Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.918
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
EMBO J ; 43(4): 507-532, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191811

RESUMO

Metabolic syndrome combines major risk factors for cardiovascular disease, making deeper insight into its pathogenesis important. We here explore the mechanistic basis of metabolic syndrome by recruiting an essential patient cohort and performing extensive gene expression profiling. The mitochondrial fatty acid metabolism enzyme acyl-CoA synthetase medium-chain family member 3 (ACSM3) was identified to be significantly lower expressed in the peripheral blood of metabolic syndrome patients. In line, hepatic ACSM3 expression was decreased in mice with metabolic syndrome. Furthermore, Acsm3 knockout mice showed glucose and lipid metabolic abnormalities, and hepatic accumulation of the ACSM3 fatty acid substrate lauric acid. Acsm3 depletion markedly decreased mitochondrial function and stimulated signaling via the p38 MAPK pathway cascade. Consistently, Acsm3 knockout mouse exhibited abnormal mitochondrial morphology, decreased ATP contents, and enhanced ROS levels in their livers. Mechanistically, Acsm3 deficiency, and lauric acid accumulation activated nuclear receptor Hnf4α-p38 MAPK signaling. In line, the p38 inhibitor Adezmapimod effectively rescued the Acsm3 depletion phenotype. Together, these findings show that disease-associated loss of ACSM3 facilitates mitochondrial dysfunction via a lauric acid-HNF4a-p38 MAPK axis, suggesting a novel therapeutic vulnerability in systemic metabolic dysfunction.


Assuntos
Ácidos Láuricos , Síndrome Metabólica , Humanos , Camundongos , Animais , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fígado/metabolismo , Ácidos Graxos/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/farmacologia
2.
Nat Rev Genet ; 23(1): 40-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34522035

RESUMO

Human physiology is likely to have been selected for endurance physical activity. However, modern humans have become largely sedentary, with physical activity becoming a leisure-time pursuit for most. Whereas inactivity is a strong risk factor for disease, regular physical activity reduces the risk of chronic disease and mortality. Although substantial epidemiological evidence supports the beneficial effects of exercise, comparatively little is known about the molecular mechanisms through which these effects operate. Genetic and genomic analyses have identified genetic variation associated with human performance and, together with recent proteomic, metabolomic and multi-omic analyses, are beginning to elucidate the molecular genetic mechanisms underlying the beneficial effects of physical activity on human health.


Assuntos
Exercício Físico/genética , Estudo de Associação Genômica Ampla/métodos , Metabolômica/métodos , Biologia Molecular/métodos , Resistência Física/genética , Proteômica/métodos , Demência/genética , Variação Genética , Humanos , Síndrome Metabólica/genética , Neoplasias/genética , Fatores de Risco
3.
Nat Rev Mol Cell Biol ; 16(6): 345-59, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25970558

RESUMO

Recent advances in mitochondrial biology have revealed the high diversity and complexity of proteolytic enzymes that regulate mitochondrial function. We have classified mitochondrial proteases, or mitoproteases, on the basis of their function and location, and defined the human mitochondrial degradome as the complete set of mitoproteases that are encoded by the human genome. In addition to their nonspecific degradative functions, mitoproteases perform highly regulated proteolytic reactions that are important in mitochondrial function, integrity and homeostasis. These include protein synthesis, quality control, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Impaired or dysregulated function of mitoproteases is associated with ageing and with many pathological conditions such as neurodegenerative disorders, metabolic syndromes and cancer. A better understanding of the mitochondrial proteolytic landscape and its modulation may contribute to improving human lifespan and 'healthspan'.


Assuntos
Envelhecimento/metabolismo , Síndrome Metabólica/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Doenças Neurodegenerativas/enzimologia , Peptídeo Hidrolases/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Animais , Genoma Humano , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Peptídeo Hidrolases/genética , Proteólise
4.
PLoS Genet ; 19(10): e1010997, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871105

RESUMO

Diet-related metabolic syndrome is the largest contributor to adverse health in the United States. However, the study of gene-environment interactions and their epigenomic and transcriptomic integration is complicated by the lack of environmental and genetic control in humans that is possible in mouse models. Here we exposed three mouse strains, C57BL/6J (BL6), A/J, and NOD/ShiLtJ (NOD), to a high-fat, high-carbohydrate diet, leading to varying degrees of metabolic syndrome. We then performed transcriptomic and genome-wide DNA methylation analyses for each strain and found overlapping but also highly divergent changes in gene expression and methylation upstream of the discordant metabolic phenotypes. Strain-specific pathway analysis of dietary effects revealed a dysregulation of cholesterol biosynthesis common to all three strains but distinct regulatory networks driving this dysregulation. This suggests a strategy for strain-specific targeted pharmacologic intervention of these upstream regulators informed by epigenetic and transcriptional regulation. As a pilot study, we administered the drug GW4064 to target one of these genotype-dependent networks, the farnesoid X receptor pathway, and found that GW4064 exerts strain-specific protection against dietary effects in BL6, as predicted by our transcriptomic analysis. Furthermore, GW4064 treatment induced inflammatory-related gene expression changes in NOD, indicating a strain-specific effect in its associated toxicities as well as its therapeutic efficacy. This pilot study demonstrates the potential efficacy of precision therapeutics for genotype-informed dietary metabolic intervention and a mouse platform for guiding this approach.


Assuntos
Síndrome Metabólica , Humanos , Camundongos , Animais , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Epigenômica , Projetos Piloto , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Dieta Hiperlipídica/efeitos adversos , Epigênese Genética
5.
Int Immunol ; 36(1): 17-32, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37878760

RESUMO

Chronic obstructive pulmonary disease (COPD) is closely related to innate and adaptive inflammatory immune responses. It is increasingly becoming evident that metabolic syndrome (MetS) affects a significant portion of COPD patients. Through this investigation, we identify shared immune-related candidate biological markers. The Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to reveal the co-expression modules linked to COPD and MetS. The commonly expressed genes in the COPD and MetS were utilized to conduct an enrichment analysis. We adopted machine-learning to screen and validate hub genes. We also assessed the relationship between hub genes and immune cell infiltration in COPD and MetS, respectively. Moreover, associations across hub genes and metabolic pathways were also explored. Finally, we chose a single-cell RNA sequencing (scRNA-seq) dataset to investigate the hub genes and shared mechanisms at the level of the cells. We also applied cell trajectory analysis and cell-cell communication analysis to focus on the vital immune cell we were interested in. As a result, we selected and validated 13 shared hub genes for COPD and MetS. The enrichment analysis and immune infiltration analysis illustrated strong associations between hub genes and immunology. Additionally, we applied metabolic pathway enrichment analysis, indicating the significant role of reactive oxygen species (ROS) in COPD with MetS. Through scRNA-seq analysis, we found that ROS might accumulate the most in the alveolar macrophages. In conclusion, the 13 hub genes related to the immune response and metabolism may serve as diagnostic biomarkers and treatment targets of COPD with MetS.


Assuntos
Síndrome Metabólica , Doença Pulmonar Obstrutiva Crônica , Humanos , Síndrome Metabólica/genética , Espécies Reativas de Oxigênio , Comunicação Celular , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de RNA
6.
Nature ; 566(7742): 115-119, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700910

RESUMO

The biochemical response to food intake must be precisely regulated. Because ingested sugars and fats can feed into many anabolic and catabolic pathways1, how our bodies handle nutrients depends on strategically positioned metabolic sensors that link the intrinsic nutritional value of a meal with intermediary metabolism. Here we describe a subset of immune cells-integrin ß7+ natural gut intraepithelial T lymphocytes (natural IELs)-that is dispersed throughout the enterocyte layer of the small intestine and that modulates systemic metabolism. Integrin ß7- mice that lack natural IELs are metabolically hyperactive and, when fed a high-fat and high-sugar diet, are resistant to obesity, hypercholesterolaemia, hypertension, diabetes and atherosclerosis. Furthermore, we show that protection from cardiovascular disease in the absence of natural IELs depends on the enteroendocrine-derived incretin GLP-12, which is normally controlled by IELs through expression of the GLP-1 receptor. In this metabolic control system, IELs modulate enteroendocrine activity by acting as gatekeepers that limit the bioavailability of GLP-1. Although the function of IELs may prove advantageous when food is scarce, present-day overabundance of diets high in fat and sugar renders this metabolic checkpoint detrimental to health.


Assuntos
Doenças Cardiovasculares/metabolismo , Progressão da Doença , Intestino Delgado/citologia , Linfócitos Intraepiteliais/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/prevenção & controle , Modelos Animais de Doenças , Ingestão de Alimentos , Enterócitos/citologia , Enterócitos/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/prevenção & controle , Camundongos
7.
BMC Genomics ; 25(1): 590, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867151

RESUMO

BACKGROUND: The association between Apolipoprotein A5 (APOA5) genetic polymorphisms and susceptibility to metabolic syndrome (MetS) has been established by many studies, but there have been conflicting results from the literature. We performed a meta-analysis of observational studies to evaluate the association between APOA5 gene polymorphisms and the prevalence of MetS. METHODS: PubMed, Web of Science, Embase, and Scopus were searched up to April 2024. The random effects model was used to estimate the odds ratios (ORs) and 95% confidence intervals (CI) of the association between APOA5 gene polymorphisms and the prevalence of MetS development. The potential sources of heterogeneity were evaluated by subgroup analyses and sensitivity analyses. RESULTS: A total of 30 studies with 54,986 subjects (25,341 MetS cases and 29,645 healthy controls) were included. The presence of rs662799 and rs651821 polymorphisms is associated with an approximately 1.5-fold higher likelihood of MetS prevalence (OR = 1.42, 95% CI: 1.32, 1.53, p < 0.001; I2 = 67.1%; P-heterogeneity < 0.001; and OR = 1.50, 95% CI: 1.36-1.65, p < 0.001), respectively. MetS is also more prevalent in individuals with the genetic variants rs3135506 and rs2075291. There was no evidence of a connection with rs126317. CONCLUSION: The present findings suggest that polymorphisms located in the promoter and coding regions of the APOA5 gene are associated with an increased prevalence of MetS in the adult population. Identifying individuals with these genetic variations could lead to early disease detection and the implementation of preventive strategies to reduce the risk of MetS and its related health issues. However, because the sample size was small and there was evidence of significant heterogeneity for some APOA5 gene polymorphisms, these results need to be confirmed by more large-scale and well-designed studies.


Assuntos
Apolipoproteína A-V , Predisposição Genética para Doença , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Apolipoproteína A-V/genética , Humanos , Razão de Chances
8.
Ann Hum Genet ; 88(4): 279-286, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38192238

RESUMO

INTRODUCTION: Metabolic syndrome (MetS) is a metabolic disorder encompassing risk factors for cardiovascular disease and type 2 diabetes (T2D). In Mexico, the MetS is a national health problem in adults and children. Environmental and genetic factors condition the MetS. However, studies to elucidate the contribution of genetic factors to MetS in Mexico are scarce. A recent study showed that variant rs9282541 (A-allele) in ATP-binding cassette transporter A1 (ABCA1) was associated with T2D in the Maya population in addition to low levels of high-density lipoprotein cholesterol (HDL-C). Thus, this study aimed to determine whether the genetic variant of ABCA1 A-allele (rs9282541, NM_005502.4:c.688C > T, NP_005493.2:p.Arg230Cys) is associated with MetS and its components in Mexican Maya children. METHODS: The study was conducted in 508 children aged 9-13 from the Yucatán Peninsula. MetS was identified according to the de Ferranti criteria. Genotyping was performed using TaqMan assay by real-time PCR. Evaluation of genetic ancestry group was included. RESULTS: The frequency of MetS and overweight-obesity was 45.9% and 41.6%, respectively. The genetic variant rs9282541 was associated with low HDL-C and high glucose concentrations. Remarkably, for the first time, this study showed the association of ABCA1 rs9282541 with MetS in Maya children with an OR of 3.076 (95% CI = 1.16-8.13 p = 0.023). Finally, this study reveals a high prevalence of MetS and suggests that variant rs9282541 of the ABCA1 gene plays an important role in the developing risk of MetS in Maya children.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Predisposição Genética para Doença , Síndrome Metabólica , Polimorfismo de Nucleotídeo Único , Humanos , Transportador 1 de Cassete de Ligação de ATP/genética , Síndrome Metabólica/genética , Criança , Masculino , Feminino , México , Adolescente , Alelos , Genótipo , HDL-Colesterol/sangue , Fatores de Risco
9.
Hum Genet ; 143(1): 35-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38095720

RESUMO

Complex multi-omics effects drive the clustering of cardiometabolic risk factors, underscoring the imperative to comprehend how individual and combined omics shape phenotypic variation. Our study partitions phenotypic variance in metabolic syndrome (MetS), blood glucose (GLU), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and blood pressure through genome, transcriptome, metabolome, and exposome (i.e., lifestyle exposome) analyses. Our analysis included a cohort of 62,822 unrelated individuals with white British ancestry, sourced from the UK biobank. We employed linear mixed models to partition phenotypic variance using the restricted maximum likelihood (REML) method, implemented in MTG2 (v2.22). We initiated the analysis by individually modeling omics, followed by subsequent integration of pairwise omics in a joint model that also accounted for the covariance and interaction between omics layers. Finally, we estimated the correlations of various omics effects between the phenotypes using bivariate REML. Significant proportions of the MetS variance were attributed to distinct data sources: genome (9.47%), transcriptome (4.24%), metabolome (14.34%), and exposome (3.77%). The phenotypic variances explained by the genome, transcriptome, metabolome, and exposome ranged from 3.28% for GLU to 25.35% for HDL-C, 0% for GLU to 19.34% for HDL-C, 4.29% for systolic blood pressure (SBP) to 35.75% for TG, and 0.89% for GLU to 10.17% for HDL-C, respectively. Significant correlations were found between genomic and transcriptomic effects for TG and HDL-C. Furthermore, significant interaction effects between omics data were detected for both MetS and its components. Interestingly, significant correlation of omics effect between the phenotypes was found. This study underscores omics' roles, interaction effects, and random-effects covariance in unveiling phenotypic variation in multi-omics domains.


Assuntos
Síndrome Metabólica , Humanos , Síndrome Metabólica/genética , Multiômica , Fenótipo , Triglicerídeos/genética , HDL-Colesterol
10.
Am J Physiol Heart Circ Physiol ; 326(2): H408-H417, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38133620

RESUMO

Metabolic syndrome predisposes and contributes to the development and progression of atherosclerosis. The minipig strain "Ossabaw" is characterized by a predisposition to develop metabolic syndrome. We compared vasomotor function in Ossabaw minipigs before they developed their diseased phenotype to that of Göttingen minipigs without such genetic predisposition. Mesenteric arteries of adult Ossabaw and Göttingen minipigs were dissected postmortem and mounted on a myograph for isometric force measurements. Maximal vasoconstriction to potassium chloride (KClmax) was induced. Cumulative concentration-response curves were determined in response to norepinephrine. Endothelium-dependent (with carbachol) and endothelium-independent (with nitroprusside) vasodilation were analyzed after preconstriction by norepinephrine. In a bioinformatic analysis, variants/altered base pairs within genes associated with cardiovascular disease were analyzed. KClmax was similar between the minipig strains (15.6 ± 6.7 vs. 14.1 ± 3.4 ΔmN). Vasoconstriction in response to norepinephrine was more pronounced in Ossabaw than in Göttingen minipigs (increase of force to 143 ± 48 vs. 108 ± 38% of KClmax). Endothelium-dependent and endothelium-independent vasodilation were less pronounced in Ossabaw than in Göttingen minipigs (decrease of force to 46.4 ± 29.6 vs. 16.0 ± 18.4% and to 36.7 ± 25.2 vs. 2.3 ± 3.7% of norepinephrine-induced preconstriction). Vasomotor function was not different between the sexes. More altered base pairs/variants were identified in Ossabaw than in Göttingen minipigs for the exon encoding adrenoceptor-α1A. Vasomotor function in lean Ossabaw minipigs is shifted toward vasoconstriction and away from vasodilation in comparison with Göttingen minipigs, suggesting a genetic predisposition for vascular dysfunction and atherosclerosis in Ossabaw minipigs. Thus, Ossabaw minipigs may be a better model for human cardiovascular disease than Göttingen minipigs.NEW & NOTEWORTHY Animal models with a predisposition to metabolic syndrome and atherosclerosis are attracting growing interest for translational research, as they may better mimic the variability of patients with cardiovascular disease. In Ossabaw minipigs, with a polygenic predisposition to metabolic syndrome, but without the diseased phenotype, vasoconstriction is more and vasodilation is less pronounced in mesenteric arteries than in Göttingen minipigs. Ossabaw minipigs may be a more suitable model of human cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Síndrome Metabólica , Suínos , Animais , Humanos , Porco Miniatura/genética , Síndrome Metabólica/genética , Artérias Mesentéricas , Predisposição Genética para Doença , Norepinefrina/farmacologia
11.
Int J Obes (Lond) ; 48(6): 778-787, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38273034

RESUMO

BACKGROUND: Metabolic syndrome (MetS) is associated with premature aging, but whether this association is driven by genetic or lifestyle factors remains unclear. METHODS: Two independent discovery cohorts, consisting of twins and unrelated individuals, were examined (N = 268, aged 23-69 years). The findings were replicated in two cohorts from the same base population. One consisted of unrelated individuals (N = 1 564), and the other of twins (N = 293). Participants' epigenetic age, estimated using blood DNA methylation data, was determined using the epigenetic clocks GrimAge and DunedinPACE. The individual-level linear regression models for investigating the associations of MetS and its components with epigenetic aging were followed by within-twin-pair analyses using fixed-effects regression models to account for genetic factors. RESULTS: In individual-level analyses, GrimAge age acceleration was higher among participants with MetS (N = 56) compared to participants without MetS (N = 212) (mean 2.078 [95% CI = 0.996,3.160] years vs. -0.549 [-1.053,-0.045] years, between-group p = 3.5E-5). Likewise, the DunedinPACE estimate was higher among the participants with MetS compared to the participants without MetS (1.032 [1.002,1.063] years/calendar year vs. 0.911 [0.896,0.927] years/calendar year, p = 4.8E-11). An adverse profile in terms of specific MetS components was associated with accelerated aging. However, adjustments for lifestyle attenuated these associations; nevertheless, for DunedinPACE, they remained statistically significant. The within-twin-pair analyses suggested that genetics explains these associations fully for GrimAge and partly for DunedinPACE. The replication analyses provided additional evidence that the association between MetS components and accelerated aging is independent of the lifestyle factors considered in this study, however, suggesting that genetics is a significant confounder in this association. CONCLUSIONS: The results of this study suggests that MetS is associated with accelerated epigenetic aging, independent of physical activity, smoking or alcohol consumption, and that the association may be explained by genetics.


Assuntos
Envelhecimento , Epigênese Genética , Síndrome Metabólica , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Idoso , Envelhecimento/genética , Envelhecimento/fisiologia , Metilação de DNA/genética , Adulto Jovem , Estilo de Vida , Senilidade Prematura/genética
12.
J Nutr ; 154(5): 1540-1548, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38453026

RESUMO

BACKGROUND: Single-nucleotide polymorphisms (SNPs) in fatty acid desaturase (FADS) genes may modify dietary fatty acid requirements and influence cardiometabolic health (CMH). OBJECTIVES: We evaluated the role of selected variants in maternal and offspring FADS genes on offspring CMH at the age of 11 y and assessed interactions of genotype with diet quality and prenatal docosahexaenoic acid (DHA) supplementation. METHODS: We used data from offspring (n = 203) born to females who participated in a randomized controlled trial of DHA supplementation (400 mg/d) from midgestation to delivery. We generated a metabolic syndrome (MetS) score from body mass index, high-density lipoprotein cholesterol, triglycerides, systolic blood pressure, and fasting glucose and identified 6 distinct haplotypes from 5 offspring FADS SNPs. Dietary n-6 (ω-6):n-3 fatty acid ratios were derived from 24-h recall data (n = 141). We used generalized linear models to test associations of offspring diet and FADS haplotypes with MetS score and interactions of maternal and offspring FADS SNP rs174602 with prenatal treatment group and dietary n-6:n-3 ratio on MetS score. RESULTS: Associations between FADS haplotypes and MetS score were null. Offspring SNP rs174602 did not modify the association of prenatal DHA supplementation with MetS score. Among children with TT or TC genotype for SNP rs174602 (n = 88), those in the highest n-6:n-3 ratio tertile (>8.61) had higher MetS score relative to the lowest tertile [<6.67) (Δ= 0.36; 95% confidence interval (CI): 0.03, 0.69]. Among children with CC genotype (n = 53), those in the highest n-6:n-3 ratio tertile had a lower MetS score relative to the lowest tertile (Δ= -0.23; 95% CI: -0.61, 0.16). CONCLUSIONS: There was evidence of an interaction of offspring FADS SNP rs174602 with current dietary polyunsaturated fatty acid intake, but not with prenatal DHA supplementation, on MetS score. Further studies may help to determine the utility of targeted supplementation strategies and dietary recommendations based on genetic profile.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Ácidos Graxos Ômega-6 , Polimorfismo de Nucleotídeo Único , Humanos , Feminino , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Gravidez , México , Masculino , Criança , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-6/administração & dosagem , Dessaturase de Ácido Graxo Delta-5 , Síndrome Metabólica/genética , Síndrome Metabólica/prevenção & controle , Adulto , Dieta , Haplótipos
13.
Diabetes Obes Metab ; 26(7): 2839-2849, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38637979

RESUMO

AIM: To explore the link between the RBP4 rs3758539 genotype and metabolic syndrome risk factors and whether the impact of this genetic variation displays any potential race discrepancy. MATERIALS AND METHODS: This meta-analysis followed the PRISMA guidelines and was registered with PROSPERO (registration no. CRD42023407999). PubMed, Web of Science, Embase, Cochrane Library, Google Scholar, Airiti Library and CINAHL databases were used for the study search until October 2023. We evaluated the methodological quality using the Joanna Briggs Institute checklist and determined the correlation using a random-effects meta-analysis. RESULTS: The results indicated that individuals with the rs3758539 GA/AA genotype had a higher risk profile, including lower high-density lipoprotein levels [correlation: -0.045, 95% confidence interval (CI): -0.080 to -0.009, p = .015, I2 = 46.9%] and higher body mass index (correlation: 0.117, 95% CI: 0.036-0.197, p = .005, I2 = 82.0%), body fat (correlation: 0.098, 95% CI: 0.004-0.191, p = .041, I2 = 64.0%), and low-density lipoprotein levels (correlation: 0.074, 95% CI: 0.010-0.139, p = .024, I2 = 0%), of developing metabolic syndrome than those with the GG genotype. The subgroup analysis maintained a significantly positive correlation between the rs3758539 GA/AA genotype and body mass index (correlation: 0.163, 95% CI: 0.031-0.289, p = .016, I2 = 88.9%) but a negative correlation with high-density lipoprotein levels (correlation: -0.047, 95% CI: -0.087 to -0.006, p = .025, I2 = 65.7%) in the Asian group only. CONCLUSION: The current meta-analysis supports a significant link between the RBP4 rs3758539 GA/AA genotype and the metabolic syndrome.


Assuntos
Genótipo , Síndrome Metabólica , Proteínas Plasmáticas de Ligação ao Retinol , Síndrome Metabólica/genética , Humanos , Proteínas Plasmáticas de Ligação ao Retinol/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Fatores de Risco , Índice de Massa Corporal
14.
Diabetes Obes Metab ; 26(2): 482-494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846527

RESUMO

AIM: To investigate the effect of metabolic syndrome (MetS), genetic predisposition, and their interactions, on the risk of developing chronic obstructive pulmonary disease (COPD). METHODS: Cohort analyses included 287 868 participants from the UK Biobank Study. A genetic risk score for COPD was created using 277 single nucleotide polymorphisms. Cox proportional hazard models were used to evaluate the hazard ratios (HRs) with 95% confidence intervals (CIs) for COPD in relation to exposure factors. RESULTS: During 2 658 936 person-years of follow-up, 5877 incident cases of COPD were documented. Compared with participants without MetS, those with MetS had a higher risk of COPD (HR 1.24, 95% CI 1.17-1.32). Compared to participants with low genetic predisposition, those with high genetic predisposition had a 17% increased risk of COPD. In the joint analysis, compared with participants without MetS and low genetic predisposition, the HR for COPD for those with MetS and high genetic predisposition was 1.50 (95% CI 1.36-1.65; P < 0.001). However, no significant interaction between MetS and genetic risk was found. CONCLUSIONS: Metabolic syndrome was found to be associated with an increased risk of COPD, regardless of genetic risk. It is crucial to conduct further randomized control trials to determine whether managing MetS and its individual components can potentially reduce the likelihood of developing COPD.


Assuntos
Síndrome Metabólica , Doença Pulmonar Obstrutiva Crônica , Humanos , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , Bancos de Espécimes Biológicos , Biobanco do Reino Unido , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/complicações , Fatores de Risco , Predisposição Genética para Doença
15.
Diabetes Obes Metab ; 26(9): 3663-3672, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38894632

RESUMO

AIM: To explore the potential association between the KLF14 rs4731702 polymorphism and metabolic syndrome traits among patients diagnosed with type 1 diabetes (T1D). METHODS: The study group included 350 patients with T1D and 250 healthy control subjects. The analysis focused on the genotyping of KLF14 rs4731702 single nucleotide polymorphism (SNP), as well as evaluating serum concentrations of inflammatory markers, blood pressure, lipid profiles, and the quantitative status of CD4 + CD25highFOXP3+ T cells. RESULTS: Patients with T1D carrying the T allele of KLF14 rs4731702 SNP had higher high-density lipoprotein cholesterol, lower low-density lipoprotein cholesterol, as well as lower glycated haemoglobin and serum concentration of proinflammatory markers than C allele carriers. They also developed hypertension less often than carriers of the C allele. The analysis of CD4 + CD25highFOXP3+ regulatory T-cell status based on KLF14 genotype showed that, in T1D patients, those with the TT genotype had the highest frequency of these cells compared to carriers of the CC and CT genotypes. CONCLUSION: Our study suggests that the T allele of the KLF14 rs4731702 SNP might confer a protective effect against the development of obesity, hypertension, dyslipidaemia, and chronic inflammatory state in patients diagnosed with T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Fatores de Transcrição Kruppel-Like , Polimorfismo de Nucleotídeo Único , Humanos , Diabetes Mellitus Tipo 1/genética , Fatores de Transcrição Kruppel-Like/genética , Masculino , Feminino , Fenótipo , Adulto Jovem , Adulto , Síndrome Metabólica/genética , Adolescente , Estudos de Casos e Controles , Genótipo , Hipertensão/genética , Predisposição Genética para Doença , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/análise , Linfócitos T Reguladores/metabolismo , Alelos , Dislipidemias/genética , Dislipidemias/sangue , Obesidade/genética
16.
Nat Rev Mol Cell Biol ; 13(4): 239-50, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22436747

RESUMO

MicroRNAs (miRNAs) have recently emerged as key regulators of metabolism. For example, miR-33a and miR-33b have a crucial role in controlling cholesterol and lipid metabolism in concert with their host genes, the sterol-regulatory element-binding protein (SREBP) transcription factors. Other metabolic miRNAs, such as miR-103 and miR-107, regulate insulin and glucose homeostasis, whereas miRNAs such as miR-34a are emerging as key regulators of hepatic lipid homeostasis. The discovery of circulating miRNAs has highlighted their potential as both endocrine signalling molecules and disease markers. Dysregulation of miRNAs may contribute to metabolic abnormalities, suggesting that miRNAs may potentially serve as therapeutic targets for ameliorating cardiometabolic disorders.


Assuntos
Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , MicroRNAs/metabolismo , Colesterol/metabolismo , Sistema Endócrino/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica , Obesidade/genética , Obesidade/metabolismo , Oligorribonucleotídeos Antissenso/farmacologia , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
17.
Mol Biol Rep ; 51(1): 493, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580818

RESUMO

Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.


Assuntos
Doenças Cardiovasculares , Hipertensão , Resistência à Insulina , Síndrome Metabólica , MicroRNAs , Humanos , Animais , Camundongos , Síndrome Metabólica/genética , Síndrome Metabólica/terapia , Síndrome Metabólica/complicações , Hipertensão/complicações , Obesidade/complicações , Doenças Cardiovasculares/complicações , MicroRNAs/uso terapêutico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico
18.
J Gastroenterol Hepatol ; 39(4): 630-641, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230882

RESUMO

BACKGROUND AND AIM: Cohort studies have linked metabolic syndrome (MetS) to gastrointestinal (GI) cancer risk. We aimed to evaluate the associations between MetS, its components, and combinations of MetS components with eight GI cancers risk. METHODS: We conducted a systematic search of prospective cohort studies and performed a meta-analysis. Subgroup analyses regarding diagnostic criteria, sex, cancer sites, histological subtypes, ethnic groups, and studies adjusted for alcohol consumption were carried out. Mendelian randomization (MR) was employed to evaluate the causality between 17 MetS-related traits and eight GI cancers among Europeans and Asians separately. RESULTS: Meta-analyses of 31 prospective studies indicated that MetS was significantly associated with an increased risk of colorectal cancer (CRC) (RR [95% CI] = 1.13 [1.12-1.15]), esophageal cancer (EC) (RR [95% CI] = 1.17 [1.03-1.32]), gallbladder cancer (GBC) (RR [95% CI] = 1.37[1.10-1.71]), liver cancer (LC) (RR [95% CI] = 1.46 [1.29-1.64]), and pancreatic cancer (PaC) (RR [95% CI] = 1.25 [1.20-1.30]), but not gastric cancer (GC) (RR [95% CI] = 1.11 [0.96-1.28]). Regarding the associations between MetS components and GI cancers risk, the following associations showed statistical significance: obesity-CRC/LC/EC/, hypertriglyceridemia-LC/PaC, reduced high-density lipoprotein (HDL)-CRC/LC/GC/PaC, hyperglycemia-CRC/LC/PaC, and hypertension-CRC/LC/EC/PaC. Sex-specific associations were observed between individual MetS components on GI cancers risk. Among the top three common combinations in both sexes, obesity + HTN + hyperglycemia had the strongest association with CRC risk (RR [95% CI] = 1.54 [1.49-1.61] for males and 1.27 [1.21-1.33] for females). MR analyses revealed causality in 16 exposure-outcome pairs: waist-to-hip ratio/BMI/HbA1c-CRC; BMI/childhood obesity/waist circumference/T2DM/glucose-EC; BMI/waist circumference/cholesterol-LC; cholesterol/childhood obesity/waist circumference/HbA1c-PaC; and HbA1c-GBC. These results were robust against sensitivity analyses. CONCLUSIONS: Since MetS is reversible, lifestyle changes or medical interventions targeting MetS patients might be potential prevention strategies for GI cancers.


Assuntos
Neoplasias Gastrointestinais , Análise da Randomização Mendeliana , Síndrome Metabólica , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/epidemiologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/epidemiologia , Estudos Prospectivos , Masculino , Fatores de Risco , Feminino , Risco , Estudos de Coortes , Obesidade/complicações
19.
BMC Cardiovasc Disord ; 24(1): 405, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095691

RESUMO

BACKGROUND: Atherosclerosis and metabolic syndrome are the main causes of cardiovascular events, but their underlying mechanisms are not clear. In this study, we focused on identifying genes associated with diagnostic biomarkers and effective therapeutic targets associated with these two diseases. METHODS: Transcriptional data sets of atherosclerosis and metabolic syndrome were obtained from GEO database. The differentially expressed genes were analyzed by RStudio software, and the function-rich and protein-protein interactions of the common differentially expressed genes were analyzed.Furthermore, the hub gene was screened by Cytoscape software, and the immune infiltration of hub gens was analyzed. Finally, relevant clinical blood samples were collected for qRT-PCR verification of the three most important hub genes. RESULTS: A total of 1242 differential genes (778 up-regulated genes and 464 down-regulated genes) were screened from GSE28829 data set. A total of 1021 differential genes (492 up-regulated genes and 529 down-regulated genes) were screened from the data set GSE98895. Then 23 up-regulated genes and 11 down-regulated genes were screened by venn diagram. Functional enrichment analysis showed that cytokines and immune activation were involved in the occurrence and development of these two diseases. Through the construction of the Protein-Protein Interaction(PPI) network and Cytoscape software analysis, we finally screened 10 hub genes. The immune infiltration analysis was further improved. The results showed that the infiltration scores of 7 kinds of immune cells in GSE28829 were significantly different among groups (Wilcoxon Test < 0.05), while in GSE98895, the infiltration scores of 4 kinds of immune cells were significantly different between groups (Wilcoxon Test < 0.05). Spearman method was used to analyze the correlation between the expression of 10 key genes and 22 kinds of immune cell infiltration scores in two data sets. The results showed that there were 42 pairs of significant correlations between 10 genes and 22 kinds of immune cells in GSE28829 (|Cor| > 0.3 & P < 0.05). There were 41 pairs of significant correlations between 10 genes and 22 kinds of immune cells in GSE98895 (|Cor| > 0.3 & P < 0.05). Finally, our results identified 10 small molecules with the highest absolute enrichment value, and the three most significant key genes (CX3CR1, TLR5, IL32) were further verified in the data expression matrix and clinical blood samples. CONCLUSION: We have established a co-expression network between atherosclerotic progression and metabolic syndrome, and identified key genes between the two diseases. Through the method of bioinformatics, we finally obtained 10 hub genes in As and MS, and selected 3 of the most significant genes (CX3CR1, IL32, TLR5) for blood PCR verification. This may be helpful to provide new research ideas for the diagnosis and treatment of AS complicated with MS.


Assuntos
Aterosclerose , Bases de Dados Genéticas , Progressão da Doença , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Síndrome Metabólica , Mapas de Interação de Proteínas , Humanos , Síndrome Metabólica/genética , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/imunologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/diagnóstico , Aterosclerose/sangue , Transcriptoma , Masculino , Valor Preditivo dos Testes , Marcadores Genéticos , Reprodutibilidade dos Testes , Predisposição Genética para Doença , Biologia Computacional , Pessoa de Meia-Idade , Feminino , Regulação da Expressão Gênica
20.
BMC Cardiovasc Disord ; 24(1): 211, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627621

RESUMO

BACKGROUND: C-reactive protein (CRP) is an acute inflammatory protein detected in obese patients with metabolic syndrome. Moreover, increased CRP levels have been linked with atherosclerotic disease, congestive heart failure, and ischemic heart disease, suggesting that it is not only a biomarker but also plays an active role in the pathophysiology of cardiovascular diseases. Since endothelial dysfunction plays an essential role in various cardiovascular pathologies and is characterized by increased expression of cell adhesion molecules and inflammatory markers, we aimed to detect specific markers of endothelial dysfunction, inflammation, and oxidative stress in spontaneously hypertensive rats (SHR) expressing human CRP. This model is genetically predisposed to the development of the metabolic syndrome. METHODS: Transgenic SHR male rats (SHR-CRP) and non-transgenic SHR (SHR) at the age of 8 months were used. Metabolic profile (including serum and tissue triglyceride (TAG), serum insulin concentrations, insulin-stimulated incorporation of glucose, and serum non-esterified fatty acids (NEFA) levels) was measured. In addition, human serum CRP, MCP-1 (monocyte chemoattractant protein-1), and adiponectin were evaluated by means of ELISA, histological analysis was used to study morphological changes in the aorta, and western blot analysis of aortic tissue was performed to detect expression of endothelial, inflammatory, and oxidative stress markers. RESULTS: The presence of human CRP was associated with significantly decreased insulin-stimulated glycogenesis in skeletal muscle, increased muscle and hepatic accumulation of TAG and decreased plasmatic cGMP concentrations, reduced adiponectin levels, and increased monocyte chemoattractant protein-1 (MCP-1) levels in the blood, suggesting pro-inflammatory and presence of multiple features of metabolic syndrome in SHR-CRP animals. Histological analysis of aortic sections did not reveal any visible morphological changes in animals from both SHR and SHR-CRP rats. Western blot analysis of the expression of proteins related to the proper function of endothelium demonstrated significant differences in the expression of p-eNOS/eNOS in the aorta, although endoglin (ENG) protein expression remained unaffected. In addition, the presence of human CRP in SHR in this study did not affect the expression of inflammatory markers, namely p-NFkB, P-selectin, and COX2 in the aorta. On the other hand, biomarkers related to oxidative stress, such as HO-1 and SOD3, were significantly changed, indicating the induction of oxidative stress. CONCLUSIONS: Our findings demonstrate that CRP alone cannot fully induce the expression of endothelial dysfunction biomarkers, suggesting other risk factors of cardiovascular disorders are necessary to be involved to induce endothelial dysfunction with CRP.


Assuntos
Hipertensão , Insulinas , Síndrome Metabólica , Animais , Humanos , Masculino , Ratos , Adiponectina , Aorta , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Quimiocina CCL2 , Inflamação , Insulinas/metabolismo , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/genética , Estresse Oxidativo , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA