RESUMO
Eukaryotic 60S ribosomal subunits are comprised of three rRNAs and â¼50 ribosomal proteins. The initial steps of their formation take place in the nucleolus, but, owing to a lack of structural information, this process is poorly understood. Using cryo-EM, we solved structures of early 60S biogenesis intermediates at 3.3 Å to 4.5 Å resolution, thereby providing insights into their sequential folding and assembly pathway. Besides revealing distinct immature rRNA conformations, we map 25 assembly factors in six different assembly states. Notably, the Nsa1-Rrp1-Rpf1-Mak16 module stabilizes the solvent side of the 60S subunit, and the Erb1-Ytm1-Nop7 complex organizes and connects through Erb1's meandering N-terminal extension, eight assembly factors, three ribosomal proteins, and three 25S rRNA domains. Our structural snapshots reveal the order of integration and compaction of the six major 60S domains within early nucleolar 60S particles developing stepwise from the solvent side around the exit tunnel to the central protuberance.
Assuntos
Chaetomium/química , Biogênese de Organelas , Subunidades Ribossômicas Maiores de Eucariotos/química , Chaetomium/citologia , Microscopia Crioeletrônica , Redes e Vias Metabólicas , Modelos Moleculares , Dobramento de RNA , Ribonucleoproteínas/químicaRESUMO
RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.
Assuntos
Condensados Biomoleculares , Transição de Fase , Proteínas de Ligação a RNA , RNA , Ribonucleoproteínas , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Humanos , RNA/metabolismo , RNA/química , RNA/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , AnimaisRESUMO
Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs.
Assuntos
Ribonuclease P/química , Ribonucleoproteínas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/enzimologia , Telomerase/química , Endorribonucleases/química , Endorribonucleases/metabolismo , Imunoprecipitação , Espectrometria de Massas , Modelos Moleculares , RNA Fúngico/metabolismo , Ribonuclease P/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telomerase/metabolismoRESUMO
Throughout their lifetimes, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Since the discovery of the first mRNP component more than 40 years ago, what is known as the mRNA interactome now comprises >1,000 proteins. These proteins bind mRNAs in myriad ways with varying affinities and stoichiometries, with many assembling onto nascent RNAs in a highly ordered process during transcription and precursor mRNA (pre-mRNA) processing. The nonrandom distribution of major mRNP proteins observed in transcriptome-wide studies leads us to propose that mRNPs are organized into three major domains loosely corresponding to 5' untranslated regions (UTRs), open reading frames, and 3' UTRs. Moving from the nucleus to the cytoplasm, mRNPs undergo extensive remodeling as they are first acted upon by the nuclear pore complex and then by the ribosome. When not being actively translated, cytoplasmic mRNPs can assemble into large multi-mRNP assemblies or be permanently disassembled and degraded. In this review, we aim to give the reader a thorough understanding of past and current eukaryotic mRNP research.
Assuntos
Ribonucleoproteínas/química , Transporte Ativo do Núcleo Celular , Animais , Humanos , Biossíntese de Proteínas , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transcrição GênicaRESUMO
Eukaryotic gene expression is the result of the integrated action of multimolecular machineries. These machineries associate with gene transcripts, often already nascent precursor messenger RNAs (pre-mRNAs). They rebuild the transcript and convey properties allowing the processed transcript, the mRNA, to be exported to the cytoplasm, quality controlled, stored, translated, and degraded. To understand these integrated processes, one must understand the temporal and spatial aspects of the fate of the gene transcripts in relation to interacting molecular machineries. Improved methodology is necessary to study gene expression in vivo for endogenous genes. A complementary approach is to study biological systems that provide exceptional experimental possibilities. We describe such a system, the Balbiani ring (BR) genes in polytene cells in the dipteran Chironomus tentans. The BR genes, along with their pre-mRNA-protein complexes (pre-mRNPs) and mRNA-protein complexes (mRNPs), allow the visualization of intact cell nuclei and enable analyses of where and when different molecular machineries associate with and act on the BR pre-mRNAs and mRNAs.
Assuntos
Chironomidae/citologia , Chironomidae/genética , Puffs Cromossômicos/metabolismo , Ribonucleoproteínas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Puffs Cromossômicos/química , Puffs Cromossômicos/genética , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/química , Ribonucleoproteínas/genéticaRESUMO
Nuclear pore complexes (NPCs) influence gene expression besides their established function in nuclear transport. The TREX-2 complex localizes to the NPC basket and affects gene-NPC interactions, transcription, and mRNA export. How TREX-2 regulates the gene expression machinery is unknown. Here, we show that TREX-2 interacts with the Mediator complex, an essential regulator of RNA Polymerase (Pol) II. Structural and biochemical studies identify a conserved region on TREX-2, which directly binds the Mediator Med31/Med7N submodule. TREX-2 regulates assembly of Mediator with the Cdk8 kinase and is required for recruitment and site-specific phosphorylation of Pol II. Transcriptome and phenotypic profiling confirm that TREX-2 and Med31 are functionally interdependent at specific genes. TREX-2 additionally uses its Mediator-interacting surface to regulate mRNA export suggesting a mechanism for coupling transcription initiation and early steps of mRNA processing. Our data provide mechanistic insight into how an NPC-associated adaptor complex accesses the core transcription machinery.
Assuntos
Complexo Mediador/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Porinas/química , Porinas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Porinas/genética , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Polimerase II/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Transcriptoma , Difração de Raios XRESUMO
Noncoding RNAs (ncRNAs) accomplish a remarkable variety of biological functions. They regulate gene expression at the levels of transcription, RNA processing, and translation. They protect genomes from foreign nucleic acids. They can guide DNA synthesis or genome rearrangement. For ribozymes and riboswitches, the RNA structure itself provides the biological function, but most ncRNAs operate as RNA-protein complexes, including ribosomes, snRNPs, snoRNPs, telomerase, microRNAs, and long ncRNAs. Many, though not all, ncRNAs exploit the power of base pairing to selectively bind and act on other nucleic acids. Here, we describe the pathway of ncRNA research, where every established "rule" seems destined to be overturned.
Assuntos
RNA não Traduzido/química , RNA não Traduzido/metabolismo , Animais , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Genoma , Humanos , RNA Catalítico/química , RNA Catalítico/metabolismo , RNA Longo não Codificante/metabolismo , RNA não Traduzido/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismoRESUMO
Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40Sâ eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA.
Assuntos
Fator de Iniciação 1 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/química , Iniciação Traducional da Cadeia Peptídica , Subunidades Ribossômicas Menores de Eucariotos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Fator de Iniciação 1 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Hepacivirus/química , Humanos , Mamíferos/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Ribonucleoproteínas/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de SequênciaRESUMO
Mitochondrial ribosomes (mitoribosomes) synthesize proteins encoded within the mitochondrial genome that are assembled into oxidative phosphorylation complexes. Thus, mitoribosome biogenesis is essential for ATP production and cellular metabolism1. Here we used cryo-electron microscopy to determine nine structures of native yeast and human mitoribosomal small subunit assembly intermediates, illuminating the mechanistic basis for how GTPases are used to control early steps of decoding centre formation, how initial rRNA folding and processing events are mediated, and how mitoribosomal proteins have active roles during assembly. Furthermore, this series of intermediates from two species with divergent mitoribosomal architecture uncovers both conserved principles and species-specific adaptations that govern the maturation of mitoribosomal small subunits in eukaryotes. By revealing the dynamic interplay between assembly factors, mitoribosomal proteins and rRNA that are required to generate functional subunits, our structural analysis provides a vignette for how molecular complexity and diversity can evolve in large ribonucleoprotein assemblies.
Assuntos
Microscopia Crioeletrônica , Ribossomos Mitocondriais , Ribonucleoproteínas , Subunidades Ribossômicas Menores , Saccharomyces cerevisiae , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/ultraestrutura , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , RNA Ribossômico , GTP Fosfo-Hidrolases , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/ultraestrutura , Subunidades Ribossômicas Menores/química , Subunidades Ribossômicas Menores/metabolismo , Subunidades Ribossômicas Menores/ultraestruturaRESUMO
The molecular processes that contribute to degenerative diseases are not well understood. Recent observations suggest that some degenerative diseases are promoted by the accumulation of nuclear or cytoplasmic RNA-protein (RNP) aggregates, which can be related to endogenous RNP granules. RNP aggregates arise commonly in degenerative diseases because RNA-binding proteins commonly self-assemble, in part through prion-like domains, which can form self-propagating amyloids. RNP aggregates may be toxic due to multiple perturbations of posttranscriptional control, thereby disrupting the normal "ribostasis" of the cell. This suggests that understanding and modulating RNP assembly or clearance may be effective approaches to developing therapies for these diseases.
Assuntos
Doenças Neurodegenerativas/patologia , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Animais , Grânulos Citoplasmáticos/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína , RNA/química , RNA/metabolismoRESUMO
Eukaryotic genomes generate a heterogeneous ensemble of mRNAs and long noncoding RNAs (lncRNAs). LncRNAs and mRNAs are both transcribed by Pol II and acquire 5' caps and poly(A) tails, but only mRNAs are translated into proteins. To address how these classes are distinguished, we identified the transcriptome-wide targets of 13 RNA processing, export, and turnover factors in budding yeast. Comparing the maturation pathways of mRNAs and lncRNAs revealed that transcript fate is largely determined during 3' end formation. Most lncRNAs are targeted for nuclear RNA surveillance, but a subset with 3' cleavage and polyadenylation features resembling the mRNA consensus can be exported to the cytoplasm. The Hrp1 and Nab2 proteins act at this decision point, with dual roles in mRNA cleavage/polyadenylation and lncRNA surveillance. Our data also reveal the dynamic and heterogeneous nature of mRNA maturation, and highlight a subset of "lncRNA-like" mRNAs regulated by the nuclear surveillance machinery.
Assuntos
RNA Fúngico/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Processamento Pós-Transcricional do RNA , RNA Fúngico/química , RNA Longo não Codificante/química , RNA Mensageiro/química , Ribonucleoproteínas/química , Saccharomyces cerevisiae/genéticaRESUMO
Eukaryotic translation initiation begins with assembly of a 43S preinitiation complex. First, methionylated initiator methionine transfer RNA (Met-tRNAi(Met)), eukaryotic initiation factor (eIF) 2, and guanosine triphosphate form a ternary complex (TC). The TC, eIF3, eIF1, and eIF1A cooperatively bind to the 40S subunit, yielding the 43S preinitiation complex, which is ready to attach to messenger RNA (mRNA) and start scanning to the initiation codon. Scanning on structured mRNAs additionally requires DHX29, a DExH-box protein that also binds directly to the 40S subunit. Here, we present a cryo-electron microscopy structure of the mammalian DHX29-bound 43S complex at 11.6 Å resolution. It reveals that eIF2 interacts with the 40S subunit via its α subunit and supports Met-tRNAi(Met) in an unexpected P/I orientation (eP/I). The structural core of eIF3 resides on the back of the 40S subunit, establishing two principal points of contact, whereas DHX29 binds around helix 16. The structure provides insights into eukaryote-specific aspects of translation, including the mechanism of action of DHX29.
Assuntos
Mamíferos/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Helicases/química , RNA Ribossômico/química , Ribonucleoproteínas/química , Animais , Sequência de Bases , Sistema Livre de Células , Microscopia Crioeletrônica , Fator de Iniciação 2 em Eucariotos/química , Fator de Iniciação 2 em Eucariotos/metabolismo , Humanos , Mamíferos/genética , Modelos Moleculares , Dados de Sequência Molecular , RNA Helicases/metabolismo , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/química , RNA Ribossômico 18S/metabolismo , Coelhos , Ribonucleoproteínas/metabolismoRESUMO
Many bacteria contain an ortholog of the Ro autoantigen, a ring-shaped protein that binds noncoding RNAs (ncRNAs) called Y RNAs. In the only studied bacterium, Deinococcus radiodurans, the Ro ortholog Rsr functions in heat-stress-induced ribosomal RNA (rRNA) maturation and starvation-induced rRNA decay. However, the mechanism by which this conserved protein and its associated ncRNAs act has been obscure. We report that Rsr and the exoribonuclease polynucleotide phosphorylase (PNPase) form an RNA degradation machine that is scaffolded by Y RNA. Single-particle electron microscopy, followed by docking of atomic models into the reconstruction, suggests that Rsr channels single-stranded RNA into the PNPase cavity. Biochemical assays reveal that Rsr and Y RNA adapt PNPase for effective degradation of structured RNAs. A Ro ortholog and ncRNA also associate with PNPase in Salmonella Typhimurium. Our studies identify another ribonucleoprotein machine and demonstrate that ncRNA, by tethering a protein cofactor, can alter the substrate specificity of an enzyme.
Assuntos
Deinococcus/química , Complexo Multienzimático de Ribonucleases do Exossomo/química , Estabilidade de RNA , RNA Bacteriano/química , RNA não Traduzido/metabolismo , Ribonucleoproteínas/metabolismo , Salmonella typhimurium/metabolismo , Animais , Sequência de Bases , Deinococcus/genética , Deinococcus/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Dados de Sequência Molecular , Polirribonucleotídeo Nucleotidiltransferase/química , Polirribonucleotídeo Nucleotidiltransferase/ultraestrutura , RNA Bacteriano/ultraestrutura , RNA não Traduzido/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Xenopus laevis/metabolismoRESUMO
In addition to sculpting eukaryotic transcripts by removing introns, pre-mRNA splicing greatly impacts protein composition of the emerging mRNP. The exon junction complex (EJC), deposited upstream of exon-exon junctions after splicing, is a major constituent of spliced mRNPs. Here, we report comprehensive analysis of the endogenous human EJC protein and RNA interactomes. We confirm that the major "canonical" EJC occupancy site in vivo lies 24 nucleotides upstream of exon junctions and that the majority of exon junctions carry an EJC. Unexpectedly, we find that endogenous EJCs multimerize with one another and with numerous SR proteins to form megadalton sized complexes in which SR proteins are super-stoichiometric to EJC core factors. This tight physical association may explain known functional parallels between EJCs and SR proteins. Further, their protection of long mRNA stretches from nuclease digestion suggests that endogenous EJCs and SR proteins cooperate to promote mRNA packaging and compaction.
Assuntos
Éxons , Proteoma/análise , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Humanos , Complexos Multiproteicos/análise , Precursores de RNA/metabolismo , Splicing de RNARESUMO
Nonmembrane-bound organelles such as RNA granules behave like dynamic droplets, but the molecular details of their assembly are poorly understood. Several recent papers identify structural features that drive granule assembly, shedding light on how phase transitions functionally organize the cell and may lead to pathological protein aggregation.
Assuntos
Proteínas/química , RNA/química , Ribonucleoproteínas/química , Animais , Núcleo Celular/metabolismo , Fenômenos Fisiológicos Celulares , Citoplasma/metabolismo , Humanos , Proteínas/metabolismo , RNA/metabolismoRESUMO
Cellular granules lacking boundary membranes harbor RNAs and their associated proteins and play diverse roles controlling the timing and location of protein synthesis. Formation of such granules was emulated by treatment of mouse brain extracts and human cell lysates with a biotinylated isoxazole (b-isox) chemical. Deep sequencing of the associated RNAs revealed an enrichment for mRNAs known to be recruited to neuronal granules used for dendritic transport and localized translation at synapses. Precipitated mRNAs contain extended 3' UTR sequences and an enrichment in binding sites for known granule-associated proteins. Hydrogels composed of the low complexity (LC) sequence domain of FUS recruited and retained the same mRNAs as were selectively precipitated by the b-isox chemical. Phosphorylation of the LC domain of FUS prevented hydrogel retention, offering a conceptual means of dynamic, signal-dependent control of RNA granule assembly.
Assuntos
Encéfalo/citologia , RNA/análise , RNA/metabolismo , Ribonucleoproteínas/química , Animais , Biotinilação , Encéfalo/metabolismo , Linhagem Celular , Sistema Livre de Células , Humanos , Isoxazóis/metabolismo , Camundongos , Transporte de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismoRESUMO
Telomerase adds telomeric repeats at chromosome ends to compensate for the telomere loss that is caused by incomplete genome end replication1. In humans, telomerase is upregulated during embryogenesis and in cancers, and mutations that compromise the function of telomerase result in disease2. A previous structure of human telomerase at a resolution of 8 Å revealed a vertebrate-specific composition and architecture3, comprising a catalytic core that is flexibly tethered to an H and ACA (hereafter, H/ACA) box ribonucleoprotein (RNP) lobe by telomerase RNA. High-resolution structural information is necessary to develop treatments that can effectively modulate telomerase activity as a therapeutic approach against cancers and disease. Here we used cryo-electron microscopy to determine the structure of human telomerase holoenzyme bound to telomeric DNA at sub-4 Å resolution, which reveals crucial DNA- and RNA-binding interfaces in the active site of telomerase as well as the locations of mutations that alter telomerase activity. We identified a histone H2A-H2B dimer within the holoenzyme that was bound to an essential telomerase RNA motif, which suggests a role for histones in the folding and function of telomerase RNA. Furthermore, this structure of a eukaryotic H/ACA RNP reveals the molecular recognition of conserved RNA and protein motifs, as well as interactions that are crucial for understanding the molecular pathology of many mutations that cause disease. Our findings provide the structural details of the assembly and active site of human telomerase, which paves the way for the development of therapeutic agents that target this enzyme.
Assuntos
Microscopia Crioeletrônica , DNA/química , DNA/ultraestrutura , Telomerase/química , Telomerase/ultraestrutura , Telômero , Sítios de Ligação , Domínio Catalítico , DNA/genética , DNA/metabolismo , Histonas/química , Histonas/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/ultraestrutura , Humanos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA/química , RNA/metabolismo , RNA/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Telômero/ultraestruturaRESUMO
Telomerase is unique among the reverse transcriptases in containing a noncoding RNA (known as telomerase RNA (TER)) that includes a short template that is used for the processive synthesis of G-rich telomeric DNA repeats at the 3' ends of most eukaryotic chromosomes1. Telomerase maintains genomic integrity, and its activity or dysregulation are critical determinants of human longevity, stem cell renewal and cancer progression2,3. Previous cryo-electron microscopy structures have established the general architecture, protein components and stoichiometries of Tetrahymena and human telomerase, but our understandings of the details of DNA-protein and RNA-protein interactions and of the mechanisms and recruitment involved remain limited4-6. Here we report cryo-electron microscopy structures of active Tetrahymena telomerase with telomeric DNA at different steps of nucleotide addition. Interactions between telomerase reverse transcriptase (TERT), TER and DNA reveal the structural basis of the determination of the 5' and 3' template boundaries, handling of the template-DNA duplex and separation of the product strand during nucleotide addition. The structure and binding interface between TERT and telomerase protein p50 (a homologue of human TPP17,8) define conserved interactions that are required for telomerase activation and recruitment to telomeres. Telomerase La-related protein p65 remodels several regions of TER, bridging the 5' and 3' ends and the conserved pseudoknot to facilitate assembly of the TERT-TER catalytic core.
Assuntos
Microscopia Crioeletrônica , Telomerase/química , Telomerase/metabolismo , Telômero/metabolismo , Tetrahymena thermophila/enzimologia , Motivos de Aminoácidos , Sítios de Ligação , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Humanos , Modelos Moleculares , Nucleotídeos , Ligação Proteica , RNA/química , RNA/metabolismo , RNA/ultraestrutura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestrutura , Complexo Shelterina/química , Complexo Shelterina/metabolismo , Telomerase/ultraestrutura , Telômero/genética , Telômero/ultraestrutura , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Moldes Genéticos , Tetrahymena thermophila/ultraestruturaRESUMO
Liquid granules rich in intrinsically disordered proteins and RNA play key roles in critical cellular functions such as RNA processing and translation. Many details of the mechanism via which this occurs remain to be elucidated. Motivated by the lacuna in the field and by the prospects of developing de novo artificial granules that provide extrinsic control of translation, we report a bottom-up approach to engineer ribonucleoprotein granules composed of a recombinant RNA-binding IDP that exhibits phase behavior in water. We developed a kinetic model to illustrate that these granules inhibit translation through reversible or irreversible sequestration of mRNA. Within monodisperse droplets capable of transcription and translation, we experimentally demonstrate temporal inhibition of translation by using designer IDPs that exhibit tunable phase behavior. This work lays the foundation for developing artificial granules that promise to further our mechanistic understanding of their naturally occurring counterparts.
Assuntos
Células Artificiais/metabolismo , Grânulos Citoplasmáticos/genética , Proteínas Intrinsicamente Desordenadas/genética , Peptidomiméticos/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Sequência de Aminoácidos , Células Artificiais/citologia , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Biológicos , Peptidomiméticos/química , Transição de Fase , Plasmídeos/genética , Plasmídeos/metabolismo , Biossíntese de Proteínas , Engenharia de Proteínas/métodos , RNA/genética , RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismoRESUMO
The viral genome of SARS-CoV-2 is packaged by the nucleocapsid (N-)protein into ribonucleoprotein particles (RNPs), 38 ± 10 of which are contained in each virion. Their architecture has remained unclear due to the pleomorphism of RNPs, the high flexibility of N-protein intrinsically disordered regions, and highly multivalent interactions between viral RNA and N-protein binding sites in both N-terminal (NTD) and C-terminal domain (CTD). Here we explore critical interaction motifs of RNPs by applying a combination of biophysical techniques to ancestral and mutant proteins binding different nucleic acids in an in vitro assay for RNP formation, and by examining nucleocapsid protein variants in a viral assembly assay. We find that nucleic acid-bound N-protein dimers oligomerize via a recently described protein-protein interface presented by a transient helix in its long disordered linker region between NTD and CTD. The resulting hexameric complexes are stabilized by multivalent protein-nucleic acid interactions that establish crosslinks between dimeric subunits. Assemblies are stabilized by the dimeric CTD of N-protein offering more than one binding site for stem-loop RNA. Our study suggests a model for RNP assembly where N-protein scaffolding at high density on viral RNA is followed by cooperative multimerization through protein-protein interactions in the disordered linker.