Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 4): 119092, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38729407

RESUMO

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.


Assuntos
Cádmio , Ácido Salicílico , Sedum , Poluentes do Solo , Transcriptoma , Cádmio/toxicidade , Ácido Salicílico/metabolismo , Sedum/efeitos dos fármacos , Sedum/metabolismo , Sedum/genética , Sedum/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo , Transcriptoma/efeitos dos fármacos , Metabolômica , Estresse Oxidativo/efeitos dos fármacos , Metaboloma/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564870

RESUMO

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Assuntos
Sedum , Poluentes do Solo , Zinco/metabolismo , Cádmio/metabolismo , Sedum/metabolismo , Transporte Biológico , Transporte de Íons , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
3.
Environ Sci Technol ; 57(14): 5891-5902, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36988089

RESUMO

This study employs stable isotope analysis to investigate the mechanisms of cadmium (Cd) and zinc (Zn) interaction in the metal hyperaccumulating plant species Sedum plumbizincicola. To this end, the Cd and Zn isotope compositions of root, stem, leaf, and xylem sap samples were determined during metal uptake and translocation at different Cd and Zn concentrations. The enrichment of light isotopes of both elements in plants during uptake was less pronounced at low metal supply levels, likely reflecting the switch from a low-affinity to a high-affinity transport system at lower levels of external metal supply. The lower δ114/110Cd values of xylem sap when treated with a metabolic inhibitor decreasing the active Cd uptake further supports the preference of heavier Cd isotopes during high-affinity transport. The Δ66Znplant-initial solution or Δ66Znplant-final solution values were similar at different Cd concentrations, indicating negligible interaction of Cd in the Zn uptake process. However, decreasing Zn supply levels significantly increased the enrichment of light Cd isotopes in plants (Δ114/110Cd = -0.08‰) in low-Cd treatments but reduced the enrichment of light Cd isotopes in plants (Δ114/110Cd = 0.08‰) under high Cd conditions. A systematic enrichment of heavy Cd and light Zn isotopes was found in root-to-shoot translocation of the metals. The Cd concentrations of the growth solutions thereby had no significant impact on Zn isotope fractionation during root-to-shoot translocation. However, the Δ114/110Cdtranslocation values hint at possible competition between Cd and Zn for transporters during root-to-shoot transfer and this may impact the transport pathway of Cd. The stable isotope data demonstrate that the interactions between the two metals influenced the uptake and transport mechanisms of Cd in S. plumbizincicola but had little effect on those of Zn.


Assuntos
Cádmio , Sedum , Poluentes do Solo , Solo , Biodegradação Ambiental , Cádmio/análise , Cádmio/metabolismo , Isótopos/análise , Isótopos/metabolismo , Isótopos/farmacologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zinco/análise , Isótopos de Zinco/análise , Isótopos de Zinco/metabolismo , Isótopos de Zinco/farmacologia
4.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511604

RESUMO

The cadmium hyperaccumulator Sedum plumbizincicola has remarkable abilities for cadmium (Cd) transport, accumulation and detoxification, but the transcriptional regulation mechanisms responsible for its Cd hyperaccumulation remain unknown. To address this knowledge gap, we conducted a comparative transcriptome study between S. plumbizincicola and the non-hyperaccumulating ecotype (NHE) of Sedum alfredii with or without Cd treatment. Our results revealed many differentially expressed genes involved in heavy metal transport and detoxification that were abundantly expressed in S. plumbizincicola. Additionally, we identified a large number of differentially expressed transcription factor genes, highlighting the complexity of transcriptional regulatory networks. We further screened four transcription factor genes that were highly expressed in the roots of S. plumbizincicola as candidate genes for creating CRISPR/Cas9 knockout mutations. Among these, the SpARR11 and SpMYB84 mutant lines exhibited decreased Cd accumulation in their aboveground parts, suggesting that these two transcription factors may play a role in the regulation of the Cd hyperaccumulation in S. plumbizincicola. Although further research will be required to determine the precise targeted genes of these transcription factors, combined transcriptome analysis and CRISPR/Cas9 technology provides unprecedented opportunities for identifying transcription factors related to Cd hyperaccumulation and contributes to the understanding of the transcriptional regulation mechanism of hyperaccumulation in S. plumbizincicola.


Assuntos
Sedum , Poluentes do Solo , Cádmio/toxicidade , Cádmio/metabolismo , Sedum/metabolismo , Sistemas CRISPR-Cas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética , Biodegradação Ambiental , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
5.
Environ Geochem Health ; 45(11): 8317-8336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597084

RESUMO

The selection of appropriate plants and growth strategies is a key factor in improving the efficiency and universal applicability of phytoremediation. Sedum lineare grows rapidly and tolerates multiple adversities. The effects of inoculation of Acinetobacter sp. phosphate solubilizing bacteria P-1 and application of phosphate rock (PR) as additives on the remediation efficiency of As-contaminated soil by S. lineare were investigated. Compared with the control, both the single treatment and the combination of inoculation with strain P-1 and application of PR improved the biomass by 30.7-395.5%, chlorophyll content by 48.1-134.8%, total protein content by 12.5-92.4% and total As accumulation by 45.1-177.5%, and reduced the As-induced oxidative damage. Inoculation with strain P-1 increased the activities of superoxide dismutases and catalases of S. lineare under As stress, decreased the accumulation of reactive oxygen species in plant tissues and promoted the accumulation of As in roots. In contrast, simultaneous application of PR decreased As concentration in S. lineare tissues, attenuated As-induced lipid peroxidation and improved As transport to shoots. In addition, the combined application showed the best performance in improving resistance and biomass, which significantly increased root length by 149.1%, shoot length by 33%, fresh weight by 395.5% and total arsenic accumulation by 159.2%, but decreased the malondialdehyde content by 89.1%. Our results indicate that the combined application of strain P-1 and PR with S. lineare is a promising bioremediation strategy to accelerate phytoremediation of As-contaminated soils.


Assuntos
Arsênio , Crassulaceae , Sedum , Poluentes do Solo , Arsênio/toxicidade , Sedum/metabolismo , Sedum/microbiologia , Crassulaceae/metabolismo , Fosfatos , Biodegradação Ambiental , Solo , Poluentes do Solo/análise , Raízes de Plantas/metabolismo , Cádmio
6.
Appl Microbiol Biotechnol ; 106(21): 7139-7151, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201036

RESUMO

Botrytis cinerea is a highly destructive and widespread phytopathogen in fruits. The widespread use of chemical antifungal agents on fruits has aided in disease control while their long-term use has resulted in the emergence of resistant fungal strains. Flavonoids have a specific antifungal effect. The inhibitory effect and underlying mechanism of flavonoids from Sedum aizoon L. (FSAL) on B. cinerea were determined in this study. The results showed that the minimum inhibitory concentration of FSAL against B. cinerea was 1.500 mg/mL. FSAL treatment caused leakage of macromolecules such as nucleic acids, led to accumulation of malondialdehyde and relative oxygen species, and disrupted the ultrastructure of B. cinerea. The transcriptome results indicated that compared with the control group, there were 782 and 1330 genes identified as being substantially upregulated and downregulated, respectively, in the FSAL-treated group. The identified genes and metabolites were mostly involved in redox processes and glycerolipid and amino acid metabolism pathways. FSAL offer a promising choice for food prevention and safety. KEY POINTS: • FSAL negatively affects the glycerolipid metabolism of B. cinerea • FSAL minimum inhibitory concentration against B. cinerea was 1.500 mg/mL • FSAL could be utilized as a new prevention strategy for gray mold in fruits.


Assuntos
Ácidos Nucleicos , Sedum , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Sedum/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Lipídeos de Membrana/metabolismo , Metabolismo dos Lipídeos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Botrytis , Malondialdeído/metabolismo , Ácidos Nucleicos/metabolismo , Oxigênio/metabolismo , Aminoácidos/metabolismo
7.
PLoS Genet ; 15(6): e1008209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31199791

RESUMO

Plants with facultative crassulacean acid metabolism (CAM) maximize performance through utilizing C3 or C4 photosynthesis under ideal conditions while temporally switching to CAM under water stress (drought). While genome-scale analyses of constitutive CAM plants suggest that time of day networks are shifted, or phased to the evening compared to C3, little is known for how the shift from C3 to CAM networks is modulated in drought induced CAM. Here we generate a draft genome for the drought-induced CAM-cycling species Sedum album. Through parallel sampling in well-watered (C3) and drought (CAM) conditions, we uncover a massive rewiring of time of day expression and a CAM and stress-specific network. The core circadian genes are expanded in S. album and under CAM induction, core clock genes either change phase or amplitude. While the core clock cis-elements are conserved in S. album, we uncover a set of novel CAM and stress specific cis-elements consistent with our finding of rewired co-expression networks. We identified shared elements between constitutive CAM and CAM-cycling species and expression patterns unique to CAM-cycling S. album. Together these results demonstrate that drought induced CAM-cycling photosynthesis evolved through the mobilization of a stress-specific, time of day network, and not solely the phasing of existing C3 networks. These results will inform efforts to engineer water use efficiency into crop plants for growth on marginal land.


Assuntos
Adaptação Fisiológica/genética , Fotossíntese/genética , Proteínas de Plantas/genética , Sedum/genética , Carbono/metabolismo , Ciclo do Carbono/genética , Dióxido de Carbono/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Proteínas de Plantas/metabolismo , Sedum/metabolismo , Água/química
8.
Ecotoxicol Environ Saf ; 241: 113795, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35753274

RESUMO

Sedum alfredii Hance is a perennial herb native to China that can particularly be found in regions with abandoned Pb/Zn mines. It is a Cd/Zn hyperaccumulator that is highly tolerant to Pb, Cu, Ni, and Mn, showing potential for phytoremediation of soils contaminated with multiple heavy metals. A better understanding of how this species responds to different heavy metals would advance the phytoremediation efficiency. In this study, transcriptomic regulation of S. alfredii roots after Cd, Zn, Pb, and Cu exposure was analyzed to explore the candidate genes involved in multi-heavy metal tolerance. Although Zn and Cd, Pb and Cu had similar distribution patterns in S. alfredii, distinct expression patterns were exhibited among these four metal treatments, especially about half of the differentially expressed genes were upregulated under Cu treatment, suggesting that it utilizes distinctive and flexible strategies to cope with specific metal stress. Most unigenes regulated by Cu were enriched in catalytic activity, whereas the majority of unigenes regulated by Pb had unknown functions, implying that S. alfredii may have a unique strategy coping with Pb stress different from previous cognition. The unigenes that were co-regulated by multiple heavy metals exhibited functions of antioxidant substances, antioxidant enzymes, transporters, transcription factors, and cell wall components. These metal-induced responses at the transcriptional level in S. alfredii were highly consistent with those at the physiological level. Some of these genes have been confirmed to be related to heavy metal absorption and detoxification, and some were found to be related to heavy metal tolerance for the first time in this study, like Metacaspase-1 and EDR6. These results provide a theoretical basis for the use of genetic engineering technology to modify plants by enhancing multi-metal tolerance to promote phytoremediation efficiency.


Assuntos
Biodegradação Ambiental , Metais Pesados , Sedum , Poluentes do Solo , Adaptação Fisiológica , Antioxidantes/metabolismo , Cádmio/metabolismo , Perfilação da Expressão Gênica , Chumbo/análise , Metais Pesados/análise , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Sedum/genética , Sedum/metabolismo , Sedum/fisiologia , Poluentes do Solo/análise , Poluentes do Solo/metabolismo
9.
Ecotoxicol Environ Saf ; 236: 113514, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427879

RESUMO

The interactions between hyperaccumulators and their associated herbivores have been mostly investigated in their natural habitats and largely ignored in the phytoremediation practice. Herein, we investigated the herbivory status of Zn/Cd-hyperaccumulating plant Sedum alfredii from both their natural habitats and their applied remediation field, and inspected the adaptive strategies of the herbivores from the perspective of their facilitative gut microbiota. Field investigations showed that snail species Bradybaena ravida was the dominant herbivore feeding on S. alfredii and they can be only found in sites with lower levels of heavy metals compared with the plant natural habitat. Gut microbial community was analyzed using two sequencing methods (16S rRNA and czcA-Zn/Cd resistant gene) to comparatively understand the effect of gut microbes in facilitating snail feeding on the hyperaccumulators. The results revealed significant differences in the diversity and richness between the gut microbiota of the two snail populations, which was more pronounced by the czcA sequencing method. Despite of the compositional differences, their functions seemed to converge into three categories as metal-tolerant and contaminant degraders, gut symbionts, and pathogens. Further function potentials predicted by Tax4Fun based on 16 S sequencing data were in accordance with this categorization as the most abundant metabolic pathways were two-component system and ABC transporter, which was closely related to metal stress adaptation. The prevalence of positive interactions (~80%) indicated by the co-occurrence network analysis based on czcA sequencing data in both groups of gut microbiota further suggested the facilitative effect of these metal-tolerant gut microbes in coping with the high metal diet, which ultimately assist the snails to successfully feed on S. alfredii plants and thrive. This work for the first time provides evidence that the herbivore adaptation to hyperaccumulators were also associated with their gut microbial adaptation to metals.


Assuntos
Microbioma Gastrointestinal , Metais Pesados , Sedum , Poluentes do Solo , Animais , Biodegradação Ambiental , Cádmio/metabolismo , Metais Pesados/análise , Raízes de Plantas/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sedum/metabolismo , Caramujos/genética , Caramujos/metabolismo , Poluentes do Solo/análise
10.
Planta ; 253(1): 12, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389204

RESUMO

MAIN CONCLUSION: Cadmium-sensitive yeast screening resulted in the isolation of protein translation factor SaeIF1 from the hyperaccumulator Sedum alfredii which has both general and special regulatory roles in controlling cadmium accumulation. The hyperaccumulator of Sedum alfredii has the extraordinary ability to hyperaccumulate cadmium (Cd) in shoots. To investigate its underlying molecular mechanisms of Cd hyperaccumulation, a cDNA library was generated from leaf tissues of S. alfredii. SaeIF1, belonging to the eukaryotic protein translation factor SUI1 family, was identified by screening Cd-sensitive yeast transformants with this library. The full-length cDNA of SaeIF1 has 582 bp and encodes a predicted protein with 120 amino acids. Transient expression assays showed subcellular localization of SaeIF1 in the cytoplasm. SaeIF1 was constitutively and highly expressed in roots and shoots of the hyperaccumulator of S. alfredii, while its transcript levels showed over 100-fold higher expression in the hyperaccumulator of S. alfredii relative to the tissues of a nonhyperaccumulating ecotype of S. alfredii. However, the overexpression of SaeIF1 in yeast cells increased Cd accumulation, but conferred more Cd sensitivity. Transgenic Arabidopsis thaliana expressing SaeIF1 accumulated more Cd in roots and shoots without changes in the ratio of Cd content in shoots and roots, but were more sensitive to Cd stress than wild type. Both special and general roles of SaeIF1 in Cd uptake, transportation, and detoxification are discussed, and might be responsible for the hyperaccumulation characteristics of S. alfredii.


Assuntos
Sedum , Cádmio/metabolismo , Ecótipo , Folhas de Planta/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Sedum/genética , Sedum/metabolismo , Poluentes do Solo/metabolismo
11.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525549

RESUMO

Lateral root (LR) formation promotes plant resistance, whereas high-level ethylene induced by abiotic stress will inhibit LR emergence. Considering that local auxin accumulation is a precondition for LR generation, auxin-induced genes inhibiting ethylene synthesis may thus be important for LR development. Here, we found that auxin response factor 4 (SaARF4) in Sedum alfredii Hance could be induced by auxin. The overexpression of SaARF4 decreased the LR number and reduced the vessel diameters. Meanwhile, the auxin distribution mode was altered in the root tips and PIN expression was also decreased in the overexpressed lines compared with the wild-type (WT) plants. The overexpression of SaARF4 could reduce ethylene synthesis, and thus, the repression of ethylene production decreased the LR number of WT and reduced PIN expression in the roots. Furthermore, the quantitative real-time PCR, chromatin immunoprecipitation sequencing, yeast one-hybrid, and dual-luciferase assay results showed that SaARF4 could bind the promoter of 1-aminocyclopropane-1-carboxylate oxidase 4 (SaACO4), associated with ethylene biosynthesis, and could downregulate its expression. Therefore, we concluded that SaARF4 induced by auxin can inhibit ethylene biosynthesis by repressing SaACO4 expression, and this process may affect auxin transport to delay LR development.


Assuntos
Aminoácido Oxirredutases/genética , Ácidos Indolacéticos/farmacologia , Sedum/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Imunoprecipitação da Cromatina , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Sedum/efeitos dos fármacos , Sedum/genética , Sedum/metabolismo , Fatores de Transcrição/genética
12.
Ecotoxicol Environ Saf ; 205: 111152, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846297

RESUMO

Root exudates are the most direct manifestation of the response of plants changes in the external environment. Therefore, based on non-targeted gas chromatography-time-of-flight mass spectrometry and metabolomics, the response of Sedum plumbizincicola root exudates to Cd stress was used to reveal the possible mechanism of resistance to or accumulation of Cd. The results showed that Cd significantly changed the composition and contents of S. plumbizincicola root exudates. A total of 155 metabolites were identified in S. plumbizincicola root exudates, among which 33 showed significant differences under Cd stress, including organic acids, amino acids, lipids, and polyols. Cd stress suppressed organic acid metabolism and lipid metabolism in S. plumbizincicola and significantly affected amino acid metabolism. There were 16 metabolic pathways related to Cd stress, among which arginine and proline metabolism, valine, leucine, and isoleucine biosynthesis, glycine, serine, and threonine metabolism, glutathione metabolism, and purine metabolism were the key pathways with the highest correlation, and were closely related to the stress resistance of S. plumbizincicola.


Assuntos
Cádmio/toxicidade , Metaboloma/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Exsudatos de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Sedum/efeitos dos fármacos , Poluentes do Solo/toxicidade , Adaptação Fisiológica/efeitos dos fármacos , Bioacumulação/efeitos dos fármacos , Biodegradação Ambiental , Cádmio/metabolismo , Metabolômica , Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/análise
13.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365876

RESUMO

SaNramp6 in Sedum alfredii encodes a membrane-localized metal transporter. We isolated the SaNramp6h allele from the hyperaccumulating ecotype (HE) of S. alfredii. When this allele was expressed in transgenic yeast and Arabidopsis thaliana, it enhanced their cadmium (Cd) sensitivity by increased Cd transport and accumulation. We isolated another allele, SaNramp6n, from a nonhyperaccumulating ecotype (NHE) of S. alfredii. Amino acid sequence comparisons revealed three amino acid differences between SaNramp6h and SaNramp6n. We investigated the Cd transport activity of the Nramp6 allele, and determined which residues are essential for the transport activity. We conducted structure-function analyses of SaNramp6 based on site-directed mutagenesis and functional assays of the mutants in yeast and Arabidopsis. The three residues that differed between SaNramp6h and SaNramp6n were mutated. Only the L157P mutation of SaNramp6h impaired Cd transport. The other mutations, S218N and T504A, did not affect the transport activity of SaNramp6h, indicating that these residues are not essential for metal selectivity. Transgenic plants overexpressing SaNramp6hL157P showed altered metal accumulation in shoots and roots. Our results suggest that the conserved site L157 is essential for the high metal transport activity of SaNramp6h. This information may be useful for limiting or increasing Cd transport by other plant natural resistance associated macrophage protein (NRAMP) proteins.


Assuntos
Substituição de Aminoácidos , Cádmio/metabolismo , Proteínas de Transporte de Cátions/genética , Mutação Puntual , Sedum/genética , Sedum/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular , Fenótipo , Poluentes do Solo/metabolismo
14.
Plant Mol Biol ; 99(4-5): 347-362, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30644059

RESUMO

KEY MESSAGE: We compared the transcriptomes of parenchymal and vascular cells of Sedum alfredii stem under Cd stress to reveal gene regulatory networks underlying Cd hyperaccumulation. Cadmium (Cd) hyperaccumulation in plants is a complex biological process controlled by gene regulatory networks. Efficient transport through vascular systems and storage by parenchymal cells are vital for Cd hyperaccumulation in the Cd hyperaccumulator Sedum alfredii, but the genes involved are poorly understood. We investigated the spatial gene expression profiles of transport and storage sites in S. alfredii stem using laser-capture microdissection coupled with RNA sequencing. Gene expression patterns in response to Cd were distinct in vascular and parenchymal cells, indicating functional divisions that corresponded to Cd transportation and storage, respectively. In vascular cells, plasma membrane-related terms enriched a large number of differentially-expressed genes (DEGs) for foundational roles in Cd transportation. Parenchymal cells contained considerable DEGs specifically concentrated on vacuole-related terms associated with Cd sequestration and detoxification. In both cell types, DEGs were classified into different metabolic pathways in a similar way, indicating the role of Cd in activating a systemic stress signalling network where ATP-binding cassette transporters and Ca2+ signal pathways were probably involved. This study identified site-specific regulation of transcriptional responses to Cd stress in S. alfredii and analysed a collection of genes that possibly function in Cd transportation and detoxification, thus providing systemic information and direction for further investigation of Cd hyperaccumulation molecular mechanisms.


Assuntos
Cádmio/toxicidade , Sedum/efeitos dos fármacos , Sedum/genética , Sedum/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Transcriptoma , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico/genética , Cádmio/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Redes e Vias Metabólicas , Floema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/citologia , Caules de Planta/efeitos dos fármacos , Análise de Sequência de RNA , Transdução de Sinais , Transcrição Gênica/genética
15.
Plant Cell Environ ; 42(4): 1112-1124, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30311663

RESUMO

Sedum plumbizincicola is able to hyperaccumulate cadmium (Cd), a nonessential and highly toxic metal, in the above-ground tissues, but the mechanisms for its Cd hypertolerance are not fully understood. Here, we show that the heavy metal ATPase 1 (SpHMA1) of S. plumbizincicola plays an important role in chloroplast Cd detoxification. Compared with the HMA1 ortholog in the Cd nonhyperaccumulating ecotype of Sedum alfredii, the expression of SpHMA1 in the leaves of S. plumbizincicola was >200 times higher. Heterologous expression of SpHMA1 in Saccharomyces cerevisiae increased Cd sensitivity and Cd transport activity in the yeast cells. The SpHMA1 protein was localized to the chloroplast envelope. SpHMA1 RNA interference transgenic plants and CRISPR/Cas9-induced mutant lines showed significantly increased Cd accumulation in the chloroplasts compared with wild-type plants. Chlorophyll fluorescence imaging analysis revealed that the photosystem II of SpHMA1 knockdown and knockout lines suffered from a much higher degree of Cd toxicity than wild type. Taken together, these results suggest that SpHMA1 functions as a chloroplast Cd exporter and protects photosynthesis by preventing Cd accumulation in the chloroplast in S. plumbizincicola and hyperexpression of SpHMA1 is an important component contributing to Cd hypertolerance in S. plumbizincicola.


Assuntos
Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Cloroplastos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Sedum/metabolismo , Southern Blotting , Organismos Geneticamente Modificados , Fotossíntese , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sedum/fisiologia
16.
Plant Cell Environ ; 42(5): 1425-1440, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30577078

RESUMO

Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up-regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel-to-CSs overlap was identified as an ABA-driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin-related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion-selected electrode technique and PTS tracer confirmed that ABA-promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.


Assuntos
Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/genética , Sedum/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Cádmio/metabolismo , Regulação da Expressão Gênica de Plantas , Lipídeos/genética , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Sedum/genética
17.
Ecotoxicol Environ Saf ; 172: 97-104, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30684757

RESUMO

Endophyte-assisted phytoremediation has gained increasing attention. However, the interacting mechanisms of endophytes and metal hyperaccumulators are still not clear. An endophytic bacterium Pseudomonas fluorescens Sasm05 inoculation promoted Sedum alfredii Hance rooting and root development, in which the specific root length (SRL) and average number of root tips (ART) increased to 2.09- and 3.35-fold, respectively. Sasm05 inoculation promoted plant growth, increased the chlorophyll content, and elevated Zn uptake of plant at excess Zn supply. At 200 µM Zn treatment level, Sasm05 inoculation increased plant biomass and the chlorophyll content by more than 40%, and root Zn content by 40%. Furthermore, Sasm05 inoculation upregulated the expression of the Zn transporter SaIRT1 to 3.43-fold in the roots, while another transporter SaNramp1 expression was increased to 38.66-fold in the roots and 7.53-fold in the shoots. Time course study showed the best effects of Sasm05 on plant biomass and the chlorophyll content were detected at 30 d, while for Zn content at 3 d. These results firstly provided molecular evidences of endophytic bacteria in facilitating host plant Zn uptake, which will absolutely benefit the understanding of interacting mechanisms between hyperaccumulators and their endophytes.


Assuntos
Bactérias/metabolismo , Raízes de Plantas/microbiologia , Sedum/microbiologia , Zinco/metabolismo , Biodegradação Ambiental , Transporte Biológico , Biomassa , Clorofila/análise , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/análise
18.
Ecotoxicol Environ Saf ; 167: 95-106, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30312890

RESUMO

Sedum alfredii Hance is a Zn/Cd co-hyperaccumulator and its underlying molecular mechanism of Cd tolerance is worthy to be elucidated. Although numerous studies have reported the uptake, sequestration and detoxification of Cd in S. alfredii Hance, how it senses Cd-stress stimuli and transfers signals within tissues remains unclear. Leucine-rich repeat receptor-like protein kinases (LRR-RLKs) are vital for plant growth, development, immunity and signal transduction. Till now, there is lack of comprehensive studies addressing their functions in S. alfredii Hance responding to Cd stress. In the present study, we identified 60 LRR-RLK genes in S. alfredii Hance based on transcriptome analysis under Cd stress. They were categorized into 11 subfamilies and most of them had highly conserved protein structures and motif compositions. The inter-family diversity provided evidence for their functional divergence, supported by their expression level and profile in tissues under Cd stress. Co-expression network analysis revealed that the most highly connected hubs, Sa0F.522, Sa0F.1036, Sa28F.115 and Sa1F.472, were closely related with other genes involved in metal transport, stimulus response and transcription regulations. Of the ten hub genes exhibiting differential expression dynamics under the short-term Cd stress (Sa0F.522, Sa0F.1036 and Sa28F.115) were dramatically induced in the whole plant. Among them, Sa0F.522 gene was heterologously expressed in a Cd-sensitive yeast cell line and its function in Cd signal perception was confirmed. For the first time, our findings performed a comprehensive analysis of LRR-RLKs in S. alfredii Hance, mapped their expression patterns under Cd stress, and identified the key roles of Sa0F.522, Sa0F.1036 and Sa28F.115 in Cd signal transduction.


Assuntos
Cádmio/toxicidade , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas/genética , Sedum/genética , Transdução de Sinais/genética , Transporte Biológico/genética , Cádmio/metabolismo , Perfilação da Expressão Gênica , Proteínas de Repetições Ricas em Leucina , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Sedum/metabolismo , Estresse Fisiológico , Transcrição Gênica/genética
19.
J Environ Manage ; 239: 287-298, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913479

RESUMO

Comparative impact of CO2 application and endophyte inoculation was investigated on the growth, rhizosphere characteristics, and cadmium (Cd) absorption of two ecotypes of Sedum alfredii Hance in response to Cd stress under hydroponic or rhizo-box culture conditions. The results showed that both CO2 application and endophyte inoculation significantly (P < 0.05) promoted plant growth (fresh weight and dry weight), improved root morphological properties (SRL, SRA, SRV, ARD and RTN) and exudation (pH, TOC, TN, soluble sugar and organic acids), changed Cd uptake and distribution of both ecotypes of S. alfredii. Meanwhile soil total and DTPA extractable Cd in rhizo-box decreased by biofortification treatments. Superposition biofortification exhibits utmost improvement for the above mentioned parameters, and has potential for enhancing phytoremediation efficiency of hyperaccumulator and sustaining regular growth of non-hyperaccumulator in Cd contaminated soils.


Assuntos
Cádmio/farmacologia , Dióxido de Carbono/metabolismo , Endófitos/metabolismo , Rizosfera , Sedum/metabolismo , Endófitos/efeitos dos fármacos , Hidroponia , Raízes de Plantas/química , Sedum/química , Sedum/efeitos dos fármacos , Solo/química
20.
J Environ Sci (China) ; 86: 87-96, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31787193

RESUMO

Sedum alfredii Hance is a cadmium (Cd)/zinc (Zn) hyperaccumulator native to China. However, its relatively low biomass restricted the large-scale application for heavy metal contamination remediation. The chromosome set doubling of S. alfredii in vitro was achieved by 0.1%-0.2% (W/V) colchicine treatment. The plant DNA ploidy was analyzed by flow cytometry and chromosome set doubling plants (CSD) were identified based on the obvious different sharp peak. A tissue culture experiment with different Cd treated levels and a field trial with natural polluted mined soil were conducted to study the effects of chromosome doubling on plant biomass and Cd accumulation in shoots. The results suggested that S. alfredii is a mixoploid. Compared with the wild type plants (WT), CSD exhibited typical "gigas" characteristics in morphology including stem thickness, root hair production, number of leaves and size of stoma guard cell. Fresh weight and dry weight of CSD were increased to 1.62-2.03-fold and 2.26-3.25-fold of WT. And Cd content of CSD showed a 17.49%-42.82% increase and 59% increase under tissue culture and field condition, accordingly. In addition, the TF and in BCF of CSD were 2.37- and 1.59-fold of WT, respectively. These results proved that it is feasible to promote phytoextraction efficiency of S. alfredii in Cd contaminated soils through chromosomal engineering, which provides a novel approach for hyperaccumulator application in phytoremediation.


Assuntos
Biodegradação Ambiental , Cromossomos , Metais Pesados/metabolismo , Sedum/genética , Poluentes do Solo/metabolismo , China , Sedum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA