It is shown that the symmetric models give good agreement with solution studies in vitro. The asymmetric models of hydrogen bonding give quite good agreement with values measured for in vivo semiquinones generated in the reaction centres of the purple photosynthetic bacterium, Rb sphaeroides, and also for the phyllosemiquinone free radical formed during electron transfer in Photosystem I of green plants. These recent advances in electronic structure calculations, in particular the applicability of density functional methods to the study of free radical properties, have opened up an exciting avenue for the complete characterisation of their electronic properties. In particular, the combination of experimental methods of electron paramagnetic resonance and such calculations should in future provide a clearer understanding of free radical chemistry in many areas of biology.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Quinonas/química , Radicais Livres , Ligação de Hidrogênio , Modelos Químicos , Oxirredução , Oxigênio/metabolismo , Rhodobacter/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA