Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 68(4): 645-658.e5, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149593

RESUMO

Hajdu-Cheney syndrome (HCS), a rare autosomal disorder caused by heterozygous mutations in NOTCH2, is clinically characterized by acro-osteolysis, severe osteoporosis, short stature, neurological symptoms, cardiovascular defects, and polycystic kidneys. Recent studies identified that aberrant NOTCH2 signaling and consequent osteoclast hyperactivity are closely associated with the bone-related disorder pathogenesis, but the exact molecular mechanisms remain unclear. Here, we demonstrate that sustained osteoclast activity is largely due to accumulation of NOTCH2 carrying a truncated C terminus that escapes FBW7-mediated ubiquitination and degradation. Mice with osteoclast-specific Fbw7 ablation revealed osteoporotic phenotypes reminiscent of HCS, due to elevated Notch2 signaling. Importantly, administration of Notch inhibitors in Fbw7 conditional knockout mice alleviated progressive bone resorption. These findings highlight the molecular basis of HCS pathogenesis and provide clinical insights into potential targeted therapeutic strategies for skeletal disorders associated with the aberrant FBW7/NOTCH2 pathway as observed in patients with HCS.


Assuntos
Proteína 7 com Repetições F-Box-WD , Síndrome de Hajdu-Cheney , Mutação , Osteoporose , Proteólise , Receptor Notch2 , Animais , Linhagem Celular , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Camundongos Knockout , Osteoporose/genética , Osteoporose/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Ubiquitinação/genética
2.
Osteoporos Int ; 34(5): 1005-1009, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36622389

RESUMO

Hajdu-Cheney syndrome (HCS) is an inherited skeletal disorder caused by mutations in the Notch homolog protein 2 gene (NOTCH2). Treatment of this rare disease is challenging because there are no established guidelines worldwide. Previous case reports using bisphosphonates, denosumab, or teriparatide suggested that curative treatment for HCS did not exist yet in terms of preventing the disease progression. Therefore, the efficacy of romosozumab for osteoporosis in patients with HCS needs to be evaluated. Herein, we report the case of a 43-year-old woman who had progressive acro-osteolysis and repeated fractures since the age of 29 years. Next-generation sequencing confirmed HCS with a mutation at nucleotide 6758G>A, leading to Trp2253Ter replacement in NOTCH2. Romosozumab treatment was initiated because she had already received bisphosphonate for more than 10 years at other hospitals. After 1 year of romosozumab treatment, the bone mineral density (BMD) increased by 10.2%, 6.3%, and 1.3%, with Z scores of -2.9, -1.6, and -1.2 at the lumbar spine, femoral neck, and total hip, respectively. In addition, C-telopeptide was suppressed by 26.4% (0.121 to 0.089 ng/mL), and procollagen type I N-terminal propeptide increased by 18.7% (25.2 to 29.9 ng/mL). This was the first report of romosozumab treatment in patient with osteoporosis and HCS in Korea. One year of romosozumab treatment provided substantial gains in BMD with maintaining the last acro-osteolytic status without deteriorating, representing a possible treatment option for HCS.


Assuntos
Conservadores da Densidade Óssea , Síndrome de Hajdu-Cheney , Osteoporose , Feminino , Humanos , Adulto , Síndrome de Hajdu-Cheney/complicações , Síndrome de Hajdu-Cheney/tratamento farmacológico , Síndrome de Hajdu-Cheney/genética , Osteoporose/etiologia , Anticorpos Monoclonais/uso terapêutico , Densidade Óssea , Difosfonatos , Conservadores da Densidade Óssea/uso terapêutico
3.
Am J Med Genet A ; 191(1): 271-274, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301051

RESUMO

Hajdu-Cheney syndrome is an ultra-rare autosomal dominant disorder caused by a heterozygous variant in NOTCH2 gene. Characteristic features include osteolysis, distinct facial appearance, skull deformity, joint laxity, osteoporosis, and short stature. Associated abnormalities are congenital heart disease, congenital defects of the kidney, and neurological problems. Here, we present the first reported case of an African child with a variant in NOTCH2 gene and features of Hajdu-Cheney syndrome in whom we detected a congenital heart defect that has not been previously reported in association with the syndrome. To appropriately characterize this disease and document correct proportion of cardiovascular malformation associations, echocardiography is recommended for all cases of Hajdu Cheney syndrome.


Assuntos
Anormalidades Cardiovasculares , Síndrome de Hajdu-Cheney , Osteoporose , Criança , Humanos , Síndrome de Hajdu-Cheney/diagnóstico , Síndrome de Hajdu-Cheney/genética , Receptor Notch2/genética , Osteoporose/genética , Heterozigoto , Anormalidades Cardiovasculares/complicações , Anormalidades Cardiovasculares/diagnóstico , Anormalidades Cardiovasculares/genética
4.
J Biol Chem ; 297(6): 101376, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742737

RESUMO

Notch2tm1.1Ecan mice, which harbor a mutation replicating that found in Hajdu-Cheney syndrome, exhibit marked osteopenia because of increased osteoclast number and bone resorption. Hairy and enhancer of split 1 (HES1) is a Notch target gene and a transcriptional modulator that determines osteoclast cell fate decisions. Transcript levels of Hes1 increase in Notch2tm1.1Ecan bone marrow-derived macrophages (BMMs) as they mature into osteoclasts, suggesting a role in osteoclastogenesis. To determine whether HES1 is responsible for the phenotype of Notch2tm1.1Ecan mice and the skeletal manifestations of Hajdu-Cheney syndrome, Hes1 was inactivated in Ctsk-expressing cells from Notch2tm1.1Ecan mice. Ctsk encodes the protease cathepsin K, which is expressed preferentially by osteoclasts. We found that the osteopenia of Notch2tm1.1Ecan mice was ameliorated, and the enhanced osteoclastogenesis was reversed in the context of the Hes1 inactivation. Microcomputed tomography revealed that the downregulation of Hes1 in Ctsk-expressing cells led to increased bone volume/total volume in female mice. In addition, cultures of BMMs from CtskCre/WT;Hes1Δ/Δ mice displayed a decrease in osteoclast number and size and decreased bone-resorbing capacity. Moreover, activation of HES1 in Ctsk-expressing cells led to osteopenia and enhanced osteoclast number, size, and bone resorptive capacity in BMM cultures. Osteoclast phenotypes and RNA-Seq of cells in which HES1 was activated revealed that HES1 modulates cell-cell fusion and bone-resorbing capacity by supporting sealing zone formation. In conclusion, we demonstrate that HES1 is mechanistically relevant to the skeletal manifestation of Notch2tm1.1Ecan mice and is a novel determinant of osteoclast differentiation and function.


Assuntos
Diferenciação Celular/fisiologia , Osteoclastos/citologia , Receptor Notch2/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição HES-1/fisiologia , Animais , Feminino , Síndrome de Hajdu-Cheney/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Receptor Notch2/genética
5.
Am J Med Genet A ; 188(7): 2135-2138, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35289498

RESUMO

Pathogenic variants in NOTCH2 which encodes a single-pass transmembrane protein have been identified as a cause of several autosomal dominant congenital disorders. In particular, truncating mutations in exon 34 have been found in patients with skeletal abnormalities and dysmorphic features. We describe a patient with a de novo variant in NOTCH2 who displayed features of both Hajdu-Cheney syndrome (HJCYS) and serpentine fibula-polycystic kidney syndrome (SFPKS). The recurrent nonsense variant in exon 34 has been reported in seven other patients with syndromic presentations, making it the most common pathogenic variant for NOTCH2 in congenital disorders. In addition to the core features of HJCYS and SFPKS, there was a gastrointestinal tract malformation of an imperforate anus which has not been reported in patients with pathogenic variants in NOTCH2.


Assuntos
Códon sem Sentido , Síndrome de Hajdu-Cheney , Códon sem Sentido/genética , Éxons/genética , Síndrome de Hajdu-Cheney/genética , Humanos , Mutação , Receptor Notch2/genética
6.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232677

RESUMO

Hajdu-Cheney syndrome (HCS) is a rare autosomal dominant manifestation of a congenital genetic disorder caused by a mutation in the NOTCH2 gene. NOTCH signaling has variations from NOTCH 1 to 4 and maintains homeostasis by determining and regulating the proliferation and differentiation of various cells. In HCS, the over-accumulated NOTCH2 causes abnormal bone resorption due to its continuous excessive signaling. HCS is characterized by progressive bone destruction, has complex wide-range clinical manifestations, and significantly impacts the patient's quality of life. However, no effective treatment has been established for HCS to date. There are genetic variants of NOTCH2 that have been reported in the ClinVar database of the U.S. National Institutes of Health. In total, 26 mutant variants were detected based on the American College of Medical Genetics and Genomics (ACMC). To date, there has been no comprehensive compilation of HCS mutations. In this review, we provide the most comprehensive list possible of HCS variants, nucleotide changes, amino acid definitions, and molecular consequences reported to date, following the ACMC guidelines.


Assuntos
Síndrome de Hajdu-Cheney , Aminoácidos/genética , Pesquisa em Genética , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Humanos , Mutação , Nucleotídeos , Qualidade de Vida
7.
Am J Med Genet A ; 185(8): 2477-2481, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33988298

RESUMO

Multicentric carpotarsal osteolysis (MCTO) is an autosomal dominant condition characterized by carpal-tarsal abnormalities; over half of affected individuals also develop renal disease. MCTO is caused by mutations of MAFB; however, there is no clear phenotype-genotype correlation. We describe the first reported family of variable MCTO phenotype due to mosaicism: the proband had classical skeletal features and renal involvement due to focal segmental glomerulosclerosis (FSGS), and the father had profound renal impairment due to FSGS, necessitating kidney transplantation. Mosaicism was first suspected in this family due to unequal allele ratios in the sequencing chromatograph of the initial blood sample of proband's father and confirmed by sequencing DNA extracted from the father's hair, collected from different bodily parts. This case highlights the need for a high index of clinical suspicion to detect low-level parental mosaicism, as well as a potential role for MAFB mutation screening in individuals with isolated FSGS.


Assuntos
Ossos do Carpo/anormalidades , Ossos do Carpo/patologia , Família , Síndrome de Hajdu-Cheney/diagnóstico , Síndrome de Hajdu-Cheney/genética , Mosaicismo , Penetrância , Alelos , Biomarcadores , Análise Mutacional de DNA , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Síndrome de Hajdu-Cheney/cirurgia , Humanos , Fator de Transcrição MafB/genética , Masculino , Mutação , Linhagem , Fenótipo , Radiografia , Análise de Sequência de DNA , Adulto Jovem
8.
J Biol Chem ; 294(39): 14203-14214, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31371452

RESUMO

Hajdu Cheney syndrome (HCS) is characterized by craniofacial developmental abnormalities, acro-osteolysis, and osteoporosis and is associated with gain-of-NOTCH2 function mutations. A mouse model of HCS termed Notch2tm1.1Ecan harboring a mutation in exon 34 of Notch2 replicating the one found in HCS was used to determine whether the HCS mutation sensitizes the skeleton to the osteolytic effects of tumor necrosis factor α (TNFα). TNFα injected over the calvarial vault caused a greater increase in osteoclast number, osteoclast surface, and eroded surface in Notch2tm1.1Ecan mice compared with littermate WT controls. Accordingly, the effect of TNFα on osteoclastogenesis was greatly enhanced in cultures of bone marrow-derived macrophages (BMMs) from Notch2tm1.1Ecan mice when compared with the activity of TNFα in control cultures. TNFα induced the expression of Notch2 and Notch2 mutant mRNA by ∼2-fold, possibly amplifying the NOTCH2-dependent induction of osteoclastogenesis. The effect of TNFα on osteoclastogenesis in Notch2tm1.1Ecan mutants depended on NOTCH2 activation because it was reversed by anti-NOTCH2 negative regulatory region and anti-jagged 1 antibodies. The inactivation of Hes1 prevented the TNFα effect on osteoclastogenesis in the context of the Notch2tm1.1Ecan mutation. In addition, the induction of Il1b, but not of Tnfa and Il6, mRNA by TNFα was greater in Notch2tm1.1Ecan BMMs than in control cells, possibly contributing to the actions of TNFα and NOTCH2 on osteoclastogenesis. In conclusion, the HCS mutation enhances TNFα-induced osteoclastogenesis and the inflammatory bone-resorptive response possibly explaining the acro-osteolysis observed in affected individuals.


Assuntos
Síndrome de Hajdu-Cheney/genética , Mutação , Osteoclastos/metabolismo , Receptor Notch2/genética , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Receptor Notch2/metabolismo , Fatores de Transcrição HES-1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
9.
Development ; 144(10): 1743-1763, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28512196

RESUMO

Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.


Assuntos
Doenças Genéticas Inatas/embriologia , Doenças Genéticas Inatas/genética , Receptores Notch/genética , Anormalidades Múltiplas/embriologia , Anormalidades Múltiplas/genética , Síndrome de Alagille/embriologia , Síndrome de Alagille/genética , Animais , Biologia do Desenvolvimento , Displasia Ectodérmica/embriologia , Displasia Ectodérmica/genética , Síndrome de Hajdu-Cheney/embriologia , Síndrome de Hajdu-Cheney/genética , Hérnia Diafragmática/embriologia , Hérnia Diafragmática/genética , Humanos , Deformidades Congênitas dos Membros/embriologia , Deformidades Congênitas dos Membros/genética , Meningocele/embriologia , Meningocele/genética , Dermatoses do Couro Cabeludo/congênito , Dermatoses do Couro Cabeludo/embriologia , Dermatoses do Couro Cabeludo/genética
10.
BMC Musculoskelet Disord ; 21(1): 154, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32143606

RESUMO

BACKGROUND: Hajdu-Cheney syndrome (HCS) is a rare inherited skeletal disorder caused by pathogenic mutations in exon 34 of NOTCH2. Its highly variable phenotypes make early diagnosis challenging. In this paper, we report a case of early-onset HCS with severe phenotypic manifestations but delayed diagnosis. CASE PRESENTATION: The patient was born to non-consanguineous, healthy parents of Chinese origin. She presented facial anomalies, micrognathia and skull malformations at birth, and was found hearing impairment, congenital heart disease and developmental delay during her first year of life. Her first visit to our center was at 1 year of age due to cardiovascular repair surgery for patent ductus arteriosus (PDA) and ventricular septal defect (VSD). Skull X-ray showed wormian bones. She returned at 7 years old after she developed progressive skeletal anomalies with fractures. She presented with multiple wormian bones, acro-osteolysis, severe osteoporosis, bowed fibulae and a renal cyst. Positive genetic test of a de novo heterozygous frameshift mutation in exon 34 of NOTCH2 (c.6426dupT) supported the clinical diagnosis of HCS. CONCLUSION: This is the second reported HCS case caused by the mutation c.6426dupT in NOTCH2, but presenting much earlier and severer clinical expression. Physicians should be aware of variable phenotypes so that early diagnosis and management may be achieved.


Assuntos
Síndrome de Hajdu-Cheney/diagnóstico , Síndrome de Hajdu-Cheney/genética , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/genética , Povo Asiático , Criança , Diagnóstico Precoce , Éxons , Feminino , Mutação com Ganho de Função , Síndrome de Hajdu-Cheney/complicações , Humanos , Masculino , Osteoporose/complicações , Doenças Raras/complicações , Receptor Notch2/genética , Crânio/patologia , Adulto Jovem
11.
Am J Pathol ; 188(6): 1430-1446, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29545197

RESUMO

Mice harboring Notch2 mutations replicating Hajdu-Cheney syndrome (Notch2tm1.1ECan) have osteopenia and exhibit an increase in splenic marginal zone B cells with a decrease in follicular B cells. Whether the altered B-cell allocation is responsible for the osteopenia of Notch2tm1.1ECan mutants is unknown. To determine the effect of NOTCH2 activation in B cells on splenic B-cell allocation and skeletal phenotype, a conditional-by-inversion (COIN) Hajdu-Cheney syndrome allele of Notch2 (Notch2[ΔPEST]COIN) was used. Cre recombination generates a permanent Notch2ΔPEST allele expressing a transcript for which sequences coding for the proline, glutamic acid, serine, and threonine-rich (PEST) domain are replaced by a stop codon. CD19-Cre drivers were backcrossed into Notch2[ΔPEST]COIN/[ΔPEST]COIN to generate CD19-specific Notch2ΔPEST/ΔPEST mutants and control Notch2[ΔPEST]COIN/[ΔPEST]COIN littermates. There was an increase in marginal zone B cells and a decrease in follicular B cells in the spleen of CD19Cre/WT;Notch2ΔPEST/ΔPEST mice, recapitulating the splenic phenotype of Notch2tm1.1ECan mice. The effect was reproduced when the NOTCH1 intracellular domain was induced in CD19-expressing cells (CD19Cre/WT;RosaNotch1/WT mice). However, neither CD19Cre/WT;Notch2ΔPEST/ΔPEST nor CD19Cre/WT;RosaNotch1/WT mice had a skeletal phenotype. Moreover, splenectomies in Notch2tm1.1ECan mice did not reverse their osteopenic phenotype. In conclusion, Notch2 activation in CD19-expressing cells determines B-cell allocation in the spleen but has no skeletal consequences.


Assuntos
Antígenos CD19/metabolismo , Linfócitos B/citologia , Síndrome de Hajdu-Cheney/patologia , Homeostase , Músculo Esquelético/citologia , Mutação , Receptor Notch2/fisiologia , Animais , Linfócitos B/metabolismo , Feminino , Síndrome de Hajdu-Cheney/genética , Síndrome de Hajdu-Cheney/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo
12.
Am J Pathol ; 188(1): 149-159, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037852

RESUMO

The neurogenic locus notch homolog protein (Notch)-2 receptor is a determinant of B-cell allocation, and gain-of-NOTCH2-function mutations are associated with Hajdu-Cheney syndrome (HCS), a disease presenting with osteoporosis and acro-osteolysis. We generated a mouse model reproducing the HCS mutation (Notch2HCS), and heterozygous global mutant mice displayed gain-of-Notch2 function. In the mutant spleen, the characteristic perifollicular rim marking the marginal zone (MZ), which is the interface between the nonlymphoid red pulp and the lymphoid white pulp, merged with components of the white pulp. As a consequence, the MZ of Notch2HCS mice occupied most of the splenic structure. To explore the mechanisms involved, lymphocyte populations from the bone marrow and spleen were harvested from heterozygous Notch2HCS mice and sex-matched control littermates and analyzed by flow cytometry. Notch2HCS mice had an increase in CD21/35highCD23- splenic MZ B cells of approximately fivefold and a proportional decrease in splenic follicular B cells (CD21/35intCD23+) at 1, 2, and 12 months of age. Western blot analysis revealed that Notch2HCS mutant splenocytes had increased phospho-Akt and phospho-Jun N-terminal kinase, and gene expression analysis of splenic CD19+ B cells demonstrated induction of Hes1 and Hes5 in Notch2HCS mutants. Anti-Notch2 antibodies decreased MZ B cells in control and Notch2HCS mice. In conclusion, Notch2HCS mutant mice have increased mature B cells in the MZ of the spleen.


Assuntos
Linfócitos B/citologia , Síndrome de Hajdu-Cheney/imunologia , Mutação , Receptor Notch2/genética , Baço/imunologia , Animais , Linfócitos B/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Síndrome de Hajdu-Cheney/genética , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Camundongos , Camundongos Transgênicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Baço/citologia , Baço/metabolismo
13.
Am J Med Genet A ; 179(8): 1652-1664, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31218820

RESUMO

Frank-Ter Haar syndrome (FTHS), Winchester syndrome (WS), and multicentric osteolysis, nodulosis, and arthropathy (MONA) are ultra-rare multisystem disorders characterized by craniofacial malformations, reduced bone density, skeletal and cardiac anomalies, and dermal fibrosis. These autosomal recessive syndromes are caused by homozygous mutation or deletion of respectively SH3PXD2B (SH3 and PX Domains 2B), MMP14 (matrix metalloproteinase 14), or MMP2. Here, we give an overview of the clinical features of 63 previously reported patients with an SH3PXD2B, MMP14, or MMP2 mutation, demonstrating considerable clinical overlap between FTHS, WS, and MONA. Interestingly, the protein products of SH3PXD2B, MMP14, and MMP2 directly cooperate in collagen remodeling. We review animal models for these three disorders that accurately reflect the major clinical features and likewise show significant phenotypical similarity with each other. Furthermore, they demonstrate that defective collagen remodeling is central in the underlying pathology. As such, we propose a nosological revision, placing these SH3PXD2B, MMP14, and MMP2 related syndromes in a novel "defective collagen-remodelling spectrum (DECORS)". In our opinion, this revised nosology better reflects the central role for impaired collagen remodeling, a potential target for pharmaceutical intervention.


Assuntos
Colágeno/genética , Síndrome de Hajdu-Cheney/diagnóstico , Síndrome de Hajdu-Cheney/genética , Mutação , Fenótipo , Alelos , Animais , Colágeno/química , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo
14.
J Immunol ; 198(5): 2070-2081, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093525

RESUMO

Macrophage phenotypic and functional heterogeneity derives from tissue-specific transcriptional signatures shaped by the local microenvironment. Most studies addressing the molecular basis for macrophage heterogeneity have focused on murine cells, whereas the factors controlling the functional specialization of human macrophages are less known. M-CSF drives the generation of human monocyte-derived macrophages with a potent anti-inflammatory activity upon stimulation. We now report that knockdown of MAFB impairs the acquisition of the anti-inflammatory profile of human macrophages, identify the MAFB-dependent gene signature in human macrophages and illustrate the coexpression of MAFB and MAFB-target genes in CD163+ tissue-resident and tumor-associated macrophages. The contribution of MAFB to the homeostatic/anti-inflammatory macrophage profile is further supported by the skewed polarization of monocyte-derived macrophages from multicentric carpotarsal osteolysis (Online Mendelian Inheritance in Man #166300), a pathology caused by mutations in the MAFB gene. Our results demonstrate that MAFB critically determines the acquisition of the anti-inflammatory transcriptional and functional profiles of human macrophages.


Assuntos
Diferenciação Celular , Síndrome de Hajdu-Cheney/imunologia , Macrófagos/fisiologia , Fator de Transcrição MafB/metabolismo , Monócitos/fisiologia , Animais , Anti-Inflamatórios , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Microambiente Celular , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Ontologia Genética , Síndrome de Hajdu-Cheney/genética , Homeostase , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fator de Transcrição MafB/genética , Camundongos , Mutação/genética , Receptores de Superfície Celular/metabolismo , Células Th2/imunologia , Transcriptoma
15.
Am J Med Genet A ; 176(11): 2382-2388, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30329210

RESUMO

We present a natural history of a 32-year-old man with Hajdu-Cheney syndrome (HJCYS), because of the de novo truncating mutation in the exon 34 of NOTCH2 (c.6424-6427delTCTG, p.Ser2142ArgfsX4), who has been followed up for a period of 23 years (between 9 and 32 years). During follow-up, we observed abnormalities of vision, hearing, voice, and progression of craniofacial features in the form of skeletal dysplasia with affected skull, dentition, spine, limbs, fingers, and toes. Low bone mineral density and history of fragility fractures also suggested primary osteoporosis being a clinical manifestation. According to Stengel-Rutkowski, Schimanek, and Wernheimer (1984; Human Genetics, 6, 272-295), systematic data acquisition has been used for quantitative analysis of anthropological, radiographic, and clinical features at childhood, adolescence, and young adulthood separately. A detailed phenotype description together with the results of reanalysis of 14 reports so far published on patients with HJCYS and NOTCH2 mutation showed similar phenotype evolution with age. The spectrum of observed features may improve diagnostic tools for HJCYS at different periods of the lifespan.


Assuntos
Síndrome de Hajdu-Cheney/genética , Mutação/genética , Receptor Notch2/genética , Adolescente , Adulto , Sequência de Bases , Criança , Análise Mutacional de DNA , Progressão da Doença , Seguimentos , Síndrome de Hajdu-Cheney/diagnóstico por imagem , Humanos , Masculino , Fenótipo , Adulto Jovem
16.
Oral Dis ; 24(6): 1037-1041, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29566451

RESUMO

OBJECTIVE: To identify the molecular genetic etiology of an individual with a dysmorphic face, unusual teeth mobility, and root resorption. SUBJECTS AND METHODS: DNA samples were collected from a trio of family members, and whole-exome sequencing was performed. RESULTS: Mutational analysis revealed a de novo mutation (c.6787C>T) in the last exon of the NOTCH2 gene. This mutation would introduce a premature stop codon [p.(Gln2263*)] and generate a truncated protein without C-terminus, escaping from the nonsense-mediated decay system. Sanger sequencing confirmed that this mutation was generated spontaneously. CONCLUSIONS: In this study, we identified a novel nonsense mutation in the last exon of the NOTCH2 gene causing Hajdu-Cheney syndrome. We described the genotype and phenotype correlation and the related dental complications. These results will advance the understanding of the NOTCH2 signaling in periodontitis and root resorption.


Assuntos
Síndrome de Hajdu-Cheney/genética , Receptor Notch2/genética , Adolescente , Criança , Pré-Escolar , Códon sem Sentido , Feminino , Síndrome de Hajdu-Cheney/complicações , Síndrome de Hajdu-Cheney/diagnóstico , Humanos , Má Oclusão/etiologia , Reabsorção da Raiz/etiologia , Mobilidade Dentária/etiologia
17.
J Biol Chem ; 291(4): 1538-1551, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26627824

RESUMO

Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor κB ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the γ-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption.


Assuntos
Doenças Ósseas Metabólicas/fisiopatologia , Reabsorção Óssea , Diferenciação Celular , Modelos Animais de Doenças , Síndrome de Hajdu-Cheney/genética , Osteoclastos/citologia , Receptor Notch2/genética , Animais , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Feminino , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Síndrome de Hajdu-Cheney/metabolismo , Síndrome de Hajdu-Cheney/fisiopatologia , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Osteoclastos/metabolismo , Osteogênese , Mutação Puntual , Receptor Notch2/metabolismo
18.
Curr Osteoporos Rep ; 14(4): 126-31, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27241678

RESUMO

Notch plays an important function in skeletal homeostasis, osteoblastogenesis, and osteoclastogenesis. Hajdu-Cheney syndrome (HCS) is a rare disease associated with mutations in NOTCH2 leading to the translation of a truncated NOTCH2 stable protein. As a consequence, a gain-of-NOTCH2 function is manifested. HCS is inherited as an autosomal dominant disease although sporadic cases exist. HCS is characterized by craniofacial developmental defects, including platybasia and wormian bones, osteoporosis with fractures, and acro-osteolysis. Subjects may suffer severe neurological complications, and HCS presents with cardiovascular defects and polycystic kidneys. An experimental mouse model harboring a HCSNotch2 mutation exhibits osteopenia secondary to enhanced bone resorption suggesting this as a possible mechanism for the skeletal disease. If the same mechanisms were operational in humans, anti-resorptive therapy could correct the bone loss, but not necessarily the acro-osteolysis. In conclusion, HCS is a devastating disease associated with a gain-of-NOTCH2 function resulting in diverse clinical manifestations.


Assuntos
Síndrome de Hajdu-Cheney/fisiopatologia , Acro-Osteólise/etiologia , Animais , Reabsorção Óssea/genética , Modelos Animais de Doenças , Mutação com Ganho de Função , Síndrome de Hajdu-Cheney/complicações , Síndrome de Hajdu-Cheney/genética , Humanos , Camundongos , Doenças do Sistema Nervoso/etiologia , Osteoporose/etiologia , Fraturas por Osteoporose/etiologia , Platibasia/etiologia , Doenças Renais Policísticas/etiologia , Receptor Notch2/genética
19.
Am J Hum Genet ; 90(3): 494-501, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22387013

RESUMO

Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia characterized by aggressive osteolysis, particularly affecting the carpal and tarsal bones, and is frequently associated with progressive renal failure. Using exome capture and next-generation sequencing in five unrelated simplex cases of MCTO, we identified previously unreported missense mutations clustering within a 51 base pair region of the single exon of MAFB, validated by Sanger sequencing. A further six unrelated simplex cases with MCTO were also heterozygous for previously unreported mutations within this same region, as were affected members of two families with autosomal-dominant MCTO. MAFB encodes a transcription factor that negatively regulates RANKL-induced osteoclastogenesis and is essential for normal renal development. Identification of this gene paves the way for development of novel therapeutic approaches for this crippling disease and provides insight into normal bone and kidney development.


Assuntos
Ossos do Carpo/anormalidades , Síndrome de Hajdu-Cheney/genética , Fator de Transcrição MafB/genética , Mutação de Sentido Incorreto , Ossos do Tarso/anormalidades , Ativação Transcricional , Sequência de Bases , Criança , Pré-Escolar , Análise por Conglomerados , Exoma , Éxons , Feminino , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Análise de Sequência de DNA/métodos
20.
Am J Hum Genet ; 91(3): 572-6, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22922033

RESUMO

The "vanishing bone" syndromes represent a group of rare skeletal disorders characterized by osteolysis and joint destruction, which can mimic severe rheumatoid arthritis. Winchester syndrome was one of the first recognized autosomal-recessive, multicentric forms of the disorder. It was originally described nearly 50 years ago in two sisters with a severe crippling osteolysis. Using cultured fibroblasts from the proband, we have now identified homozygous mutations in membrane type-1 metalloproteinase (MT1-MMP or MMP14). We demonstrate that the resulting hydrophobic-region signal-peptide substitution (p.Thr17Arg) decreases MT1-MMP membrane localization with consequent impairment of pro-MMP2 activation, and we propose a structure-based mechanism for this effect.


Assuntos
Anormalidades Múltiplas/genética , Artrite/genética , Contratura/genética , Opacidade da Córnea/genética , Transtornos do Crescimento/genética , Síndrome de Hajdu-Cheney/genética , Metaloproteinase 14 da Matriz/genética , Osteólise/genética , Osteoporose/genética , Anormalidades Múltiplas/diagnóstico por imagem , Sequência de Aminoácidos , Contratura/diagnóstico por imagem , Opacidade da Córnea/diagnóstico por imagem , Feminino , Transtornos do Crescimento/diagnóstico por imagem , Humanos , Modelos Moleculares , Mutação , Osteólise/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA