Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.023
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(16): 4315-4328.e17, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34197734

RESUMO

An ability to build structured mental maps of the world underpins our capacity to imagine relationships between objects that extend beyond experience. In rodents, such representations are supported by sequential place cell reactivations during rest, known as replay. Schizophrenia is proposed to reflect a compromise in structured mental representations, with animal models reporting abnormalities in hippocampal replay and associated ripple activity during rest. Here, utilizing magnetoencephalography (MEG), we tasked patients with schizophrenia and control participants to infer unobserved relationships between objects by reorganizing visual experiences containing these objects. During a post-task rest session, controls exhibited fast spontaneous neural reactivation of presented objects that replayed inferred relationships. Replay was coincident with increased ripple power in hippocampus. Patients showed both reduced replay and augmented ripple power relative to controls, convergent with findings in animal models. These abnormalities are linked to impairments in behavioral acquisition and subsequent neural representation of task structure.


Assuntos
Aprendizagem , Neurônios/patologia , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Ritmo alfa/fisiologia , Comportamento , Mapeamento Encefálico , Feminino , Hipocampo/fisiopatologia , Humanos , Magnetoencefalografia , Masculino , Modelos Biológicos , Análise e Desempenho de Tarefas
2.
PLoS Biol ; 22(6): e3002651, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889194

RESUMO

Alpha oscillations play a vital role in managing the brain's resources, inhibiting neural activity as a function of their phase and amplitude, and are changed in many brain disorders. Developing minimally invasive tools to modulate alpha activity and identifying the parameters that determine its response to exogenous modulators is essential for the implementation of focussed interventions. We introduce Alpha Closed-Loop Auditory Stimulation (αCLAS) as an EEG-based method to modulate and investigate these brain rhythms in humans with specificity and selectivity, using targeted auditory stimulation. Across a series of independent experiments, we demonstrate that αCLAS alters alpha power, frequency, and connectivity in a phase, amplitude, and topography-dependent manner. Using single-pulse-αCLAS, we show that the effects of auditory stimuli on alpha oscillations can be explained within the theoretical framework of oscillator theory and a phase-reset mechanism. Finally, we demonstrate the functional relevance of our approach by showing that αCLAS can interfere with sleep onset dynamics in a phase-dependent manner.


Assuntos
Estimulação Acústica , Ritmo alfa , Eletroencefalografia , Humanos , Estimulação Acústica/métodos , Masculino , Adulto , Ritmo alfa/fisiologia , Eletroencefalografia/métodos , Feminino , Adulto Jovem , Sono/fisiologia , Encéfalo/fisiologia
3.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38548339

RESUMO

Perception is a probabilistic process dependent on external stimulus properties and one's internal state. However, which internal states influence perception and via what mechanisms remain debated. We studied how spontaneous alpha-band activity (8-13 Hz) and pupil fluctuations impact visual detection and confidence across stimulus contrast levels (i.e., the contrast response function, CRF). In human subjects of both sexes, we found that low prestimulus alpha power induced an "additive" shift in the CRF, whereby stimuli were reported present more frequently at all contrast levels, including contrast of zero (i.e., false alarms). Conversely, prestimulus pupil size had a "multiplicative" effect on detection such that stimuli occurring during large pupil states (putatively corresponding to higher arousal) were perceived more frequently as contrast increased. Signal detection modeling reveals that alpha power changes detection criteria equally across the CRF but not detection sensitivity (d'), whereas pupil-linked arousal modulated sensitivity, particularly for higher contrasts. Interestingly, pupil size and alpha power were positively correlated, meaning that some of the effect of alpha on detection may be mediated by pupil fluctuations. However, pupil-independent alpha still induced an additive shift in the CRF corresponding to a criterion effect. Our data imply that low alpha boosts detection and confidence by an additive factor, rather than by a multiplicative scaling of contrast responses, a profile which captures the effect of pupil-linked arousal. We suggest that alpha power and arousal fluctuations have dissociable effects on behavior. Alpha reflects the baseline level of visual excitability, which can vary independent of arousal.


Assuntos
Ritmo alfa , Nível de Alerta , Pupila , Humanos , Feminino , Masculino , Pupila/fisiologia , Nível de Alerta/fisiologia , Adulto , Ritmo alfa/fisiologia , Adulto Jovem , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Sensibilidades de Contraste/fisiologia
4.
J Neurosci ; 44(38)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39151954

RESUMO

The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.


Assuntos
Ritmo alfa , Camundongos Endogâmicos C57BL , Córtex Visual , Animais , Camundongos , Córtex Visual/fisiologia , Masculino , Ritmo alfa/fisiologia , Eletroencefalografia , Enucleação Ocular , Feminino , Neurônios/fisiologia , Privação Sensorial/fisiologia
5.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38729759

RESUMO

Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.


Assuntos
Ritmo alfa , Atenção , Estimulação Transcraniana por Corrente Contínua , Percepção Visual , Humanos , Feminino , Masculino , Atenção/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Percepção Visual/fisiologia , Adulto Jovem , Ritmo alfa/fisiologia , Lobo Frontal/fisiologia , Estimulação Luminosa/métodos , Campos Visuais/fisiologia
6.
J Neurosci ; 44(27)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38811165

RESUMO

The intricate relationship between prestimulus alpha oscillations and visual contrast detection variability has been the focus of numerous studies. However, the causal impact of prestimulus alpha traveling waves on visual contrast detection remains largely unexplored. In our research, we sought to discern the causal link between prestimulus alpha traveling waves and visual contrast detection across different levels of mental fatigue. Using electroencephalography alongside a visual detection task with 30 healthy adults (13 females; 17 males), we identified a robust negative correlation between prestimulus alpha forward traveling waves (FTWs) and visual contrast threshold (VCT). Inspired by this correlation, we utilized 45/-45° phase-shifted transcranial alternating current stimulation (tACS) in a sham-controlled, double-blind, within-subject experiment with 33 healthy adults (23 females; 10 males) to directly modulate these alpha traveling waves. After the application of 45° phase-shifted tACS, we observed a substantial decrease in FTW and an increase in backward traveling waves, along with a concurrent increase in VCT, compared with the sham condition. These changes were particularly pronounced under a low fatigue state. The findings of state-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. Moreover, our study highlights the potential of 45/-45° phase-shifted tACS in cognitive modulation and therapeutic applications.


Assuntos
Ritmo alfa , Sensibilidades de Contraste , Estimulação Transcraniana por Corrente Contínua , Humanos , Feminino , Masculino , Adulto , Ritmo alfa/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Sensibilidades de Contraste/fisiologia , Adulto Jovem , Método Duplo-Cego , Eletroencefalografia/métodos , Estimulação Luminosa/métodos , Percepção Visual/fisiologia , Fadiga Mental/fisiopatologia
7.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38729761

RESUMO

Research on selective attention has largely focused on the enhancement of behaviorally important information, with less focus on the suppression of distracting information. Enhancement and suppression can operate through a push-pull relationship attributable to competitive interactions among neural populations. There has been considerable debate, however, regarding (1) whether suppression can be voluntarily deployed, independent of enhancement, and (2) whether voluntary deployment of suppression is associated with neural processes occurring prior to the distractor onset. Here, we investigated the interplay between pre- and post-distractor neural processes, while male and female human subjects performed a visual search task with a cue that indicated the location of an upcoming distractor. We utilized two established EEG markers of suppression: the distractor positivity (PD) and alpha power (∼8-15 Hz). The PD-a component of event-related potentials-has been linked with successful distractor suppression, and increased alpha power has been linked with attenuated sensory processing. Cueing the location of an upcoming distractor speeded responses and led to an earlier PD, consistent with earlier suppression due to strategic use of a spatial cue. In comparison, higher predistractor alpha power contralateral to distractors led to a later PD, consistent with later suppression. Lower alpha power contralateral to distractors instead led to distractor-related attentional capture. Lateralization of alpha power was not linked to the spatial cue. This observation, combined with differences in the timing of suppression-as indexed by earlier and later PD components-demonstrates that cue-related, voluntary suppression can occur separate from alpha-related gating of sensory processing.


Assuntos
Ritmo alfa , Atenção , Sinais (Psicologia) , Humanos , Masculino , Feminino , Atenção/fisiologia , Ritmo alfa/fisiologia , Adulto , Adulto Jovem , Eletroencefalografia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Potenciais Evocados/fisiologia
8.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38373849

RESUMO

Measures of intrinsic brain function at rest show promise as predictors of cognitive decline in humans, including EEG metrics such as individual α peak frequency (IAPF) and the aperiodic exponent, reflecting the strongest frequency of α oscillations and the relative balance of excitatory/inhibitory neural activity, respectively. Both IAPF and the aperiodic exponent decrease with age and have been associated with worse executive function and working memory. However, few studies have jointly examined their associations with cognitive function, and none have examined their association with longitudinal cognitive decline rather than cross-sectional impairment. In a preregistered secondary analysis of data from the longitudinal Midlife in the United States (MIDUS) study, we tested whether IAPF and aperiodic exponent measured at rest predict cognitive function (N = 235; age at EEG recording M = 55.10, SD = 10.71) over 10 years. The IAPF and the aperiodic exponent interacted to predict decline in overall cognitive ability, even after controlling for age, sex, education, and lag between data collection time points. Post hoc tests showed that "mismatched" IAPF and aperiodic exponents (e.g., higher exponent with lower IAPF) predicted greater cognitive decline compared to "matching" IAPF and aperiodic exponents (e.g., higher exponent with higher IAPF; lower IAPF with lower aperiodic exponent). These effects were largely driven by measures of executive function. Our findings provide the first evidence that IAPF and the aperiodic exponent are joint predictors of cognitive decline from midlife into old age and thus may offer a useful clinical tool for predicting cognitive risk in aging.


Assuntos
Ritmo alfa , Disfunção Cognitiva , Humanos , Criança , Estudos Transversais , Cognição , Envelhecimento , Disfunção Cognitiva/diagnóstico , Eletroencefalografia
9.
J Neurosci ; 44(6)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38124006

RESUMO

Alpha is the strongest electrophysiological rhythm in awake humans at rest. Despite its predominance in the EEG signal, large variations can be observed in alpha properties during development, with an increase in alpha frequency over childhood and adulthood. Here, we tested the hypothesis that these changes in alpha rhythm are related to the maturation of visual white matter pathways. We capitalized on a large diffusion MRI (dMRI)-EEG dataset (dMRI n = 2,747, EEG n = 2,561) of children and adolescents of either sex (age range, 5-21 years old) and showed that maturation of the optic radiation specifically accounts for developmental changes of alpha frequency. Behavioral analyses also confirmed that variations of alpha frequency are related to maturational changes in visual perception. The present findings demonstrate the close link between developmental variations in white matter tissue properties, electrophysiological responses, and behavior.


Assuntos
Substância Branca , Humanos , Criança , Adolescente , Pré-Escolar , Adulto Jovem , Adulto , Substância Branca/diagnóstico por imagem , Ritmo alfa , Imagem de Difusão por Ressonância Magnética , Percepção Visual , Vias Visuais , Encéfalo/fisiologia
10.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38538141

RESUMO

The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However, the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magnetoencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and ß frequency bands at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, specifically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this experiment shows that a long-term motor skill-manual dexterity-influences the way the motor systems respond during movements.


Assuntos
Magnetoencefalografia , Córtex Motor , Destreza Motora , Humanos , Masculino , Feminino , Adulto , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Adulto Jovem , Magnetoencefalografia/métodos , Ritmo alfa/fisiologia , Mãos/fisiologia , Desempenho Psicomotor/fisiologia , Movimento/fisiologia , Vias Neurais/fisiologia
11.
PLoS Comput Biol ; 20(8): e1011431, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102437

RESUMO

Synchronous neural oscillations are strongly associated with a variety of perceptual, cognitive, and behavioural processes. It has been proposed that the role of the synchronous oscillations in these processes is to facilitate information transmission between brain areas, the 'communication through coherence,' or CTC hypothesis. The details of how this mechanism would work, however, and its causal status, are still unclear. Here we investigate computationally a proposed mechanism for selective attention that directly implicates the CTC as causal. The mechanism involves alpha band (about 10 Hz) oscillations, originating in the pulvinar nucleus of the thalamus, being sent to communicating cortical areas, organizing gamma (about 40 Hz) oscillations there, and thus facilitating phase coherence and communication between them. This is proposed to happen contingent on control signals sent from higher-level cortical areas to the thalamic reticular nucleus, which controls the alpha oscillations sent to cortex by the pulvinar. We studied the scope of this mechanism in parameter space, and limitations implied by this scope, using a computational implementation of our conceptual model. Our results indicate that, although the CTC-based mechanism can account for some effects of top-down and bottom-up attentional selection, its limitations indicate that an alternative mechanism, in which oscillatory coherence is caused by communication between brain areas rather than being a causal factor for it, might operate in addition to, or even instead of, the CTC mechanism.


Assuntos
Atenção , Modelos Neurológicos , Atenção/fisiologia , Humanos , Biologia Computacional , Simulação por Computador , Encéfalo/fisiologia , Ritmo alfa/fisiologia , Pulvinar/fisiologia
12.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39183363

RESUMO

Numerous studies on perceptual training exist, however, most have focused on the precision of temporal audiovisual perception, while fewer have concentrated on ability promotion for audiovisual integration (AVI). To investigate these issues, continuous 5-day audiovisual perceptual training was applied, during which electroencephalography was performed in response to auditory-only (A), visual-only (V) and audiovisual (AV) stimuli before and after training. The results showed that the perceptual sensitivity was greater for training group than for control group and was greater in the posttest than in the pretest. The response to the AV stimulus was significantly faster in the posttest than in the pretest for the older training group but was significantly greater for A and V stimuli for the younger training group. Electroencephalography analysis found higher P3 AVI amplitudes [AV-(A + V)] in the posttest than in the pretest for training group, which were subsequently reflected by an increased alpha (8-12 Hz) oscillatory response and strengthened global functional connectivity (weighted phase lag index). Furthermore, these facilitations were greater for older training groups than for younger training groups. These results confirm the age-related compensatory mechanism for AVI may be strengthened as audiovisual perceptual training progresses, providing an effective candidate for cognitive intervention in older adults.


Assuntos
Estimulação Acústica , Ritmo alfa , Percepção Auditiva , Estimulação Luminosa , Percepção Visual , Humanos , Masculino , Feminino , Percepção Visual/fisiologia , Percepção Auditiva/fisiologia , Idoso , Ritmo alfa/fisiologia , Estimulação Luminosa/métodos , Eletroencefalografia , Pessoa de Meia-Idade , Envelhecimento/fisiologia , Adulto Jovem , Encéfalo/fisiologia , Adulto
13.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489786

RESUMO

While it is well known that mental fatigue impairs fine motor performance, the investigation into its neural basis remains scant. Here, we investigate the impact of mental fatigue on fine motor performance and explore its underlying neural network connectivity mechanisms. A total of 24 healthy male university students were recruited and randomly divided into two groups: a mental fatigue group (MF) and a control group (Control). Both groups completed 50 dart throws, while electroencephalography (EEG) data were collected. Following the Stroop intervention, participants in the MF group exhibited a decrease in Stroop task accuracy and throwing performance, and an increase in reaction time along with VAS and NASA scores. The EEG data during dart-throwing revealed that the network connectivity strength of theta oscillations in the frontal and left central regions was significantly higher in the MF group compared with the Control group, while the network connectivity strength of alpha oscillations in the left parietal region was significantly enhanced. The interregional connectivity within the theta and alpha rhythm bands, particularly in the frontal-central-parietal network connections, also showed a significant increase in the MF group. Mental fatigue impairs dart throwing performance and is accompanied by increased connectivity in alpha and theta.


Assuntos
Eletroencefalografia , Lobo Parietal , Humanos , Masculino , Tempo de Reação , Ritmo alfa , Fadiga Mental
14.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955646

RESUMO

The spectral composition of EEG provides important information on the function of the developing brain. For example, the frequency of the dominant rhythm, a salient features of EEG data, increases from infancy to adulthood. Changes of the dominant rhythm during infancy are yet to be fully characterized, in terms of their developmental trajectory and spectral characteristics. In this study, the development of dominant rhythm frequency was examined during a novel sustained attention task across 6-month-old (n = 39), 9-month-old (n = 30), and 12-month-old (n = 28) infants. During this task, computer-generated objects and faces floated down a computer screen for 10 s after a 5-second fixation cross. The peak frequency in the range between 5 and 9 Hz was calculated using center of gravity (CoG) and examined in response to faces and objects. Results indicated that peak frequency increased from 6 to 9 to 12 months of age in face and object conditions. We replicated the same result for the baseline. There was high reliability between the CoGs in the face, object, and baseline conditions across all channels. The developmental increase in CoG was more reliable than measures of mode frequency across different conditions. These findings suggest that CoG is a robust index of brain development across infancy.


Assuntos
Atenção , Encéfalo , Lactente , Humanos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Atenção/fisiologia , Eletroencefalografia , Ritmo alfa/fisiologia
15.
Cereb Cortex ; 34(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39233375

RESUMO

Our understanding of the neurobiology underlying cognitive dysfunction in persons with cerebral palsy is very limited, especially in the neurocognitive domain of visual selective attention. This investigation utilized magnetoencephalography and an Eriksen arrow-based flanker task to quantify the dynamics underlying selective attention in a cohort of youth and adults with cerebral palsy (n = 31; age range = 9 to 47 yr) and neurotypical controls (n = 38; age range = 11 to 49 yr). The magnetoencephalography data were transformed into the time-frequency domain to identify neural oscillatory responses and imaged using a beamforming approach. The behavioral results indicated that all participants exhibited a flanker effect (greater response time for the incongruent compared to congruent condition) and that individuals with cerebral palsy were slower and less accurate during task performance. We computed interference maps to focus on the attentional component and found aberrant alpha (8 to 14 Hz) oscillations in the right primary visual cortices in the group with cerebral palsy. Alpha and theta (4 to 7 Hz) oscillations were also seen in the left and right insula, and these oscillations varied with age across all participants. Overall, persons with cerebral palsy exhibit deficiencies in the cortical dynamics serving visual selective attention, but these aberrations do not appear to be uniquely affected by age.


Assuntos
Ritmo alfa , Atenção , Paralisia Cerebral , Magnetoencefalografia , Humanos , Adulto , Paralisia Cerebral/fisiopatologia , Adolescente , Masculino , Feminino , Adulto Jovem , Atenção/fisiologia , Criança , Pessoa de Meia-Idade , Ritmo alfa/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia
16.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850214

RESUMO

States of consciousness are likely mediated by multiple parallel yet interacting cortico-subcortical recurrent networks. Although the mesocircuit model has implicated the pallidocortical circuit as one such network, this circuit has not been extensively evaluated to identify network-level electrophysiological changes related to loss of consciousness (LOC). We characterize changes in the mesocircuit in awake versus propofol-induced LOC in humans by directly simultaneously recording from sensorimotor cortices (S1/M1) and globus pallidus interna and externa (GPi/GPe) in 12 patients with Parkinson disease undergoing deep brain stimulator implantation. Propofol-induced LOC is associated with increases in local power up to 20 Hz in GPi, 35 Hz in GPe, and 100 Hz in S1/M1. LOC is likewise marked by increased pallidocortical alpha synchrony across all nodes, with increased alpha/low beta Granger causal (GC) flow from GPe to all other nodes. In contrast, LOC is associated with decreased network-wide beta coupling and beta GC from M1 to the rest of the network. Results implicate an important and possibly central role of GPe in mediating LOC-related increases in alpha power, supporting a significant role of the GPe in modulating cortico-subcortical circuits for consciousness. Simultaneous LOC-related suppression of beta synchrony highlights that distinct oscillatory frequencies act independently, conveying unique network activity.


Assuntos
Ritmo alfa , Globo Pálido , Propofol , Inconsciência , Humanos , Propofol/farmacologia , Globo Pálido/efeitos dos fármacos , Globo Pálido/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia , Ritmo alfa/efeitos dos fármacos , Ritmo alfa/fisiologia , Idoso , Doença de Parkinson/fisiopatologia , Estimulação Encefálica Profunda/métodos , Anestésicos Intravenosos/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Eletroencefalografia
17.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679481

RESUMO

Increasingly, in the field of communication, education, and business, people are switching to video interaction, and interlocutors frequently complain that the perception of nonverbal information and concentration suffer. We investigated this issue by analyzing electroencephalogram (EEG) oscillations of the sensorimotor (mu rhythm) and visual (alpha rhythm) cortex of the brain in an experiment with action observation live and on video. The mu rhythm reflects the activity of the mirror neuron system, and the occipital alpha rhythm shows the level of visual attention. We used 32-channel EEG recorded during live and video action observation in 83 healthy volunteers. The ICA method was used for selecting the mu- and alpha-components; the Fourier Transform was used to calculate the suppression index relative to the baseline (stationary demonstrator) of the rhythms. The main range of the mu rhythm was indeed sensitive to social movement and was highly dependent on the conditions of interaction-live or video. The upper mu-range appeared to be less sensitive to the conditions, but more sensitive to different movements. The alpha rhythm did not depend on the type of movement; however, a live performance initially caused a stronger concentration of visual attention. Thus, subtle social and nonverbal perceptions may suffer in remote video interactions.


Assuntos
Eletroencefalografia , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Eletroencefalografia/métodos , Atenção/fisiologia , Córtex Visual/fisiologia , Ritmo alfa/fisiologia , Córtex Sensório-Motor/fisiologia , Percepção Visual/fisiologia , Estimulação Luminosa/métodos
18.
Cereb Cortex ; 34(9)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39285717

RESUMO

In this study, repetitive transcranial magnetic stimulation was applied to either the right inferior frontal junction or the right inferior parietal cortex during a difficult aerial reconnaissance search task to test its capacity to improve search performance. Two stimulation strategies previously found to enhance cognitive performance were tested: The first is called "addition by subtraction," and the second condition utilizes a direct excitatory approach by applying brief trains of high-frequency repetitive transcranial magnetic stimulation immediately before task trials. In a within-subjects design, participants were given active or sham repetitive transcranial magnetic stimulation at either 1 Hz or at 1 Hz above their individual peak alpha frequency (IAF + 1, mean 11.5 Hz), delivered to either the right inferior frontal junction or the right inferior parietal cortex, both defined with individualized peak functional magnetic resonance imaging (fMRI) activation obtained during the visual search task. Results indicated that among the 13 participants who completed the protocol, only active IAF + 1 stimulation to inferior frontal junction resulted in significant speeding of reaction time compared to sham. This site- and frequency-specific enhancement of performance with IAF + 1 repetitive transcranial magnetic stimulation applied immediately prior to task trials provides evidence for the involvement of inferior frontal junction in guiding difficult visual search, and more generally for the use of online repetitive transcranial magnetic stimulation directed at specific functional networks to enhance visual search performance.


Assuntos
Imageamento por Ressonância Magnética , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Feminino , Adulto , Adulto Jovem , Tempo de Reação/fisiologia , Lobo Frontal/fisiologia , Ritmo alfa/fisiologia , Lobo Parietal/fisiologia , Mapeamento Encefálico/métodos , Percepção Visual/fisiologia
19.
Mol Cell Neurosci ; 128: 103918, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296121

RESUMO

One of the early markers of minimal hepatic encephalopathy (MHE) is the disruption of alpha rhythm observed in electroencephalogram (EEG) signals. However, the underlying mechanisms responsible for this occurrence remain poorly understood. To address this gap, we develop a novel biophysical model MHE-AWD-NCM, encompassing the communication dynamics between a cortical neuron population (CNP) and an astrocyte population (AP), aimed at investigating the relationship between alpha wave disturbance (AWD) and mechanistical principles, specifically concerning astrocyte-neuronal communication in the context of MHE. In addition, we introduce the concepts of peak power density and peak frequency within the alpha band as quantitative measures of AWD. Our model faithfully reproduces the characteristic EEG phenomenology during MHE and shows how impairments of communication between CNP and AP could promote AWD. The results suggest that the disruptions in feedback neurotransmission from AP to CNP, along with the inhibition of GABA uptake by AP from the extracellular space, contribute to the observed AWD. Moreover, we found that the variation of external excitatory stimuli on CNP may play a key role in AWD in MHE. Finally, the sensitivity analysis is also performed to assess the relative significance of above factors in influencing AWD. Our findings align with the physiological observations and provide a more comprehensive understanding of the complex interplay of astrocyte-neuronal communication that underlies the AWD observed in MHE, which potentially may help to explore the targeted therapeutic interventions for the early stage of hepatic encephalopathy.


Assuntos
Encefalopatia Hepática , Humanos , Encefalopatia Hepática/tratamento farmacológico , Ritmo alfa , Eletroencefalografia , Neurônios
20.
J Neurosci ; 43(37): 6447-6459, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37591739

RESUMO

Alpha rhythmic activity is often suggested to exert an inhibitory influence on information processing. However, relatively little is known about how reported alpha-related effects are influenced by a potential confounding element of the neural signal, power-law scaling. In the current study, we systematically examine the effect of accounting for 1/f activity on the relation between prestimulus alpha power and human behavior during both auditory and visual detection (N = 27; 19 female, 6 male, 2 nonbinary). The results suggest that, at least in the scalp-recorded EEG signal, the difference in alpha power often reported before visual hits versus misses is probably best thought of as a combination of narrowband alpha and broadband shifts. That is, changes in broadband parameters (exponent and offset of 1/f-like activity) also appear to be strong predictors of the subsequent awareness of visual stimuli. Neither changes in posterior alpha power nor changes in 1/f-like activity reliably predicted detection of auditory stimuli. These results appear consistent with suggestions that broadband changes in the scalp-recorded EEG signal may account for a portion of prior results linking alpha band dynamics to visuospatial attention and behavior, and suggest that systematic re-examination of existing data may be warranted.Significance Statement Fluctuations in alpha band (∼8-12 Hz) activity systematically follow the allocation of attention across space and sensory modality. Increases in alpha amplitude, which often precede failures to report awareness of threshold visual stimuli, are suggested to exert an inhibitory influence on information processing. However, fluctuations in alpha activity are often confounded with changes in the broadband 1/f-like pattern of the neural signal. When both factors are considered, we find that changes in broadband activity are as effective as narrowband alpha activity as predictors of subsequent visual detection. These results are consistent with emerging understanding of the potential functional importance of broadband changes in the neural signal and may have significant consequences for our understanding of alpha rhythmic activity.


Assuntos
Ritmo alfa , Cognição , Humanos , Feminino , Masculino , Eletroencefalografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA