Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843312

RESUMO

Evaluation of the apportionment of genetic diversity of human bacterial commensals within and between human populations is an important step in the characterization of their evolutionary potential. Recent studies showed a correlation between the genomic diversity of human commensal strains and that of their host, but the strength of this correlation and of the geographic structure among human populations is a matter of debate. Here, we studied the genomic diversity and evolution of the phylogenetically related oro-nasopharyngeal healthy-carriage Streptococcus mitis and Streptococcus pneumoniae, whose lifestyles range from stricter commensalism to high pathogenic potential. A total of 119 S. mitis genomes showed higher within- and among-host variation than 810 S. pneumoniae genomes in European, East Asian and African populations. Summary statistics of the site-frequency spectrum for synonymous and non-synonymous variation and ABC modelling showed this difference to be due to higher ancestral bacterial population effective size (Ne) in S. mitis, whose genomic variation has been maintained close to mutation-drift equilibrium across (at least many) generations, whereas S. pneumoniae has been expanding from a smaller ancestral bacterial population. Strikingly, both species show limited differentiation among human populations. As genetic differentiation is inversely proportional to the product of effective population size and migration rate (Nem), we argue that large Ne have led to similar differentiation patterns, even if m is very low for S. mitis. We conclude that more diversity within than among human populations and limited population differentiation must be common features of the human microbiome due to large Ne.


Assuntos
Evolução Molecular , Variação Genética , Genoma Bacteriano , Streptococcus mitis , Streptococcus pneumoniae , Streptococcus mitis/genética , Humanos , Streptococcus pneumoniae/genética , Filogenia , Genética Populacional
2.
J Biol Chem ; 299(12): 105448, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951305

RESUMO

Bacteria utilize quorum sensing (QS) to coordinate many group behaviors. As such, QS has attracted significant attention as a potential mean to attenuate bacterial infectivity without introducing selective pressure for resistance development. Streptococcus mitis, a human commensal, acts as a genetic diversity reservoir for Streptococcus pneumoniae, a prevalent human pathogen. S. mitis possesses a typical comABCDE competence regulon QS circuitry; however, the competence-stimulating peptide (CSP) responsible for QS activation and the regulatory role of the competence regulon QS circuitry in S. mitis are yet to be explored. We set out to delineate the competence regulon QS circuitry in S. mitis, including confirming the identity of the native CSP signal, evaluating the molecular mechanism that governs CSP interactions with histidine kinase receptor ComD leading to ComD activation, and defining the regulatory roles of the competence regulon QS circuitry in initiating various S. mitis phenotypes. Our analysis revealed important structure-activity relationship insights of the CSP signal and facilitated the development of novel CSP-based QS modulators. Our analysis also revealed the involvement of the competence regulon in modulating competence development and biofilm formation. Furthermore, our analysis revealed that the native S. mitis CSP signal can modulate QS response in S. pneumoniae. Capitalizing on this crosstalk, we developed a multispecies QS modulator that activates both the pneumococcus ComD receptors and the S. mitis ComD-2 receptor with high potencies. The novel scaffolds identified herein can be utilized to evaluate the effects temporal QS modulation has on S. mitis as it inhabits its natural niche.


Assuntos
Percepção de Quorum , Streptococcus mitis , Humanos , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Peptídeos/metabolismo , Fenótipo , Regulon , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Streptococcus pneumoniae/genética , Relação Estrutura-Atividade , Especificidade da Espécie
3.
Antimicrob Agents Chemother ; 68(4): e0117923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38415648

RESUMO

Streptococcus mitis/oralis group isolates with reduced carbapenem susceptibility have been reported, but its isolation rate in Japan is unknown. We collected 356 clinical α-hemolytic streptococcal isolates and identified 142 of them as S. mitis/oralis using partial sodA sequencing. The rate of meropenem non-susceptibility was 17.6% (25/142). All 25 carbapenem-non-susceptible isolates harbored amino acid substitutions in/near the conserved motifs in PBP1A, PBP2B, and PBP2X. Carbapenem non-susceptibility is common among S. mitis/oralis group isolates in Japan.


Assuntos
Carbapenêmicos , Streptococcus mitis , Proteínas de Ligação às Penicilinas/genética , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Carbapenêmicos/farmacologia , Japão , Substituição de Aminoácidos , Testes de Sensibilidade Microbiana , Streptococcus/metabolismo , Estreptococos Viridans/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
J Clin Microbiol ; 61(1): e0080222, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36515506

RESUMO

Streptococcus mitis is a common oral commensal and an opportunistic pathogen that causes bacteremia and infective endocarditis; however, the species has received little attention compared to other pathogenic streptococcal species. Effective and easy-to-use molecular typing tools are essential for understanding bacterial population diversity and biology, but schemes specific for S. mitis are not currently available. We therefore developed a multilocus sequence typing (MLST) scheme and defined sequence clusters or lineages of S. mitis using a comprehensive global data set of 322 genomes (148 publicly available and 174 newly sequenced). We used internal 450-bp sequence fragments of seven housekeeping genes (accA, gki, hom, oppC, patB, rlmN, and tsf) to define the MLST scheme and derived the global S. mitis sequence clusters using the PopPUNK clustering algorithm. We identified an initial set of 259 sequence types (STs) and 258 global sequence clusters. The schemes showed high concordance (100%), capturing extensive S. mitis diversity with strains assigned to multiple unique STs and global sequence clusters. The tools also identified extensive within- and between-host S. mitis genetic diversity among isolates sampled from a cohort of healthy individuals, together with potential transmission events, supported by both phylogeny and pairwise single nucleotide polymorphism (SNP) distances. Our novel molecular typing and strain clustering schemes for S. mitis allow for the integration of new strain data, are electronically portable at the PubMLST database (https://pubmlst.org/smitis), and offer a standardized approach to understanding the population structure of S. mitis. These robust tools will enable new insights into the epidemiology of S. mitis colonization, disease and transmission.


Assuntos
Streptococcus mitis , Streptococcus , Humanos , Tipagem de Sequências Multilocus , Streptococcus mitis/genética , Streptococcus/genética , Análise por Conglomerados , Filogenia
5.
Glycobiology ; 31(12): 1655-1669, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34314482

RESUMO

The opportunistic pathogen Streptococcus mitis possesses, like other members of the Mitis group of viridans streptococci, phosphorylcholine (P-Cho)-containing teichoic acids (TAs) in its cell wall. Bioinformatic analyses predicted the presence of TAs that are almost identical with those identified in the pathogen Streptococcus pneumoniae, but a detailed analysis of S. mitis lipoteichoic acid (LTA) was not performed to date. Here, we determined the structures of LTA from two S. mitis strains, the high-level beta-lactam and multiple antibiotic resistant strain B6 and the penicillin-sensitive strain NCTC10712. In agreement with bioinformatic predictions, we found that the structure of one LTA (type IV) was like pneumococcal LTA, except the exchange of a glucose moiety with a galactose within the repeating units. Further genome comparisons suggested that the majority of S. mitis strains should contain the same type IV LTA as S. pneumoniae, providing a more complete understanding of the biosynthesis of these P-Cho-containing TAs in members of the Mitis group of streptococci. Remarkably, we observed besides type IV LTA, an additional polymer belonging to LTA type I in both investigated S. mitis strains. This LTA consists of ß-galactofuranosyl-(1,3)-diacylglycerol as glycolipid anchor and a poly-glycerol-phosphate chain at the O-6 position of the furanosidic galactose. Hence, these bacteria are capable of synthesizing two different LTA polymers, most likely produced by distinct biosynthesis pathways. Our bioinformatics analysis revealed the prevalence of the LTA synthase LtaS, most probably responsible for the second LTA version (type I), among S. mitis and Streptococcus pseudopneumoniae strains.


Assuntos
Streptococcus mitis , Ácidos Teicoicos , Lipopolissacarídeos/química , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Ácidos Teicoicos/química
6.
Eur J Clin Microbiol Infect Dis ; 39(12): 2247-2256, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32710352

RESUMO

The Mitis group of streptococci includes an important human pathogen, Streptococcus pneumoniae (pneumococcus) and about 20 other related species with much lower pathogenicity. In clinical practice, some representatives of these species, especially Streptococcus pseudopneumoniae and Streptococcus mitis, are sometimes mistaken for S. pneumoniae based on the results of classical microbiological methods, such as optochin susceptibility and bile solubility. Several various molecular approaches that address the issue of correct identification of pneumococci and other Mitis streptococci have been proposed and are discussed in this review, including PCR- and gene sequencing-based tests as well as new developments in the genomic field that represents an important advance in our understanding of relationships within the Mitis group.


Assuntos
Streptococcus mitis/isolamento & purificação , Streptococcus pneumoniae/isolamento & purificação , Automação , Humanos , Tipagem de Sequências Multilocus , Fenótipo , Reação em Cadeia da Polimerase , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Sequenciamento Completo do Genoma
7.
Eur J Clin Microbiol Infect Dis ; 39(10): 1865-1878, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32409955

RESUMO

The aim of our study was to investigate phenotypic and genotypic features of streptococci misidentified (misID) as Streptococcus pneumoniae, obtained over 20 years from hospital patients in Poland. Sixty-three isolates demonstrating microbiological features typical for pneumococci (optochin susceptibility and/or bile solubility) were investigated by phenotypic tests, lytA and 16S rRNA gene polymorphism and whole-genome sequencing (WGS). All isolates had a 6-bp deletion in the lytA 3' terminus, characteristic for Mitis streptococc and all but two isolates lacked the pneumococcal signature cytosine at nucleotide position 203 in the 16S rRNA genes. The counterparts of psaA and ply were present in 100% and 81.0% of isolates, respectively; the spn9802 and spn9828 loci were characteristic for 49.2% and 38.1% of isolates, respectively. Phylogenetic trees and networks, based on the multilocus sequence analysis (MLSA) scheme, ribosomal multilocus sequence typing (rMLST) scheme and core-genome analysis, clearly separated investigated isolates from S. pneumoniae and demonstrated the polyclonal character of misID streptococci, associated with the Streptococcus pseudopneumoniae and Streptococcus mitis groups. While the S. pseudopneumoniae clade was relatively well defined in all three analyses, only the core-genome analysis revealed the presence of another cluster comprising a fraction of misID streptococci and a strain proposed elsewhere as a representative of a novel species in the Mitis group. Our findings point to complex phylogenetic and taxonomic relationships among S. mitis-like bacteria and support the notion that this group may in fact consist of several distinct species.


Assuntos
Infecções Estreptocócicas/epidemiologia , Streptococcus mitis/isolamento & purificação , Streptococcus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Erros de Diagnóstico , Feminino , Humanos , Masculino , Filogenia , Polônia/epidemiologia , RNA Ribossômico 16S , Infecções Estreptocócicas/microbiologia , Streptococcus/genética , Streptococcus mitis/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação
8.
Artigo em Inglês | MEDLINE | ID: mdl-30509945

RESUMO

We investigated the ability of several recent clinical viridans group streptococci (VGS) bloodstream isolates (Streptococcus mitis/S. oralis subgroup) from daptomycin (DAP)-naive patients to develop DAP resistance in vitro All strains rapidly developed high-level and stable DAP resistance. Substitutions in two enzymes involved in the cardiolipin biosynthesis pathway were identified, i.e., CdsA (phosphatidate cytidylyltransferase) and PgsA (CDP-diacylglycerol-glycerol-3-phosphate-3-phosphatidyltransferase). These mutations were associated with complete disappearance of phosphatidylglycerol and cardiolipin from cell membranes. DAP interactions with the cell membrane differed in isolates with PgsA versus CdsA substitutions.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Nucleotidiltransferases/genética , Streptococcus mitis/genética , Streptococcus oralis/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Cardiolipinas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Fosfatidilgliceróis/metabolismo , Streptococcus mitis/efeitos dos fármacos , Streptococcus mitis/isolamento & purificação , Streptococcus oralis/efeitos dos fármacos , Streptococcus oralis/isolamento & purificação
9.
BMC Genomics ; 19(1): 453, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29898666

RESUMO

BACKGROUND: In streptococci of the mitis group, competence for natural transformation is a transient physiological state triggered by competence stimulating peptides (CSPs). Although low transformation yields and the absence of a widespread functional competence system have been reported for Streptococcus mitis, recent studies revealed that, at least for some strains, high efficiencies can be achieved following optimization protocols. To gain a deeper insight into competence in this species, we used RNA-seq, to map the global CSP response of two transformable strains: the type strain NCTC12261T and SK321. RESULTS: All known genes induced by ComE in Streptococcus pneumoniae, including sigX, were upregulated in the two strains. Likewise, all sets of streptococcal SigX core genes involved in extracellular DNA uptake, recombination, and fratricide were upregulated. No significant differences in the set of induced genes were observed when the type strain was grown in rich or semi-defined media. Five upregulated operons unique to S. mitis with a SigX-box in the promoter region were identified, including two specific to SK321, and one specific to NCTC12261T. Two of the strain-specific operons coded for different bacteriocins. Deletion of the unique S. mitis sigX regulated genes had no effect on transformation. CONCLUSIONS: Overall, comparison of the global transcriptome in response to CSP shows the conservation of the ComE and SigX-core regulons in competent S. mitis isolates, as well as species and strain-specific genes. Although some S. mitis exhibit truncations in key competence genes, this study shows that in transformable strains, competence seems to depend on the same core genes previously identified in S. pneumoniae.


Assuntos
Proteínas de Bactérias/fisiologia , Competência de Transformação por DNA , Regulação Bacteriana da Expressão Gênica , Streptococcus mitis/genética , Regulon , Transdução de Sinais/genética , Especificidade da Espécie , Streptococcus mitis/metabolismo , Streptococcus pneumoniae/genética , Regulação para Cima
10.
J Vasc Surg ; 67(6): 1902-1907, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28847664

RESUMO

OBJECTIVE: Increasing data supports the role of bacterial inflammation in adverse events of cardiovascular and cerebrovascular diseases. In our previous research, DNA of bacterial species found in coronary artery thrombus aspirates and ruptured cerebral aneurysms were mostly of endodontic and periodontal origin, where Streptococcus mitis group DNA was the most common. We hypothesized that the genomes of S mitis group could be identified in thrombus aspirates of patients with lower limb arterial and deep venous thrombosis. METHODS: Thrombus aspirates and control blood samples taken from 42 patients with acute or acute-on-chronic lower limb ischemia (Rutherford I-IIb) owing to arterial or graft thrombosis (n = 31) or lower limb deep venous thrombosis (n = 11) were examined using a quantitative real-time polymerase chain reaction to detect all possible bacterial DNA and DNA of S mitis group in particular. The samples were considered positive, if the amount of bacterial DNA in the thrombus aspirates was 2-fold or greater in comparison with control blood samples. RESULTS: In the positive samples the mean difference for the total bacterial DNA was 12.1-fold (median, 7.1), whereas the differences for S mitis group DNA were a mean of 29.1 and a median of 5.2-fold. Of the arterial thrombus aspirates, 57.9% were positive for bacterial DNA, whereas bacterial genomes were found in 75% of bypass graft thrombosis with 77.8% of the prosthetic grafts being positive. Of the deep vein thrombus aspirates, 45.5% contained bacterial genomes. Most (80%) of bacterial DNA-positive cases contained DNA from the S mitis group. Previous arterial interventions were significantly associated with the occurrence of S mitis group DNA (P = .049, Fisher's exact test). CONCLUSIONS: This is the first study to report the presence of bacterial DNA, predominantly of S mitis group origin, in the thrombus aspirates of surgical patients with lower limb arterial and deep venous thrombosis, suggesting their possible role in the pathogenesis of thrombotic events. Additional studies will, however, be needed to reach a final conclusion.


Assuntos
Artérias/patologia , DNA Bacteriano/genética , Extremidade Inferior/irrigação sanguínea , Infecções Estreptocócicas/microbiologia , Streptococcus mitis/genética , Trombose/microbiologia , Veias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Artérias/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Infecções Estreptocócicas/patologia , Streptococcus mitis/isolamento & purificação , Trombose/patologia , Veias/microbiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-28264848

RESUMO

Among the viridans group streptococci, the Streptococcus mitis group is the most common cause of infective endocarditis. These bacteria have a propensity to be ß-lactam resistant, as well as to rapidly develop high-level and durable resistance to daptomycin (DAP). We compared a parental, daptomycin-susceptible (DAPs) S. mitis/S. oralis strain and its daptomycin-resistant (DAPr) variant in a model of experimental endocarditis in terms of (i) their relative fitness in multiple target organs in this model (vegetations, kidneys, spleen) when animals were challenged individually and in a coinfection strategy and (ii) their survivability during therapy with daptomycin-gentamicin (an in vitro combination synergistic against the parental strain). The DAPr variant was initially isolated from the cardiac vegetations of animals with experimental endocarditis caused by the parental DAPs strain following treatment with daptomycin. The parental strain and the DAPr variant were comparably virulent when animals were individually challenged. In contrast, in the coinfection model without daptomycin therapy, at both the 106- and 107-CFU/ml challenge inocula, the parental strain outcompeted the DAPr variant in all target organs, especially the kidneys and spleen. When the animals in the coinfection model of endocarditis were treated with DAP-gentamicin, the DAPs strain was completely eliminated, while the DAPr variant persisted in all target tissues. These data underscore that the acquisition of DAPr in S. mitis/S. oralis does come at an intrinsic fitness cost, although this resistance phenotype is completely protective against therapy with a potentially synergistic DAP regimen.


Assuntos
Antibacterianos/uso terapêutico , Daptomicina/uso terapêutico , Endocardite Bacteriana/tratamento farmacológico , Gentamicinas/uso terapêutico , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus mitis/efeitos dos fármacos , Animais , Farmacorresistência Bacteriana/genética , Quimioterapia Combinada , Endocardite Bacteriana/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Coelhos , Infecções Estreptocócicas/microbiologia , Streptococcus mitis/genética , Streptococcus mitis/patogenicidade
12.
Artigo em Inglês | MEDLINE | ID: mdl-28223392

RESUMO

Synthesis and integrity of the cytoplasmic membrane are fundamental to cellular life. Experimental evolution studies have hinted at unique physiology in the Gram-positive bacteria Streptococcus mitis and S. oralis These organisms commonly cause bacteremia and infectious endocarditis (IE) but are rarely investigated in mechanistic studies of physiology and evolution. Unlike in other Gram-positive pathogens, high-level (MIC ≥ 256 µg/ml) daptomycin resistance rapidly emerges in S. mitis and S. oralis after a single drug exposure. In this study, we found that inactivating mutations in cdsA are associated with high-level daptomycin resistance in S. mitis and S. oralis IE isolates. This is surprising given that cdsA is an essential gene for life in commonly studied model organisms. CdsA is the enzyme responsible for the synthesis of CDP-diacylglycerol, a key intermediate for the biosynthesis of all major phospholipids in prokaryotes and most anionic phospholipids in eukaryotes. Lipidomic analysis by liquid chromatography-mass spectrometry (LC-MS) showed that daptomycin-resistant strains have an accumulation of phosphatidic acid and completely lack phosphatidylglycerol and cardiolipin, two major anionic phospholipids in wild-type strains, confirming the loss of function of CdsA in the daptomycin-resistant strains. To our knowledge, these daptomycin-resistant streptococci represent the first model organisms whose viability is CdsA independent. The distinct membrane compositions resulting from the inactivation of cdsA not only provide novel insights into the mechanisms of daptomycin resistance but also offer unique opportunities to study the physiological functions of major anionic phospholipids in bacteria.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Nucleotidiltransferases/genética , Streptococcus mitis/efeitos dos fármacos , Streptococcus mitis/genética , Streptococcus oralis/efeitos dos fármacos , Streptococcus oralis/genética , Cardiolipinas/metabolismo , Diglicerídeos de Citidina Difosfato/biossíntese , Farmacorresistência Bacteriana/genética , Humanos , Lipídeos de Membrana/biossíntese , Testes de Sensibilidade Microbiana , Ácidos Fosfatídicos/metabolismo , Fosfatidilgliceróis/metabolismo , Fosfolipídeos/biossíntese , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus mitis/isolamento & purificação , Streptococcus oralis/isolamento & purificação
13.
Artigo em Inglês | MEDLINE | ID: mdl-28971878

RESUMO

Penicillin-resistant Streptococcus pneumoniae strains are found at high rates in Romania and Iran. The mosaic structure of PBP2x was investigated in 9 strains from Iran and in 15 strains from Romania to understand their evolutionary history. Mutations potentially important for ß-lactam resistance were identified by comparison of the PBP2x sequences with the sequence of the related PBP2x of reference penicillin-sensitive S. mitis strains. Two main PBP2x mosaic gene families were recognized. Eight Iranian strains expressed PBP2x variants in group 1, which had a mosaic block highly related to PBP2x of the Spain23F-1 clone, which is widespread among international penicillin-resistant S. pneumoniae clones. A second unique PBP2x group was observed in Romanian strains; furthermore, three PBP2x single mosaic variants were found. Sequence blocks of penicillin-sensitive strain S. mitis 658 were common among PBP2x variants from strains from both countries. Each PBP2x group contained specific signature mutations within the transpeptidase domain, documenting the existence of distinct mutational pathways for the development of penicillin resistance.


Assuntos
Antibacterianos/farmacologia , Mosaicismo , Resistência às Penicilinas/genética , Proteínas de Ligação às Penicilinas/genética , Penicilinas/farmacologia , Streptococcus pneumoniae/genética , Idoso , Sequência de Aminoácidos , Criança , Pré-Escolar , Células Clonais , Feminino , Expressão Gênica , Humanos , Lactente , Irã (Geográfico) , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Modelos Moleculares , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Polimorfismo Genético , Romênia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus mitis/efeitos dos fármacos , Streptococcus mitis/genética , Streptococcus mitis/isolamento & purificação , Streptococcus mitis/metabolismo , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/isolamento & purificação , Streptococcus pneumoniae/metabolismo , Adulto Jovem
14.
Am J Respir Crit Care Med ; 193(5): 504-15, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26492486

RESUMO

RATIONALE: Cystic fibrosis (CF) is characterized by early structural lung disease caused by pulmonary infections. The nasopharynx of infants is a major ecological reservoir of potential respiratory pathogens. OBJECTIVES: To investigate the development of nasopharyngeal microbiota profiles in infants with CF compared with those of healthy control subjects during the first 6 months of life. METHODS: We conducted a prospective cohort study, from the time of diagnosis onward, in which we collected questionnaires and 324 nasopharynx samples from 20 infants with CF and 45 age-matched healthy control subjects. Microbiota profiles were characterized by 16S ribosomal RNA-based sequencing. MEASUREMENTS AND MAIN RESULTS: We observed significant differences in microbial community composition (P < 0.0002 by permutational multivariate analysis of variance) and development between groups. In infants with CF, early Staphylococcus aureus and, to a lesser extent, Corynebacterium spp. and Moraxella spp. dominance were followed by a switch to Streptococcus mitis predominance after 3 months of age. In control subjects, Moraxella spp. enrichment occurred throughout the first 6 months of life. In a multivariate analysis, S. aureus, S. mitis, Corynebacterium accolens, and bacilli were significantly more abundant in infants with CF, whereas Moraxella spp., Corynebacterium pseudodiphtericum and Corynebacterium propinquum and Haemophilus influenzae were significantly more abundant in control subjects, after correction for age, antibiotic use, and respiratory symptoms. Antibiotic use was independently associated with increased colonization of gram-negative bacteria such as Burkholderia spp. and members of the Enterobacteriaceae bacteria family and reduced colonization of potential beneficial commensals. CONCLUSIONS: From diagnosis onward, we observed distinct patterns of nasopharyngeal microbiota development in infants with CF under 6 months of age compared with control subjects and a marked effect of antibiotic therapy leading toward a gram-negative microbial composition.


Assuntos
Portador Sadio/microbiologia , Fibrose Cística/microbiologia , DNA Bacteriano/genética , Microbiota/genética , Nasofaringe/microbiologia , RNA Ribossômico 16S/genética , Antibacterianos/uso terapêutico , Burkholderia/genética , Infecções por Burkholderia/tratamento farmacológico , Infecções por Burkholderia/epidemiologia , Infecções por Burkholderia/microbiologia , Portador Sadio/epidemiologia , Estudos de Casos e Controles , Estudos de Coortes , Corynebacterium/genética , Infecções por Corynebacterium/tratamento farmacológico , Infecções por Corynebacterium/epidemiologia , Infecções por Corynebacterium/microbiologia , Fibrose Cística/epidemiologia , Enterobacteriaceae/genética , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Infecções por Haemophilus/tratamento farmacológico , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Humanos , Lactente , Recém-Nascido , Masculino , Moraxella/genética , Infecções por Moraxellaceae/tratamento farmacológico , Infecções por Moraxellaceae/epidemiologia , Infecções por Moraxellaceae/microbiologia , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus mitis/genética
15.
Eur J Clin Microbiol Infect Dis ; 35(10): 1615-25, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27325438

RESUMO

Identification of Mitis group streptococci (MGS) to the species level is challenging for routine microbiology laboratories. Correct identification is crucial for the diagnosis of infective endocarditis, identification of treatment failure, and/or infection relapse. Eighty MGS from Danish patients with infective endocarditis were whole genome sequenced. We compared the phylogenetic analyses based on single genes (recA, sodA, gdh), multigene (MLSA), SNPs, and core-genome sequences. The six phylogenetic analyses generally showed a similar pattern of six monophyletic clusters, though a few differences were observed in single gene analyses. Species identification based on single gene analysis showed their limitations when more strains were included. In contrast, analyses incorporating more sequence data, like MLSA, SNPs and core-genome analyses, provided more distinct clustering. The core-genome tree showed the most distinct clustering.


Assuntos
Variação Genética , Genoma Bacteriano , Filogenia , Análise de Sequência de DNA , Streptococcus mitis/classificação , Streptococcus mitis/genética , Análise por Conglomerados , Dinamarca , Endocardite/microbiologia , Humanos , Estudos Retrospectivos , Infecções Estreptocócicas/microbiologia
16.
Anaerobe ; 39: 91-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26996070

RESUMO

Rheumatoid arthritis (RA) and periodontitis (PD) are chronic inflammatory disorders that cause bone loss. PD tends to be more prevalent and severe in RA patients. Previous experimental studies demonstrated that RA triggers alveolar bone loss similarly to PD. The aim of this study was to investigate if arthritis-induced alveolar bone loss is associated with modification in the oral microbiota. Checkerboard DNA-DNA hybridization was employed to analyze forty oral bacterial species in 3 groups of C57BL/6 mice: control (n = 12; without any challenge); Y4 (n = 8; received oral inoculation of Aggregatibacter Actinomycetemcomitans strain FDC Y4) and AIA group (n = 12; chronic antigen-induced arthritis). The results showed that AIA and Y4 group exhibited similar patterns of bone loss. The AIA group exhibited higher counts of most bacterial species analyzed with predominance of Gram-negative species similarly to infection-induced PD. Prevotella nigrescens and Treponema denticola were detected only in the Y4 group whereas Campylobacter showae, Streptococcus mitis and Streptococcus oralis were only found in the AIA group. Counts of Parvimonas micra, Selenomonas Noxia and Veillonella parvula were greater in the AIA group whereas Actinomyces viscosus and Neisseira mucosa were in large proportion in Y4 group. In conclusion, AIA is associated with changes in the composition of the oral microbiota, which might account for the alveolar bone loss observed in AIA mice.


Assuntos
Perda do Osso Alveolar/microbiologia , Processo Alveolar/microbiologia , Artrite Experimental/microbiologia , Maxila/microbiologia , Microbiota/genética , Periodontite/microbiologia , Aggregatibacter actinomycetemcomitans/classificação , Aggregatibacter actinomycetemcomitans/genética , Aggregatibacter actinomycetemcomitans/isolamento & purificação , Perda do Osso Alveolar/patologia , Processo Alveolar/patologia , Animais , Artrite Experimental/patologia , Campylobacter/classificação , Campylobacter/genética , Campylobacter/isolamento & purificação , DNA Bacteriano/genética , Humanos , Masculino , Maxila/patologia , Camundongos , Camundongos Endogâmicos C57BL , Boca/microbiologia , Boca/patologia , Periodontite/patologia , Prevotella nigrescens/classificação , Prevotella nigrescens/genética , Prevotella nigrescens/isolamento & purificação , Streptococcus mitis/classificação , Streptococcus mitis/genética , Streptococcus mitis/isolamento & purificação , Streptococcus oralis/classificação , Streptococcus oralis/genética , Streptococcus oralis/isolamento & purificação , Treponema denticola/classificação , Treponema denticola/genética , Treponema denticola/isolamento & purificação
17.
Acta Odontol Scand ; 74(4): 315-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26777430

RESUMO

OBJECTIVE: Chronic inflammation has earlier been detected in ruptured intracranial aneurysms. A previous study detected both dental bacterial DNA and bacterial-driven inflammation in ruptured intracranial aneurysm walls. The aim of this study was to compare the presence of oral and pharyngeal bacterial DNA in ruptured and unruptured intracranial aneurysms. The hypothesis was that oral bacterial DNA findings would be more common and the amount of bacterial DNA would be higher in ruptured aneurysm walls than in unruptured aneurysm walls. MATERIALS AND METHODS: A total of 70 ruptured (n = 42) and unruptured (n = 28) intracranial aneurysm specimens were obtained perioperatively in aneurysm clipping operations. Aneurysmal sac tissue was analysed using a real-time quantitative polymerase chain reaction to detect bacterial DNA from several oral species. Both histologically non-atherosclerotic healthy vessel wall obtained from cardiac by-pass operations (LITA) and arterial blood samples obtained from each aneurysm patient were used as control samples. RESULTS: Bacterial DNA was detected in 49/70 (70%) of the specimens. A total of 29/42 (69%) of the ruptured and 20/28 (71%) of the unruptured aneurysm samples contained bacterial DNA of oral origin. Both ruptured and unruptured aneurysm tissue samples contained significantly more bacterial DNA than the LITA control samples (p-values 0.003 and 0.001, respectively). There was no significant difference in the amount of bacterial DNA between the ruptured and unruptured samples. CONCLUSION: Dental bacterial DNA can be found using a quantitative polymerase chain reaction in both ruptured and unruptured aneurysm walls, suggesting that bacterial DNA plays a role in the pathogenesis of cerebral aneurysms in general, rather than only in ruptured aneurysms.


Assuntos
Aneurisma Roto/microbiologia , DNA Bacteriano/isolamento & purificação , Aneurisma Intracraniano/microbiologia , Boca/microbiologia , Aggregatibacter actinomycetemcomitans/genética , Feminino , Fusobacterium nucleatum/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Peptostreptococcus/genética , Faringe/microbiologia , Porphyromonas gingivalis/genética , Prevotella intermedia/genética , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética , Streptococcus anginosus/genética , Streptococcus gordonii/genética , Streptococcus mitis/genética , Streptococcus oralis/genética , Streptococcus sanguis/genética , Dente/microbiologia , Treponema denticola/genética
18.
Genet Mol Res ; 14(4): 19184-90, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26782571

RESUMO

Streptococcus is a diverse bacterial lineage. Species of this genus occupy a myriad of environments inside humans and other animals. Despite the elucidation of several of these habitats, many remain to be identified. Here, we explore a methodological approach to reveal unknown bacterial environments. Specifically, we inferred the phylogeny of the Mitis group by analyzing the sequences of eight genes. In addition, information regarding habitat use of species belonging to this group was obtained from the scientific literature. The oral cavity emerged as a potential, previously unknown, environment of Streptococcus massiliensis. This phylogeny-based prediction was confirmed by species-specific polymerase chain reaction (PCR) amplification. We propose employing a similar approach, i.e., use of bibliographic data and molecular phylogenetics as predictive methods, and species-specific PCR as confirmation, in order to reveal other unknown habitats in further bacterial taxa.


Assuntos
Teorema de Bayes , Boca/microbiologia , Filogenia , Streptococcus mitis/genética , Streptococcus/genética , Proteínas de Bactérias/genética , DNA Bacteriano/genética , RNA Polimerases Dirigidas por DNA/genética , Bases de Dados de Ácidos Nucleicos , Ecossistema , Humanos , Fator Tu de Elongação de Peptídeos/genética , RNA Ribossômico 16S/genética , Saliva/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie , Streptococcus/classificação , Streptococcus mitis/classificação , Superóxido Dismutase/genética
19.
Infect Immun ; 82(8): 3374-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24866802

RESUMO

Oral microbial communities are extremely complex biofilms with high numbers of bacterial species interacting with each other (and the host) to maintain homeostasis of the system. Disturbance in the oral microbiome homeostasis can lead to either caries or periodontitis, two of the most common human diseases. Periodontitis is a polymicrobial disease caused by the coordinated action of a complex microbial community, which results in inflammation of tissues that support the teeth. It is the most common cause of tooth loss among adults in the United States, and recent studies have suggested that it may increase the risk for systemic conditions such as cardiovascular diseases. In a recent series of papers, Hajishengallis and coworkers proposed the idea of the "keystone-pathogen" where low-abundance microbial pathogens (Porphyromonas gingivalis) can orchestrate inflammatory disease by turning a benign microbial community into a dysbiotic one. The exact mechanisms by which these pathogens reorganize the healthy oral microbiome are still unknown. In the present manuscript, we present results demonstrating that P. gingivalis induces S. mitis death and DNA fragmentation in an in vitro biofilm system. Moreover, we report here the induction of expression of multiple transposases in a Streptococcus mitis biofilm when the periodontopathogen P. gingivalis is present. Based on these results, we hypothesize that P. gingivalis induces S. mitis cell death by an unknown mechanism, shaping the oral microbiome to its advantage.


Assuntos
Biofilmes/crescimento & desenvolvimento , Interações Microbianas , Porphyromonas gingivalis/fisiologia , Streptococcus mitis/fisiologia , Transposases/biossíntese , Fragmentação do DNA , Viabilidade Microbiana , Porphyromonas gingivalis/crescimento & desenvolvimento , Streptococcus mitis/genética , Streptococcus mitis/crescimento & desenvolvimento
20.
Emerg Infect Dis ; 20(5): 762-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24750901

RESUMO

The genetically diverse viridans group streptococci (VGS) are increasingly recognized as the cause of a variety of human diseases. We used a recently developed multilocus sequence analysis scheme to define the species of 118 unique VGS strains causing bacteremia in patients with cancer; Streptococcus mitis (68 patients) and S. oralis (22 patients) were the most frequently identified strains. Compared with patients infected with non-S. mitis strains, patients infected with S. mitis strains were more likely to have moderate or severe clinical disease (e.g., VGS shock syndrome). Combined with the sequence data, whole-genome analyses showed that S. mitis strains may more precisely be considered as >2 species. Furthermore, we found that multiple S. mitis strains induced disease in neutropenic mice in a dose-dependent fashion. Our data define the prominent clinical effect of the group of organisms currently classified as S. mitis and lay the groundwork for increased understanding of this understudied pathogen.


Assuntos
Neoplasias/complicações , Infecções Estreptocócicas/complicações , Streptococcus mitis/genética , Animais , Bacteriemia/complicações , Bacteriemia/microbiologia , Estudos de Coortes , Modelos Animais de Doenças , Feminino , Genes Bacterianos , Genes Essenciais , Genoma Bacteriano , Humanos , Camundongos , Tipagem de Sequências Multilocus , Filogenia , Índice de Gravidade de Doença , Infecções Estreptocócicas/diagnóstico , Infecções Estreptocócicas/microbiologia , Streptococcus mitis/classificação , Streptococcus mitis/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA