Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 442
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 292(50): 20720-20731, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054929

RESUMO

Pituitary gonadotropin hormones are regulated by gonadotropin-releasing hormone (GnRH) via MAPK signaling pathways that stimulate gene transcription of the common α-subunit (Cga) and the hormone-specific ß-subunits of gonadotropin. We have reported previously that GnRH-induced activities at these genes include various histone modifications, but we did not examine histone phosphorylation. This modification adds a negative charge to residues of the histone tails that interact with the negatively charged DNA, is associated with closed chromatin during mitosis, but is increased at certain genes for transcriptional activation. Thus, the functions of this modification are unclear. We initially hypothesized that GnRH might induce phosphorylation of Ser-10 in histone 3 (H3S10p) as part of its regulation of gonadotropin gene expression, possibly involving cross-talk with H3K9 acetylation. We found that GnRH increases the levels of both modifications around the Cga gene transcriptional start site and that JNK inhibition dramatically reduces H3S10p levels. However, this modification had only a minor effect on Cga expression and no effect on H3K9ac. GnRH also increased H3S28p and H3K27ac levels and also those of activated mitogen- and stress-activated protein kinase 1 (MSK1). MSK1 inhibition dramatically reduced H3S28p levels in untreated and GnRH-treated cells and also affected H3K27ac levels. Although not affecting basal Cga expression, MSK1/2 inhibition repressed GnRH activation of Cga expression. Moreover, ChIP analysis revealed that GnRH-activated MSK1 targets the first nucleosome just downstream from the TSS. Given that the elongating RNA polymerase II (RNAPII) stalls at this well positioned nucleosome, GnRH-induced H3S28p, possibly in association with H3K27ac, would facilitate the progression of RNAPII.


Assuntos
Regulação da Expressão Gênica , Subunidade alfa de Hormônios Glicoproteicos/agonistas , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Nucleossomos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sítio de Iniciação de Transcrição , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Gonadotrofos/efeitos dos fármacos , Gonadotrofos/enzimologia , Histonas/metabolismo , Lisina/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Nucleossomos/enzimologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores LHRH/agonistas , Receptores LHRH/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Serina/metabolismo , Sítio de Iniciação de Transcrição/efeitos dos fármacos
2.
Mol Biol Rep ; 45(4): 413-417, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29627965

RESUMO

Infertility occurs in 10-15% of couples worldwide and close to half of it is caused by male factors. One of the genes that can affect male infertility is CGA. Polymorphisms in CGA gene may affect gene expression, therefore affecting male infertility by disrupting the regulation of this gene. One of the polymorphisms is the substitution of T with A in the miR-1302 binding site in the 3' untranslated region of the CGA gene. In this study, we explored this polymorphism in Isfahan population. In this case-control study, by the use of Tetra primer-ARMS-PCR technique, rs6631 has been investigated in 224 infertile men and 196 controls. Infertile men were recruited from Isfahan Fertility and Infertility Center. Analysis of genotype and allele frequencies indicated that the differences between case and control populations were significant for rs6631 because P = 0.00 which is above the threshold. We found a significant relationship between this polymorphism and male infertility. This study which performed for the first time in Iran suggests that polymorphism in CGA gene can affect male infertility. Also, this polymorphism has high heterozygosity, so it can be used for further studies in different populations.


Assuntos
Subunidade alfa de Hormônios Glicoproteicos/genética , Infertilidade Masculina/genética , Regiões 3' não Traduzidas , Adulto , Estudos de Casos e Controles , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Irã (Geográfico) , Masculino , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Motivos de Ligação ao RNA
3.
Gen Comp Endocrinol ; 264: 16-27, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678725

RESUMO

A novel heterodimeric glycoprotein hormone (GpH) comprised of alpha (GpA2) and beta (GpB5) subunits was discovered in 2002 and called thyrostimulin for its ability to activate the TSH receptor in mammals, but its central function in vertebrates has not been firmly established. We report here the cloning and expression of lamprey (l)GpB5, and its ability to heterodimerize with lGpA2 to form a functional l-thyrostimulin. The full-length cDNA of lGpB5 encodes 174 amino acids with ten conserved cysteine residues and one glycosylation site that is conserved with other vertebrate GpB5 sequences. Phylogenetic and synteny analyses support that lGpB5 belongs to the vertebrate GpB5 clade. Heterodimerization of lGpB5 and lGpA2 was shown by nickel pull-down of histidine-tagged recombinant subunits. RNA transcripts of lGpB5 were detected in the pituitary of lampreys during both parasitic and adult life stages. Intraperitoneal injection with lGnRH-III (100 µg/kg) increased pituitary lGpA2, lGpB5, and lGpHß mRNA expression in sexually mature, adult female lampreys. A recombinant l-thyrostimulin produced by expression of a fusion gene in Pichia pastoris activated lamprey GpH receptors I and II as measured by cAMP enzymeimmunoassay. In contrast to jawed vertebrates that have pituitary LH, FSH, and TSH, our data support that lampreys only have two functional pituitary GpHs, lGpH and l-thyrostimulin, which consist of lGpA2 and unique beta subunits. It is hypothesized that lGpH and l-thyrostimulin differentially regulate reproductive and thyroid activities in some unknown way(s) in lampreys.


Assuntos
Subunidade alfa de Hormônios Glicoproteicos/genética , Glicoproteínas/genética , Lampreias/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Perfilação da Expressão Gênica , Subunidade alfa de Hormônios Glicoproteicos/química , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Lampreias/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Filogenia , Multimerização Proteica , Proteínas Recombinantes/metabolismo , Sintenia/genética , Distribuição Tecidual
4.
Gen Comp Endocrinol ; 269: 149-155, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236970

RESUMO

In Seriola species, exposure to a long photoperiod regime is known to induce ovarian development. This study examined photoperiodic effects on pituitary gene expression and plasma levels of follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) in previtellogenic greater amberjack (Seriola dumerili). The fish were exposed to short (8L:16D) or long (18L:6D) photoperiod. The water temperature was maintained at 22 °C. Compared with the short-photoperiod group, plasma Fsh levels were higher on days 10 and 30 in the long-photoperiod group, but plasma Lh levels did not significantly differ. On day 30, pituitary Fsh- and Lh-ß subunit gene expressions were also higher in the long-photoperiod group than the short-photoperiod group, whereas α-subunit gene expressions were higher on days 20 and 30. Throughout the experiment, average gonadosomatic index and plasma E2 levels did not significantly differ between the two groups. This study clearly demonstrated that a long photoperiod induced Fsh release in the previtellogenic fish followed by upregulation of pituitary Fsh and Lh subunit gene expressions. An increase in plasma Fsh levels may be a key factor that mediates the photoperiodic effect on the initiation of ovarian development.


Assuntos
Gonadotropinas/sangue , Perciformes/sangue , Perciformes/fisiologia , Fotoperíodo , Vitelogênese , Animais , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Hormônio Luteinizante/sangue , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Ovário/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Perciformes/metabolismo , Hipófise/citologia , Hipófise/metabolismo , Temperatura , Água
5.
Proc Natl Acad Sci U S A ; 112(14): 4369-74, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25810254

RESUMO

Since the discovery that many transcriptional enhancers are transcribed into long noncoding RNAs termed "enhancer RNAs" (eRNAs), their putative role in enhancer function has been debated. Very recent evidence has indicted that some eRNAs play a role in initiating or activating transcription, possibly by helping recruit and/or stabilize binding of the general transcription machinery to the proximal promoter of their target genes. The distal enhancer of the gonadotropin hormone α-subunit gene, chorionic gonadotropin alpha (Cga), is responsible for Cga cell-specific expression in gonadotropes and thyrotropes, and we show here that it encodes two bidirectional nonpolyadenylated RNAs whose levels are increased somewhat by exposure to gonadotropin-releasing hormone but are not necessarily linked to Cga transcriptional activity. Knockdown of the more distal eRNA led to a drop in Cga mRNA levels, initially without effect on the forward eRNA levels. With time, however, the repression on the Cga increased, and the forward eRNA levels were suppressed also. We demonstrate that the interaction of the enhancer with the promoter is lost after eRNA knockdown. Dramatic changes also were seen in the chromatin, with an increase in total histone H3 occupancy throughout this region and a virtual loss of histone H3 Lys 4 trimethylation at the promoter following the eRNA knockdown. Moreover, histone H3 Lys 27 (H3K27) acetylation, which was found at both enhancer and promoter in wild-type cells, appeared to have been replaced by H3K27 trimethylation at the enhancer. Thus, the Cga eRNA mediates the physical interaction between these genomic regions and determines the chromatin structure of the proximal promoter to allow gene expression.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , RNA/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Ilhas de CpG , Metilação de DNA , Regulação da Expressão Gênica , Histonas/metabolismo , Camundongos , Hipófise/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
6.
Scand J Immunol ; 85(1): 35-42, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27864993

RESUMO

Subclinical hypothyroidism (SCH) is highly prevalent in the general population and is associated with potential deleterious effects. Although developing T cells express thyroid-stimulating hormone receptor (TSH-R), the changes of T cell development in thymus in SCH have not been fully clarified. SCH mouse model, which is characterized by elevated serum TSH but similar thyroid hormone levels, was used to study the role of TSH in T cell development. Thymus weight of SCH mice increased 18% compared with controls. Importantly, the frequencies of CD4+ and CD8+ single-positive (SP) thymocytes increased 38% and 44%, respectively. We demonstrated that TSH protected thymocytes from apoptosis as evidenced by a significant decrease of Annexin V-positive thymocytes in SCH mice. Further analysis showed that extracellular-regulated kinases (ERK) 1/2 in thymus were activated in SCH mice. With analysis of T cell receptor excision circles (TREC), we found that TSH increased recent thymic emigrants (RTE) in spleen tissue in SCH mice. Thus, these results suggest that TSH promoted T cell development and enhanced the thymic recent output in SCH mice, possibly by suppression of apoptosis of thymocytes, indicating that modification of the ERK signalling pathways.


Assuntos
Doenças Assintomáticas , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Hipotireoidismo/imunologia , Timo/fisiologia , Tireotropina/metabolismo , Animais , Apoptose/genética , Diferenciação Celular/genética , Modelos Animais de Doenças , Subunidade alfa de Hormônios Glicoproteicos/genética , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/genética , Receptores da Tireotropina/genética , Tireotropina/genética
7.
Mol Biol Rep ; 44(1): 11-17, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27909922

RESUMO

FSH is a glycoprotein hormone secreted by the pituitary gland that is essential for gonadal development and reproductive function. In avian reproduction study, especially in avian reproduction hormone study, it is hindered by the lack of biologically active FSH. In order to overcome this shortcoming, we prepared recombinant goose FSH as a single chain molecule and tested its biological activities in the present study. Coding sequences for mature peptides of goose FSH α and ß subunits were amplified from goose pituitary cDNA. A chimeric gene containing α and ß subunit sequences linked by the hCG carboxyl terminal peptide coding sequence was constructed. The recombinant gene was inserted into the pcDNA3.1-Fc eukaryotic expression vector to form pcDNA-Fc-gFSHß-CTP-α and then transfected into 293-F cells. A recombinant, single chain goose FSH was expressed and verified by SDS-PAGE and western blot analysis, and was purified using Protein A agarose affinity and gel filtration chromatography. Biological activity analysis results showed that the recombinant, chimeric goose FSH possesses the function of stimulating estradiol secretion and cell proliferation, in cultured chicken granulosa cells. These results indicated that bioactive, recombinant goose FSH has been successfully prepared in vitro. The recombinant goose FSH will have the potential of being used as a research tool for studying avian reproductive activities, and as a standard for developing avian FSH bioassays.


Assuntos
Gonadotropina Coriônica/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Gansos/genética , Subunidade alfa de Hormônios Glicoproteicos/genética , Proteínas Recombinantes de Fusão/metabolismo , Animais , Proteínas Aviárias/química , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Células da Granulosa/citologia , Células da Granulosa/efeitos dos fármacos , Células HEK293 , Humanos , Hipófise/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia
8.
Environ Health ; 16(1): 35, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381288

RESUMO

BACKGROUND: Prenatal urinary concentrations of phthalates in women participants in an urban birth cohort were associated with outcomes in their children related to neurodevelopment, autoimmune disease risk, and fat mass at 3,5,7, and 8 years of life. Placental biomarkers and outcomes at birth may offer biologic insight into these associations. This is the first study to address these associations with candidate genes from the phthalate and placenta literature, accounting for sex differences, and using absolute quantitation methods for mRNA levels. METHODS: We measured candidate mRNAs in 180 placentas sampled at birth (HSD17B1, AHR, CGA, CYP19A1, SLC27A4, PTGS2, PPARG, CYP11A1) by quantitative PCR and an absolute standard curve. We estimated associations of loge mRNA with quartiles of urinary phthalate monoesters using linear mixed models. Phthalate metabolites (N = 358) and mRNAs (N = 180) were transformed to a z-score and modeled as independent, correlated vectors in relation to large for gestational age (LGA) and gestational diabetes mellitus (GDM). RESULTS: CGA was associated with 4 out of 6 urinary phthalates. CGA was 2.0 loge units lower at the 3rd vs. 1st quartile of mono-n-butyl phthalate (MnBP) (95% confidence interval (CI): -3.5, -0.5) in male placentas, but 0.6 loge units higher (95% CI: -0.8, 1.9) in female placentas (sex interaction p = 0.01). There was an inverse association of MnBP with PPARG in male placentas (-1.1 loge units at highest vs. lowest quartile, 95% CI: -2.0, -0.1). CY19A1, CYP11A1, CGA were associated with one or more of the following in a sex-specific manner: monobenzyl phthalate (MBzP), MnBP, mono-iso-butyl phthalate (MiBP). These 3 mRNAs were lower by 1.4-fold (95% CI: -2.4, -1.0) in male GDM placentas vs. female and non-GDM placentas (p-value for interaction = 0.04). The metabolites MnBP/MiBP were 16% higher (95% CI: 0, 22) in GDM pregnancies. CONCLUSIONS: Prenatal concentrations of certain phthalates and outcomes at birth were modestly associated with molecular changes in fetal placental tissue during pregnancy. Associations were stronger in male vs. female placentas, and associations with MnBP and MiBP were stronger than other metabolites. Placental mRNAs are being pursued further as potential mediators of exposure-induced risks to the health of the child.


Assuntos
Poluentes Ambientais/urina , Exposição Materna , Ácidos Ftálicos/urina , Placenta/metabolismo , RNA Mensageiro/metabolismo , Adulto , Aromatase/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Estradiol Desidrogenases/genética , Proteínas de Transporte de Ácido Graxo/genética , Feminino , Expressão Gênica , Subunidade alfa de Hormônios Glicoproteicos/genética , Humanos , Masculino , PPAR gama/genética , Gravidez , Receptores de Hidrocarboneto Arílico/genética , Caracteres Sexuais , População Urbana , Adulto Jovem
9.
J Reprod Dev ; 62(3): 241-8, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26853788

RESUMO

The LIM-homeobox transcription factors LHX2 and LHX3s (LHX3a and LHX3b) are thought to be involved in regulating the pituitary glycoprotein hormone subunit genes Cga and Fshß. These two factors show considerable differences in their amino acid sequences for DNA binding and protein-protein interactions and in their vital function in pituitary development. Hence, we compared the DNA binding properties and transcriptional activities of Cga and Fshß between LHX2 and LHX3s. A gel mobility shift assay for approximately 1.1 kb upstream of Cga and 2.0 kb upstream of Fshß varied in binding profiles between LHX2 and LHX3s. DNase I footprinting revealed DNA binding sites in 8 regions of the Cga promoter for LHX2 and LHX3s with small differences in the binding range and strength. In the Fshß promoter, 14 binding sites were identified for LHX2 and LHX3, respectively. There were alternative binding sites to either gene in addition to similar differences observed in the Cga promoter. The transcriptional activities of LHX2 and LHX3s according to a reporter assay showed cell-type dependent activity with repression in the pituitary gonadotrope lineage LßT2 cells and stimulation in Chinese hamster ovary lineage CHO cells. Reactivity of LHX2 and LHX3s was observed in all regions, and differences were observed in the 5'-upstream region of Fshß. However, immunohistochemistry showed that LHX2 resides in a small number of gonadotropes in contrast to LHX3. Thus, LHX3 mainly controls Cga and Fshß expression.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Desoxirribonuclease I/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade alfa de Hormônios Glicoproteicos/genética , Imuno-Histoquímica , Camundongos , Hipófise/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Suínos
10.
Biochem Biophys Res Commun ; 468(1-2): 326-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26505791

RESUMO

Studying the regulatory mechanism of the glycoprotein hormone α subunit (αGSU) gene in thyrotropes is essential for understanding the synthesis of functional thyroid-stimulating hormone (TSH). Here, we investigated the influence of a homeodomain transcription factor Msx1 (Msh homeobox 1) on αGSU expression in thyrotropes. The transient expression of Msx1 inhibited the activity of an αGSU reporter gene, as well as its endogenous mRNA level in thyrotrope-derived αTSH cells. Luciferase reporter assays with serial deletion constructs and a close examination of the sequences revealed that the putative Msx1 binding site (PMS) in the αGSU promoter is not responsible for Msx1-mediated transcriptional repression. We also identified the TATA-box binding protein (TBP) as an interacting protein in thyrotropes. Interaction of TBP with Msx1 attenuates the inhibitory effect of Msx1 on αGSU gene expression in a DNA binding-independent manner. Furthermore, transient transfection studies with mutant Msx1 revealed that the interaction of TBP and Msx1 is critical for Msx1-mediated transcriptional repression of the αGSU. These results suggest that Msx1 functions as a transcriptional repressor of αGSU and that its interaction with TBP is an integral part of the mechanism by which Msx1 regulates the inhibition of αGSU gene expression.


Assuntos
Subunidade alfa de Hormônios Glicoproteicos/genética , Fator de Transcrição MSX1/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , Regiões Promotoras Genéticas , Mapas de Interação de Proteínas , Transcrição Gênica
11.
PLoS Genet ; 8(7): e1002823, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844247

RESUMO

Gene silencing mediated by either microRNAs (miRNAs) or Adenylate/uridylate-rich elements Mediated mRNA Degradation (AMD) is a powerful way to post-transcriptionally modulate gene expression. We and others have reported that the RNA-binding protein KSRP favors the biogenesis of select miRNAs (including let-7 family) and activates AMD promoting the decay of inherently labile mRNAs. Different layers of interplay between miRNA- and AMD-mediated gene silencing have been proposed in cultured cells, but the relationship between the two pathways in living organisms is still elusive. We conditionally deleted Dicer in mouse pituitary from embryonic day (E) 9.5 through Cre-mediated recombination. In situ hybridization, immunohistochemistry, and quantitative reverse transcriptase-PCR revealed that Dicer is essential for pituitary morphogenesis and correct expression of hormones. Strikingly, αGSU (alpha glycoprotein subunit, common to three pituitary hormones) was absent in Dicer-deleted pituitaries. αGSU mRNA is unstable and its half-life increases during pituitary development. A transcriptome-wide analysis of microdissected E12.5 pituitaries revealed a significant increment of KSRP expression in conditional Dicer-deleted mice. We found that KSRP directly binds to αGSU mRNA, promoting its rapid decay; and, during pituitary development, αGSU expression displays an inverse temporal relationship to KSRP. Further, let-7b/c downregulated KSRP expression, promoting the degradation of its mRNA by directly binding to the 3'UTR. Therefore, we propose a model in which let-7b/c and KSRP operate within a negative feedback loop. Starting from E12.5, KSRP induces the maturation of let-7b/c that, in turn, post-transcriptionally downregulates the expression of KSRP itself. This event leads to stabilization of αGSU mRNA, which ultimately enhances the steady-state expression levels. We have identified a post-transcriptional regulatory network active during mouse pituitary development in which the expression of the hormone αGSU is increased by let7b/c through downregulation of KSRP. Our study unveils a functional crosstalk between miRNA- and AMD-dependent gene regulation during mammalian organogenesis events.


Assuntos
MicroRNAs/genética , Organogênese/genética , Hipófise , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Transativadores/genética , Animais , RNA Helicases DEAD-box/genética , Desenvolvimento Embrionário/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , MicroRNAs/metabolismo , Células NIH 3T3 , Hipófise/embriologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Hormônios Hipofisários/genética , Hormônios Hipofisários/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Transativadores/metabolismo
12.
Toxicol Appl Pharmacol ; 278(1): 78-84, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24747804

RESUMO

The glycoprotein subunit α (gsuα) gene encodes the shared α subunit of the three pituitary heterodimeric glycoprotein hormones: follicle-stimulating hormone ß (Fshß), luteinizing hormone ß (Lhß) and thyroid stimulating hormone ß (Tshß). In our current study, we identified and characterized the promoter region of zebrafish gsuα and generated a stable gsuα:EGFP transgenic line, which recapitulated the endogenous gsuα expression in the early developing pituitary gland. A relatively conserved regulatory element set is presented in the promoter regions of zebrafish and three other known mammalian gsuα promoters. Our results also demonstrated that the expression patterns of the gsuα:EGFP transgene were all identical to those expression patterns of the endogenous gsuα expression in the pituitary tissue when our transgenic fish were treated with various endocrine chemicals, including forskolin (FSK), SP600125, trichostatin A (TSA), KClO4, dexamethasone (Dex), ß-estradiol and progesterone. Thus, this gsuα:EGFP transgenic fish reporter line provides another valuable tool for investigating the lineage development of gsuα-expressing gonadotrophins and the coordinated regulation of various glycoprotein hormone subunit genes. These reporter fish can serve as a novel platform to perform screenings of endocrine-disrupting chemicals (EDCs) in vivo as well.


Assuntos
Disruptores Endócrinos/toxicidade , Genes Reporter , Subunidade alfa de Hormônios Glicoproteicos/genética , Proteínas de Fluorescência Verde/genética , Hipófise/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/biossíntese , Hipófise/embriologia , Hipófise/metabolismo , Testes de Toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
13.
Gen Comp Endocrinol ; 204: 104-13, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24837606

RESUMO

A long day response is triggered by the activation of EYA3 (eyes absent 3) and TSH-ß (thyroid stimulating hormone beta subunit) genes in the pars tuberalis (PT). However, protein products of these genes are not yet shown in the hypothalamus of a photoperiodic species. Therefore, using the 'first long day paradigm', EYA3 and TSH-ß along with c-FOS and GnRH peptides were immunohistochemically localized and measured in the hypothalamus of photoperiodic redheaded buntings that were maintained on short days (SD, LD 8/16) and subjected to one full long day (LD, LD 16/8). Following morning light remained turned off, and birds were sacrificed in the first hour of the day. Brains were collected and processed for immunohistochemistry of peptides. FOS-lir and GnRH-lir cells were significantly higher in the preoptic area (POA) in LD than in SD, which indicated photoperiod induced neuronal activation and downstream effects, respectively, under LD. In LD, EYA3-lir cells were significantly increased in septal lateralis (SL) with fibres extending to sub-septal organ (SSO); EYA3 fibres were very dense in median eminence. Similarly, there were significantly increased TSH-ß-lir cells in the ventricular region with much abundance in the PT and TSH-ß-lir fibres in the SSO (extending up to SL), inferior hypothalamic nucleus (IH) and infundibular nucleus (IN) in LD birds. Elevated EYA3, TSH-α and TSH-ß mRNA levels further confirmed photoperiodic induction at the transcriptional level in buntings on the first long day. These are the first results showing localization of photoperiodically induced peptides in the hypothalamus of a songbird species, the redheaded bunting.


Assuntos
Migração Animal/fisiologia , Proteínas do Olho/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Passeriformes/fisiologia , Fotoperíodo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tireotropina Subunidade beta/metabolismo , Animais , Proteínas do Olho/genética , Subunidade alfa de Hormônios Glicoproteicos/genética , Hormônio Liberador de Gonadotropina/genética , Hipotálamo/metabolismo , Técnicas Imunoenzimáticas , Luz , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tireotropina Subunidade beta/genética
14.
Genesis ; 51(11): 785-92, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23996951

RESUMO

Tissue-specific expression of cre recombinase is a well-established genetic tool to analyze gene function, and it is limited only by the efficiency and specificity of available cre mouse strains. Here, we report the generation of a transgenic line containing a cre cassette with codon usage optimized for mammalian cells (iCre) under the control of a mouse glycoprotein hormone α-subunit (αGSU) regulatory sequences in a bacterial artificial chromosome genomic clone. Initial analysis of this transgenic line, Tg(αGSU-iCre), with cre reporter strains reveals onset of cre activity in the differentiating cells of the developing anterior pituitary gland at embryonic day 12.5, with a pattern characteristic of endogenous αGSU. In adult mice, αGSU-iCre was active in the anterior lobe of the pituitary gland and in the cells that produce αGSU (gonadotropes and thyrotropes) with high penetrance. Little or no activity was observed in other tissues, including skeletal and cardiac muscle, brain, kidney, lungs, testis, ovary, and liver. This αGSU-iCre line is suitable for efficient, specific, and developmentally regulated deletion of floxed alleles in anterior pituitary gonadotropes and thyrotropes.


Assuntos
Subunidade alfa de Hormônios Glicoproteicos/genética , Gonadotrofos/metabolismo , Integrases/metabolismo , Recombinação Genética , Tireotrofos/metabolismo , Alelos , Animais , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Embrião de Mamíferos , Feminino , Genótipo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Integrases/genética , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Sequências Reguladoras de Ácido Nucleico
15.
Mol Cell Endocrinol ; 574: 111971, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37301504

RESUMO

Follicle-stimulating hormone (FSH) is a glycoprotein that is assembled as a heterodimer of α/ß subunits in gonadotropes. Each subunit contains two N-glycan chains. Our previous in vivo genetic studies identified that at least one N-glycan chain must be present on the FSHß subunit for efficient FSH dimer assembly and secretion. Moreover, macroheterogeneity observed uniquely on human FSHß results in ratiometric changes in age-specific FSH glycoforms, particularly during menopausal transition. Despite the recognition of many prominent roles of sugars on FSH including dimer assembly and secretion, serum half-life, receptor binding and signal transduction, the N-glycosylation machinery in gonadotropes has never been defined. Here, we used a mouse model in which gonadotropes are GFP-labeled in vivo and achieved rapid purification of GFP+ gonadotropes from pituitaries of female mice at reproductively young, middle, and old ages. We identified by RNA-seq analysis 52 mRNAs encoding N-glycosylation pathway enzymes expressed in 3- and 8-10-month-old mouse gonadotropes. We hierarchically mapped and localized the enzymes to distinct subcellular organelles within the N-glycosylation biosynthetic pathway. Of the 52 mRNAs, we found 27 mRNAs are differentially expressed between the 3- and 8-10-month old mice. We subsequently selected 8 mRNAs which showed varying changes in expression for confirmation of abundance in vivo via qPCR analysis, using more expanded aging time points with distinct 8-month and 14-month age groups. Real time qPCR analysis indicated dynamic changes in expression of N-glycosylation pathway enzyme-encoding mRNAs across the life span. Notably, computational analysis predicted the promoters of genes encoding these 8 mRNAs contain multiple high probability binding sites for estrogen receptor-1 and progesterone receptor. Collectively, our studies define the N-glycome and identify age-specific dynamic changes in mRNAs encoding N-glycosylation pathway enzymes in mouse gonadotropes. Our studies suggest the age-related decline in ovarian steroids may regulate expression of N-glycosylation enzymes in mouse gonadotropes and explain the age-related N-glycosylation shift previously observed on human FSHß subunit in pituitaries of women.


Assuntos
Subunidade beta do Hormônio Folículoestimulante , Hormônio Foliculoestimulante , Camundongos , Feminino , Humanos , Animais , Lactente , Glicosilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade alfa de Hormônios Glicoproteicos/genética , Hormônio Foliculoestimulante Humano , Análise de Sequência de RNA
16.
Biol Pharm Bull ; 35(3): 380-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22382325

RESUMO

We previously identified Ku proteins and interleukin enhancer binding factor 3 (ILF3) as cofactors for the nuclear receptor farnesoid X receptor and liver receptor homolog-1, respectively. Here we provide further evidence that these cofactors modulate the promoter activity of the nuclear receptor thyroid hormone receptor (TR) target gene, thyroid-stimulating hormone alpha (TSHα), which is negatively regulated by the TR ligand triiodothyronine (T(3)). Ku proteins suppressed TSHα promoter activity independent of T(3), whereas ILF3 enhanced TSHα activity, especially in the presence of T(3). Taken together, our results suggest that Ku proteins and ILF3 function as co-regulators for TR-mediated TSHα expression.


Assuntos
DNA Helicases/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Glutationa Transferase/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/genética , Células HEK293 , Células HeLa , Humanos , Autoantígeno Ku , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Tri-Iodotironina/metabolismo
17.
Gen Comp Endocrinol ; 176(1): 70-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22227219

RESUMO

Since the late 1980s, gonadotropins have been isolated and characterized in several fish species, but specific immunoassays for the follicle-stimulating hormone (FSH) have only been developed for a few. The present study reports the development and use of a specific and homologous competitive ELISA for measuring FSH in European sea bass (Dicentrarchus labrax) using a recombinant FSH and its specific antiserum. Recombinant European sea bass FSHß and FSH heterodimer were produced in the methylotrophic yeast Pichia pastoris and a baculovirus expression system, respectively. Specific polyclonal antibodies, generated by rabbit immunization against recombinant FSHß, were used at a final dilution of 1:8000. Recombinant FSH heterodimer was used to generate a standard curve and for coating of microplates (166 µg/ml). The sensitivity of the assay was 0.5 ng/ml [B(0)-2SD], and the intra- and inter-assay coefficients of variation were 2.12% (n=10) and 5.44% (n=16) (B(i)/B(0) ∼45%), respectively. A high degree of parallelism was observed between the standard curve and serially diluted plasma and pituitary samples of European sea bass. The ELISA developed was used to study the plasma FSH profiles of mature males and females during the reproductive cycle, and those of immature juvenile males under different light regimes. The analysis showed that FSH increased significantly during the intermediate stages of spermatogenesis and during vitellogenesis. Analyses in immature juvenile males showed that the continuous light photoperiod significantly reduced plasma FSH levels, and consequently, testicular growth and precocious puberty. In conclusion, the immunoassay developed has proven to be sensitive, specific and accurate for measuring European sea bass FSH, and it represents a valuable tool for future studies on the reproductive endocrinology of this species.


Assuntos
Bass/fisiologia , Ensaio de Imunoadsorção Enzimática/métodos , Ensaio de Imunoadsorção Enzimática/normas , Subunidade beta do Hormônio Folículoestimulante/sangue , Subunidade alfa de Hormônios Glicoproteicos/sangue , Reprodução/fisiologia , Fatores Etários , Animais , Anticorpos/imunologia , Europa (Continente) , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/imunologia , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/imunologia , Masculino , Fotoperíodo , Plasmídeos/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Maturidade Sexual/fisiologia
18.
Fish Physiol Biochem ; 38(3): 883-97, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22109677

RESUMO

The endocrine regulation of reproduction in a multiple spawning fish with an asynchronous-type ovary remains largely unknown. The objectives of this study were to monitor changes in the mRNA expression of three gonadotropin (GtH) subunits (GPα, FSHß, and LHß) during the reproductive cycle of the female chub mackerel Scomber japonicus. Cloning and subsequent sequence analysis revealed that the cDNAs of chub mackerel GPα, FSHß, and LHß were 658, 535, and 599 nucleotides in length and encoded 117, 115, and 147 amino acids, respectively. We applied a quantitative real-time PCR assay to quantify the mRNA expression levels of these GtH subunits. During the seasonal reproductive cycle, FSHß mRNA levels remained high during the vitellogenic stages, while GPα and LHß mRNA levels peaked at the end of vitellogenesis. The expression of all three GtH subunits decreased during the post-spawning period. These results suggest that follicle-stimulating hormone (FSH) is involved in vitellogenesis, while luteinizing hormone (LH) functions during final oocyte maturation (FOM). Both GPα and FSHß mRNA levels remained high during the FOM stages of the spawning cycle and increased further just after spawning. Thus, FSH synthesis may be strongly activated just after spawning to accelerate vitellogenesis in preparation for the next spawning. Alternatively, LHß mRNA levels declined during hydration and then increased after ovulation. This study demonstrates that chub mackerel are a good model for investigating GtH functions in multiple spawning fish.


Assuntos
Gonadotropinas Hipofisárias/genética , Perciformes/genética , Perciformes/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Regulação da Expressão Gênica , Subunidade alfa de Hormônios Glicoproteicos/genética , Gonadotropinas Hipofisárias/química , Hormônio Luteinizante Subunidade beta/genética , Masculino , Dados de Sequência Molecular , Ovário/fisiologia , Perciformes/anatomia & histologia , Filogenia , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/genética , Reprodução/fisiologia , Vitelogênese/genética , Vitelogênese/fisiologia
19.
Biochem J ; 432(3): 473-83, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21108604

RESUMO

The orphan nuclear receptor SF-1 (steroidogenic factor 1) is highly expressed in the pituitary, gonad and adrenal glands and plays key roles at all levels of the hypothalamic-pituitary-steroidogenic tissue axis. In the present study, we show that PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator 1α] interacts with and co-activates SF-1 to induce LHß (luteinizing hormone ß) and αGSU (α-glycoprotein subunit) gene expression, subsequently leading to the increased secretion of LH in pituitary gonadotrope-derived αT3-1 cells. PGC-1α co-activation of LHß expression requires an SF-1-binding element [GSE (gonadotrope-specific element)] mapped to the promoter region of LHß. Mammalian two-hybrid and co-immunoprecipitation assays, as well as GST (glutathione transferase) pull-down experiments demonstrated that PGC-1α interacts with SF-1 in vivo and in vitro. Additionally, PGC-1α stimulates the expression of Cyp11b2 (aldosterone synthase gene), Cyp11b1 (steroid 11ß-hydroxylase gene) and P450scc (cholesterol side-chain cleavage enzyme), and the synthesis of aldosterone in adrenal-cortex-derived Y-1 cells. Chromatin immunoprecipitation assays confirmed that endogenous PGC-1α co-localizes with SF-1 in the LHß and Cyp11b2 promoter region. Knockdown of endogenous SF-1 by siRNA (small interfering RNA) abolished the PGC-1α induction of LHß and Cyp11b2 gene expression in αT3-1 and Y-1 cells respectively. Finally, we demonstrated that PGC-1α induces SF-1 gene expression in both αT3-1 and Y-1 cells. Taken together, our findings reveal the potential role of PGC-1α and suggest that it may play important roles in steroidogenesis, gonad development and sex differentiation through SF-1.


Assuntos
Córtex Suprarrenal/metabolismo , Aldosterona/metabolismo , Hormônio Luteinizante/metabolismo , Hipófise/metabolismo , Fator Esteroidogênico 1/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Esteroide 11-beta-Hidroxilase/genética , Esteroide 11-beta-Hidroxilase/metabolismo , Fator Esteroidogênico 1/genética , Transativadores/genética , Fatores de Transcrição
20.
Artigo em Inglês | MEDLINE | ID: mdl-21112410

RESUMO

The Senegalese sole (Solea senegalensis) is a flatfish that exhibits severe reproductive dysfunctions in captivity. This study aimed at investigating the existence of a dopamine (DA) inhibitory tone on the reproductive axis of this species. Four groups of Senegalese sole breeders were treated with, saline (controls, CNT), the DA antagonist pimozide (PIM, 5 mg kg(-1)), gonadotropin-releasing hormone agonist (GnRHa, 40 µg kg(-1)) or a combination of PIM+GnRHa (COMB). Effects were evaluated on pituitary GnRH levels (ELISA), pituitary gonadotropin subunit transcript levels (qPCR), plasma levels of sex steroids and vitellogenin (ELISA), gonad development (histology), spermiation and egg production. The GnRHa treatment induced egg release and stimulated testis maturation. In males, PIM did not affect pituitary GnRH content, but enhanced GnRHa-induced pituitary GPα transcripts and modified plasma androgen levels; moreover, PIM stimulated spermatogenesis and milt production, both alone and combined with GnRHa. In females, PIM did not affect pituitary and plasma endocrine parameters and did not affect egg production and fertilization success of the broodstock, either alone or in the combined treatment. In conclusion, data indicated the existence of a DA inhibition in mature males, which would be absent or weakly expressed in females.


Assuntos
Antagonistas de Dopamina/farmacologia , Linguados/fisiologia , Hormônio Liberador de Gonadotropina/agonistas , Gônadas/efeitos dos fármacos , Pimozida/farmacologia , Hipófise/efeitos dos fármacos , Animais , Estradiol/sangue , Feminino , Fertilidade/efeitos dos fármacos , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Gônadas/fisiologia , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , Hipófise/fisiologia , Contagem de Espermatozoides , Testosterona/análogos & derivados , Testosterona/sangue , Transcrição Gênica , Vitelogeninas/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA