Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 35(7-8): 528-541, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737385

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal cancers worldwide and evolves often to lung metastasis. P53R175H (homologous to Trp53R172H in mice) is a common hot spot mutation. How metastasis is regulated by p53R175H in ESCC remains to be investigated. To investigate p53R175H-mediated molecular mechanisms, we used a carcinogen-induced approach in Trp53R172H/- mice to model ESCC. In the primary Trp53R172H/- tumor cell lines, we depleted Trp53R172H (shTrp53) and observed a marked reduction in cell invasion in vitro and lung metastasis burden in a tail-vein injection model in comparing isogenic cells (shCtrl). Furthermore, we performed bulk RNA-seq to compare gene expression profiles of metastatic and primary shCtrl and shTrp53 cells. We identified the YAP-BIRC5 axis as a potential mediator of Trp53R172H -mediated metastasis. We demonstrate that expression of Survivin, an antiapoptotic protein encoded by BIRC5, increases in the presence of Trp53R172H Furthermore, depletion of Survivin specifically decreases Trp53R172H-driven lung metastasis. Mechanistically, Trp53R172H but not wild-type Trp53, binds with YAP in ESCC cells, suggesting their cooperation to induce Survivin expression. Furthermore, Survivin high expression level is associated with increased metastasis in several GI cancers. Taken together, this study unravels new insights into how mutant p53 mediates metastasis.


Assuntos
Neoplasias Pulmonares/fisiopatologia , Survivina/genética , Survivina/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Pulmonares/genética , Camundongos , Mutação , Metástase Neoplásica , Transcriptoma , Proteína Supressora de Tumor p53/metabolismo
2.
Immunity ; 48(6): 1183-1194.e5, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29802019

RESUMO

HIV-1 infection of CD4+ T cells leads to cytopathic effects and cell demise, which is counter to the observation that certain HIV-1-infected cells possess a remarkable long-term stability and can persist lifelong in infected individuals treated with suppressive antiretroviral therapy (ART). Using quantitative mass spectrometry-based proteomics, we showed that HIV-1 infection activated cellular survival programs that were governed by BIRC5, a molecular inhibitor of cell apoptosis that is frequently overexpressed in malignant cells. BIRC5 and its upstream regulator OX40 were upregulated in productively and latently infected CD4+ T cells and were functionally involved in maintaining their viability. Moreover, OX40-expressing CD4+ T cells from ART-treated patients were enriched for clonally expanded HIV-1 sequences, and pharmacological inhibition of BIRC5 resulted in a selective decrease of HIV-1-infected cells in vitro. Together, these findings suggest that BIRC5 supports long-term survival of HIV-1-infected cells and may lead to clinical strategies to reduce persisting viral reservoirs.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Survivina/metabolismo , Latência Viral/fisiologia , Adulto , Idoso , Apoptose , Sobrevivência Celular/fisiologia , Feminino , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1 , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
J Biol Chem ; 300(7): 107463, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876304

RESUMO

Chemotherapeutic agents for treating colorectal cancer (CRC) primarily induce apoptosis in tumor cells. The ubiquitin-proteasome system is critical for apoptosis regulation. Deubiquitinating enzymes (DUBs) remove ubiquitin from substrates to reverse ubiquitination. Although over 100 DUB members have been discovered, the biological functions of only a small proportion of DUBs have been characterized. Here, we aimed to systematically identify the DUBs that contribute to the development of CRC. Among the DUBs, ubiquitin-specific protease 36 (USP36) is upregulated in CRC. We showed that the knockdown of USP36 induces intrinsic and extrinsic apoptosis. Through gene silencing and coimmunoprecipitation techniques, we identified survivin and cIAP1 as USP36 targets. Mechanistically, USP36 binds and removes lysine-11-linked ubiquitin chains from cIAP1 and lysine-48-linked ubiquitin chains from survivin to abolish protein degradation. Overexpression of USP36 disrupts the formation of the XIAP-second mitochondria-derived activator of caspase complex and promotes receptor-interacting protein kinase 1 ubiquitination, validating USP36 as an inhibitor to intrinsic and extrinsic apoptosis through deubiquitinating survivin and cIAP1. Therefore, our results suggest that USP36 is involved in CRC progression and is a potential therapeutic target.


Assuntos
Apoptose , Neoplasias Colorretais , Proteínas Inibidoras de Apoptose , Survivina , Ubiquitina Tiolesterase , Ubiquitinação , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética , Survivina/metabolismo , Survivina/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética
4.
Mol Ther ; 32(6): 1934-1955, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582961

RESUMO

Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Proliferação de Células , Proteínas Mitocondriais , Survivina , Humanos , Survivina/metabolismo , Survivina/genética , Animais , Camundongos , Proteínas Mitocondriais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Inflamação/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Ligação Proteica , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos/farmacologia , Peptídeos/química , Terapia de Imunossupressão
5.
Drug Resist Updat ; 73: 101065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367548

RESUMO

AIMS: To investigate the collateral sensitivity (CS) of ABCB1-positive multidrug resistant (MDR) colorectal cancer cells to the survivin inhibitor MX106-4C and the mechanism. METHODS: Biochemical assays (MTT, ATPase, drug accumulation/efflux, Western blot, RT-qPCR, immunofluorescence, flow cytometry) and bioinformatic analyses (mRNA-sequencing, reversed-phase protein array) were performed to investigate the hypersensitivity of ABCB1 overexpressing colorectal cancer cells to MX106-4C and the mechanisms. Synergism assay, long-term selection, and 3D tumor spheroid test were used to evaluate the anti-cancer efficacy of MX106-4C. RESULTS: MX106-4C selectively killed ABCB1-positive colorectal cancer cells, which could be reversed by an ABCB1 inhibitor, knockout of ABCB1, or loss-of-function ABCB1 mutation, indicating an ABCB1 expression and function-dependent mechanism. MX106-4C's selective toxicity was associated with cell cycle arrest and apoptosis through ABCB1-dependent survivin inhibition and activation on caspases-3/7 as well as modulation on p21-CDK4/6-pRb pathway. MX106-4C had good selectivity against ABCB1-positive colorectal cancer cells and retained this in multicellular tumor spheroids. In addition, MX106-4C could exert a synergistic anti-cancer effect with doxorubicin or re-sensitize ABCB1-positive cancer cells to doxorubicin by reducing ABCB1 expression in the cell population via long-term exposure. CONCLUSIONS: MX106-4C selectively kills ABCB1-positive MDR colorectal cancer cells via a novel ABCB1-dependent survivin inhibition mechanism, providing a clue for designing CS compound as an alternative strategy to overcome ABCB1-mediated colorectal cancer MDR.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Resistência a Múltiplos Medicamentos/genética , Sensibilidade Colateral a Medicamentos , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Antineoplásicos/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/farmacologia
6.
Proc Natl Acad Sci U S A ; 119(42): e2200108119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36227914

RESUMO

The chromosomal passenger complex (CPC) is a heterotetrameric regulator of eukaryotic cell division, consisting of an Aurora-type kinase and a scaffold built of INCENP, Borealin, and Survivin. While most CPC components are conserved across eukaryotes, orthologs of the chromatin reader Survivin have previously only been found in animals and fungi, raising the question of how its essential role is carried out in other eukaryotes. By characterizing proteins that bind to the Arabidopsis Borealin ortholog, we identified BOREALIN RELATED INTERACTOR 1 and 2 (BORI1 and BORI2) as redundant Survivin-like proteins in the context of the CPC in plants. Loss of BORI function is lethal and a reduced expression of BORIs causes severe developmental defects. Similar to Survivin, we find that the BORIs bind to phosphorylated histone H3, relevant for correct CPC association with chromatin. However, this interaction is not mediated by a BIR domain as in previously recognized Survivin orthologs but by an FHA domain, a widely conserved phosphate-binding module. We find that the unifying criterion of Survivin-type proteins is a helix that facilitates complex formation with the other two scaffold components and that the addition of a phosphate-binding domain, necessary for concentration at the inner centromere, evolved in parallel in different eukaryotic groups. Using sensitive similarity searches, we find conservation of this helical domain between animals and plants and identify the missing CPC component in most eukaryotic supergroups. Interestingly, we also detect Survivin orthologs without a defined phosphate-binding domain, likely reflecting the situation in the last eukaryotic common ancestor.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Aurora Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Mitose , Fosfatos/metabolismo , Survivina/genética , Survivina/metabolismo
7.
Genomics ; 116(3): 110852, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703969

RESUMO

Autophagy, a highly conserved process of protein and organelle degradation, has emerged as a critical regulator in various diseases, including cancer progression. In the context of liver cancer, the predictive value of autophagy-related genes remains ambiguous. Leveraging chip datasets from the TCGA and GTEx databases, we identified 23 differentially expressed autophagy-related genes in liver cancer. Notably, five key autophagy genes, PRKAA2, BIRC5, MAPT, IGF1, and SPNS1, were highlighted as potential prognostic markers, with MAPT showing significant overexpression in clinical samples. In vitro cellular assays further demonstrated that MAPT promotes liver cancer cell proliferation, migration, and invasion by inhibiting autophagy and suppressing apoptosis. Subsequent in vivo studies further corroborated the pro-tumorigenic role of MAPT by suppressing autophagy. Collectively, our model based on the five key genes provides a promising tool for predicting liver cancer prognosis, with MAPT emerging as a pivotal factor in tumor progression through autophagy modulation.


Assuntos
Autofagia , Neoplasias Hepáticas , Proteínas tau , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Autofagia/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Prognóstico , Linhagem Celular Tumoral , Survivina/genética , Survivina/metabolismo , Proliferação de Células , Animais , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Biomarcadores Tumorais/genética , Movimento Celular , Camundongos , Apoptose , Regulação Neoplásica da Expressão Gênica , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo
8.
Carcinogenesis ; 45(7): 510-519, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38446998

RESUMO

Cysteine-rich angiogenic inducer 61 (CYR61) is a protein from the CCN family of matricellular proteins that play diverse regulatory roles in the extracellular matrix. CYR61 is involved in cell adhesion, migration, proliferation, differentiation, apoptosis, and senescence. Here, we show that CYR61 induces chemoresistance in triple-negative breast cancer (TNBC). We observed that CYR61 is overexpressed in TNBC patients, and CYR61 expression correlates negatively with the survival of patients who receive chemotherapy. CYR61 knockdown reduced cell migration, sphere formation and the cancer stem cell (CSC) population and increased the chemosensitivity of TNBC cells. Mechanistically, CYR61 activated Wnt/ß-catenin signaling and increased survivin expression, which are associated with chemoresistance, the epithelial-mesenchymal transition, and CSC-like phenotypes. Altogether, our study demonstrates a novel function of CYR61 in chemotherapy resistance in breast cancer.


Assuntos
Proteína Rica em Cisteína 61 , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Survivina , Neoplasias de Mama Triplo Negativas , Humanos , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Survivina/metabolismo , Survivina/genética , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Via de Sinalização Wnt , Movimento Celular , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Regulação para Cima , Proliferação de Células , Apoptose , Animais , Camundongos
9.
J Biol Chem ; 299(2): 102842, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36581205

RESUMO

The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-myc , Proteínas Proto-Oncogênicas p21(ras) , Survivina , Humanos , Linhagem Celular Tumoral , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Pancreáticas/patologia , Proteína Fosfatase 2/metabolismo , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Survivina/genética , Survivina/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias Pancreáticas
10.
Apoptosis ; 29(3-4): 503-520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38066391

RESUMO

The hypomethylation agent decitabine (DAC), in combination with other apoptosis inducers, is considered a potential modality for cancer treatment. We investigated the mechanism underlying the combined cytotoxicity of DAC and YM155 in acute myeloid leukemia (AML) cells because of increasing evidence that YM155 induces apoptosis in cancer cells. Co-administration of DAC and YM155 resulted in synergistic cytotoxicity in AML U937 cells, which was characterized by the induction of apoptosis, NOXA-dependent degradation of MCL1 and survivin, and depolarization of mitochondria. Restoration of MCL1 or survivin expression attenuated DAC/YM155-induced U937 cell death. DAC initiated AKT and p38 MAPK phosphorylation in a Ca2+/ROS-dependent manner, thereby promoting autophagy-mediated degradation of ß-TrCP mRNA, leading to increased Sp1 expression. DAC-induced Sp1 expression associated with Ten-eleven-translocation (TET) dioxygenases and p300 was used to upregulate the expression of SLC35F2. Simultaneously, the activation of p38 MAPK induced by DAC, promoted CREB-mediated NOXA expression, resulting in survivin and MCL1 degradation. The synergistic cytotoxicity of DAC and YM155 in U937 cells was dependent on elevated SLC35F2 expression. Additionally, YM155 facilitated DAC-induced degradation of MCL1 and survivin. A similar mechanism explained DAC/YM155-mediated cytotoxicity in AML HL-60 cells. Our data demonstrated that the synergistic cytotoxicity of DAC and YM155 in AML cell lines U937 and HL-60 is dependent on AKT- and p38 MAPK-mediated upregulation of SLC35F2 and p38 MAPK-mediated degradation of survivin and MCL1. This indicates that a treatment regimen that amalgamates YM155 and DAC may be beneficial for AML.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Membrana Transportadoras , Naftoquinonas , Humanos , Survivina/genética , Survivina/metabolismo , Apoptose , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Decitabina/farmacologia , Células U937 , Regulação para Cima , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Naftoquinonas/farmacologia , Linhagem Celular Tumoral
11.
Funct Integr Genomics ; 24(2): 61, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507114

RESUMO

This research provides a glimmer of hope that the knockout of HCP5 leads to a therapy response to considerably prolong the life of patients with OC. RT-PCR evaluated the expression of lncRNA HCP5 in the ovarian cancer OVCAR-3 cell line. CRISPR knockout cell lines validated by western blot. Small genomic deletions at the targeted locus were induced. CCK-8 colony formation assays were used to analyze the effect of HCP5 knockout on the proliferation capacity of OVCAR-3 cells. Transwell migration and invasion assayed. Furthermore, the Sphere-formation assay isolated the most aggressive population of cancer stem cells. Bioinformatic analysis showed a significant correlation between lncRNA HCP5 up-regulation and OVCAR-3 cell proliferation. The ChIP technique assesses specific sites of interaction between transcription factors and DNA. Real-time PCR assays explored the relationship between HCP5, Hsa-miR-9-5p, CXCR4, CDH1, caspase-3, p53, bcl2 and survivin. PCR carried out amplification of the 448-bp band for sgRNA1 and sgRNA2 after the use of particular primers for HCP5. the number of breast cancer cells that moved to the bottom chamber reduced considerably after transfection with PX461-sgRNA1/2 vectors compared to the Blank control groups (P < 0.05). MTT assay designated growth curves that showed the rate of OVCAR-3 growth was significantly repressed (***P < 0.001) when compared with control OVCAR-3 cells after HCP5 knockdown. Also, the survival results of W.T cells in 24, 48 and 72 h showed 92%, 87% and 85%, respectively. This is while the cells of the CRISPR/Cas9 group in which LncRNA HCP5 was knocked out had 42% (*P < 0.05), 23%(**P < 0.01) and 14% (**P < 0.01) survival, respectively. The expression levels of caspase-3, Hsa-miR-9-5p, P53 genes in the HCP5 deletion of CRISPR/Cas9 group significantly increased than the W.T. control group; the deletion group showed a considerable reduction in HCP5 expression compared to the blank control group (3.6-fold, p < 0.01). Whereas BCL2, SURVIVIN, CXCR4, CDH1 genes expression markedly increased than in HCP5 knockout cells (5.8-fold, p < 0.05). These results indicate that CRISPR/Cas9-mediated HCP5 disruption on OVCAR-3 cell lines promotes anti-tumor biomarkers, suppressing ovarian cancer progression. Consistent with these results, HCP5 is one of the most critical lnc for the efficient proliferation and migration of OVCAR-3 cell lines.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Survivina/genética , Survivina/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Regulação para Cima , MicroRNAs/genética , Proliferação de Células/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação Neoplásica da Expressão Gênica
12.
Biochem Biophys Res Commun ; 706: 149741, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471204

RESUMO

The chromosome passenger complex (CPC) is a kinase complex formed by Aurora B, borealin, survivin and inner centromere protein (INCENP). The CPC is active during mitosis and contributes to proper chromosome segregation via the phosphorylation of various substrates. Overexpression of each CPC component has been reported in most cancers. However, its significance remains unclear, as only survivin is known to confer chemoresistance. This study showed that the overexpression of borealin, a CPC component, stabilized survivin protein depending on its interaction with survivin. Unexpectedly, the accumulation of survivin by borealin overexpression did not affect the well-characterized functions of survivin, such as chemoresistance and cell proliferation. Interestingly, the overexpression of borealin promoted lactate production but not the overexpression of the deletion mutant that lacks the ability to bind to survivin. Consistent with these findings, the expression levels of glycolysis-related genes were enhanced in borealin-overexpressing cancer cells. Meanwhile, the overexpression of survivin alone did not promote lactate production. Overall, the accumulation of the borealin-survivin complex promoted glycolysis in squamous cell carcinoma cells. This mechanism may contribute to cancer progression via excessive lactate production.


Assuntos
Carcinoma de Células Escamosas , Centrômero , Humanos , Survivina/genética , Survivina/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitose , Fosforilação , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Carcinoma de Células Escamosas/genética , Lactatos
13.
BMC Biotechnol ; 24(1): 14, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491556

RESUMO

Cancer associated drug resistance is a major cause for cancer aggravation, particularly as conventional therapies have presented limited efficiency, low specificity, resulting in long term deleterious side effects. Peptide based drugs have emerged as potential alternative cancer treatment tools due to their selectivity, ease of design and synthesis, safety profile, and low cost of manufacturing. In this study, we utilized the Red Sea metagenomics database, generated during AUC/KAUST Red Sea microbiome project, to derive a viable anticancer peptide (ACP). We generated a set of peptide hits from our library that shared similar composition to ACPs. A peptide with a homeodomain was selected, modified to improve its anticancer properties, verified to maintain high anticancer properties, and processed for further in-silico prediction of structure and function. The peptide's anticancer properties were then assessed in vitro on osteosarcoma U2OS cells, through cytotoxicity assay (MTT assay), scratch-wound healing assay, apoptosis/necrosis detection assay (Annexin/PI assay), RNA expression analysis of Caspase 3, KI67 and Survivin, and protein expression of PARP1. L929 mouse fibroblasts were also assessed for cytotoxicity treatment. In addition, the antimicrobial activity of the peptide was also examined on E coli and S. aureus, as sample representative species of the human bacterial microbiome, by examining viability, disk diffusion, morphological assessment, and hemolytic analysis. We observed a dose dependent cytotoxic response from peptide treatment of U2OS, with a higher tolerance in L929s. Wound closure was debilitated in cells exposed to the peptide, while annexin fluorescent imaging suggested peptide treatment caused apoptosis as a major mode of cell death. Caspase 3 gene expression was not altered, while KI67 and Survivin were both downregulated in peptide treated cells. Additionally, PARP-1 protein analysis showed a decrease in expression with peptide exposure. The peptide exhibited minimal antimicrobial activity on critical human microbiome species E. coli and S. aureus, with a low inhibition rate, maintenance of structural morphology and minimal hemolytic impact. These findings suggest our novel peptide displayed preliminary ACP properties against U2OS cells, through limited specificity, while triggering apoptosis as a primary mode of cell death and while having minimal impact on the microbiological species E. coli and S. aureus.


Assuntos
Anti-Infecciosos , Antineoplásicos , Sais , Animais , Camundongos , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 3/farmacologia , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Escherichia coli/metabolismo , Peptídeos Antimicrobianos , Linhagem Celular Tumoral , Oceano Índico , Antígeno Ki-67/metabolismo , Staphylococcus aureus , Apoptose , Peptídeos/farmacologia , Peptídeos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Anti-Infecciosos/farmacologia , Anexinas/farmacologia
14.
Toxicol Appl Pharmacol ; 485: 116888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452945

RESUMO

Upregulation of the multidrug efflux pump ABCB1/MDR1 (P-gp) and the anti-apoptotic protein BIRC5/Survivin promotes multidrug resistance in various human cancers. GDC-0152 is a DIABLO/SMAC mimetic currently being tested in patients with solid tumors. However, it is still unclear whether GDC-0152 is therapeutically applicable for patients with ABCB1-overexpressing multidrug-resistant tumors, and the molecular mechanism of action of GDC-0152 in cancer cells is still incompletely understood. In this study, we found that the potency of GDC-0152 is unaffected by the expression of ABCB1 in cancer cells. Interestingly, through in silico and in vitro analysis, we discovered that GDC-0152 directly modulates the ABCB1-ATPase activity and inhibits ABCB1 multidrug efflux activity at sub-cytotoxic concentrations (i.e., 0.25×IC50 or less). Further investigation revealed that GDC-0152 also decreases BIRC5 expression, induces mitophagy, and lowers intracellular ATP levels in cancer cells at low cytotoxic concentrations (i.e., 0.5×IC50). Co-treatment with GDC-0152 restored the sensitivity to the known ABCB1 substrates, including paclitaxel, vincristine, and YM155 in ABCB1-expressing multidrug-resistant cancer cells, and it also restored the sensitivity to tamoxifen in BIRC5-overexpressing tamoxifen-resistant breast cancer cells in vitro. Moreover, co-treatment with GDC-0152 restored and potentiated the anticancer effects of paclitaxel in ABCB1 and BIRC5 co-expressing xenograft tumors in vivo. In conclusion, GDC-0152 has the potential for use in the management of cancer patients with ABCB1 and BIRC5-related drug resistance. The findings of our study provide essential information to physicians for designing a more patient-specific GDC-0152 clinical trial program in the future.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Benzodioxóis , Resistencia a Medicamentos Antineoplásicos , Indolizinas , Survivina , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Survivina/genética , Survivina/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Camundongos Nus , Camundongos , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Reguladoras de Apoptose/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Paclitaxel/farmacologia , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Camundongos Endogâmicos BALB C , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética
15.
BMC Cancer ; 24(1): 63, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216925

RESUMO

BACKGROUND: Receptor-type tyrosine-protein phosphatase T (PTPRT) is a transmembrane protein that is involved in cell adhesion. We previously found that PTPRT was downregulated in multiple cancer types and the mutation of PTPRT was associated with cancer early metastasis. However, the impacts of PTPRT downregulation on tumour proliferation, invasion, and clinical interventions such as immune checkpoint inhibitor (ICI) therapies remained largely unknown. METHODS: Gene expression data of non-small cell lung cancer (NSCLC) samples from The Cancer Genome Atlas database were downloaded and used to detect the differential expressed genes between PTPRT-high and PTPRT-low subgroups. Knockdown and overexpress of PTPRT in lung cancer cell lines were performed to explore the function of PTPRT in vitro. Western blot and qRT-PCR were used to evaluate the expression of cell cycle-related genes. CCK-8 assays, wound-healing migration assay, transwell assay, and colony formation assay were performed to determine the functional impacts of PTPRT on cell proliferation, migration, and invasion. KM-plotter was used to explore the significance of selected genes on patient prognosis. RESULTS: PTPRT was found to be downregulated in tumours and lung cancer cell lines compared to normal samples. Cell cycle-related genes (BIRC5, OIP5, and CDCA3, etc.) were specifically upregulated in PTPRT-low lung adenocarcinoma (LUAD). Modulation of PTPRT expression in LUAD cell lines affected the expression of BIRC5 (survivin) significantly, as well as the proliferation, migration, and invasion of tumour cells. In addition, low PTPRT expression level was correlated with worse prognosis of lung cancer and several other cancer types. Furthermore, PTPRT downregulation was associated with elevated tumour mutation burden and tumour neoantigen burden in lung cancer, indicating the potential influence on tumour immunogenicity. CONCLUSION: Our findings uncovered the essential roles of PTPRT in the regulation of proliferation, migration, and invasion of LUAD, and highlighted the clinical significance of PTPRT downregulation in lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Fosfoproteínas Fosfatases/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Survivina/genética , Survivina/metabolismo
16.
Cell Commun Signal ; 22(1): 440, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261837

RESUMO

BACKGROUND: Bivalent regions of chromatin (BvCR) are characterized by trimethylated lysine 4 (H3K4me3) and lysine 27 on histone H3 (H3K27me3) deposition which aid gene expression control during cell differentiation. The role of BvCR in post-transcriptional DNA damage response remains unidentified. Oncoprotein survivin binds chromatin and mediates IFNγ effects in CD4+ cells. In this study, we explored the role of BvCR in DNA damage response of autoimmune CD4+ cells in rheumatoid arthritis (RA). METHODS: We performed deep sequencing of the chromatin bound to survivin, H3K4me3, H3K27me3, and H3K27ac, in human CD4+ cells and identified BvCR, which possessed all three histone H3 modifications. Protein partners of survivin on chromatin were predicted by integration of motif enrichment analysis, computational machine-learning, and structural modeling, and validated experimentally by mass spectrometry and peptide binding array. Survivin-dependent change in BvCR and transcription of genes controlled by the BvCR was studied in CD4+ cells treated with survivin inhibitor, which revealed survivin-dependent biological processes. Finally, the survivin-dependent processes were mapped to the transcriptome of CD4+ cells in blood and in synovial tissue of RA patients and the effect of modern immunomodulating drugs on these processes was explored. RESULTS: We identified that BvCR dominated by H3K4me3 (H3K4me3-BvCR) accommodated survivin within cis-regulatory elements of the genes controlling DNA damage. Inhibition of survivin or JAK-STAT signaling enhanced H3K4me3-BvCR dominance, which improved DNA damage recognition and arrested cell cycle progression in cultured CD4+ cells. Specifically, BvCR accommodating survivin aided sequence-specific anchoring of the BRG1/SWI chromatin-remodeling complex coordinating DNA damage response. Mapping survivin interactome to BRG1/SWI complex demonstrated interaction of survivin with the subunits anchoring the complex to chromatin. Co-expression of BRG1, survivin and IFNγ in CD4+ cells rendered complete deregulation of DNA damage response in RA. Such cells possessed strong ability of homing to RA joints. Immunomodulating drugs inhibited the anchoring subunits of BRG1/SWI complex, which affected arthritogenic profile of CD4+ cells. CONCLUSIONS: BvCR execute DNA damage control to maintain genome fidelity in IFN-activated CD4+ cells. Survivin anchors the BRG1/SWI complex to BvCR to repress DNA damage response. These results offer a platform for therapeutic interventions targeting survivin and BRG1/SWI complex in autoimmunity.


Assuntos
Linfócitos T CD4-Positivos , Cromatina , Dano ao DNA , DNA Helicases , Proteínas Nucleares , Survivina , Fatores de Transcrição , Humanos , Survivina/metabolismo , Survivina/genética , Linfócitos T CD4-Positivos/metabolismo , Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , DNA Helicases/metabolismo , DNA Helicases/genética , Histonas/metabolismo , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética
17.
Lupus ; 33(11): 1203-1211, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39162618

RESUMO

BACKGROUND: Systemic lupus erythematosus is a multisystemic rheumatic disease with different clinical features. Disturbance in apoptosis regulation seems to be a major factor in SLE development. OBJECTIVE: Survivin plays a key role in mitosis and inhibiting apoptosis. A study was conducted to examine the expression level of survivin and miRNAs that affect survivin transcript levels in patients with SLE. METHODS: We isolated peripheral blood mononuclear cells from 50 inactive SLE patients and 50 healthy controls. RNA is extracted and converted to cDNA. The quantitative real-time polymerase chain reaction is conducted to assess the expression levels of survivin total and its variants with effective miRNAs in PBMCs. RESULTS: Expression levels of miR-34a-5p (fold change = 1.5, p++ = 0.027), and 218-5p (fold change = 1.5, p++ = 0.020) were significantly increased. While miR-150-5p (fold change = 0.56, p++ = 0.003) was significantly decreased. The mRNA expression of survivin-WT (fold change = 0.63, p++ = 0.002) was significantly downregulated in SLE patients compared to the healthy controls. Survivin total and its two major variants (survivin-2B, and survivin-ΔEx3) did not differ significantly between SLE patients and controls. CONCLUSION: Although survivin-TS and its two variants (survivin-2B, and survivin-ΔEx3) were not differently expressed in SLE patients, survivin-WT had altered expression. Despite aberrant miRNA expression in PBMCs from SLE patients, survivin and miRNA expression were not associated with leukopenia. The pathogenesis of SLE disorder might be linked to survivin's other roles in the immune system aside from anti-apoptotic functions.


Assuntos
Leucócitos Mononucleares , Lúpus Eritematoso Sistêmico , MicroRNAs , Survivina , Humanos , Survivina/genética , Survivina/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/sangue , MicroRNAs/genética , Leucócitos Mononucleares/metabolismo , Feminino , Adulto , Estudos de Casos e Controles , Masculino , Pessoa de Meia-Idade , Apoptose , Regulação para Baixo , Adulto Jovem , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
RNA Biol ; 21(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38111129

RESUMO

Inhibition of apoptosis is one of the hallmarks of cancer and is a target of various therapeutic interventions. BIRC5 is an inhibitor of apoptosis that is aberrantly expressed in cancer leading to sustained growth of tumours. Post-transcriptional control mechanisms involving RNA-binding proteins and AU-rich elements (AREs) are fundamental to many cellular processes and changes in the expression or function of these proteins can promote an aberrant and pathological phenotype. BIRC5 mRNA has an ARE in its 3' UTR making it a candidate for regulation by the RNA binding proteins tristetraprolin (TTP) and HuR (ELAVL1). In this study, we investigated the binding of TTP and HuR by RNA-immunoprecipitation assays and found that these proteins were associated with BIRC5 mRNA to varying extents. Consequently, BIRC5 expression decreased when TTP was overexpressed and apoptosis was induced. In the absence of TTP, BIRC5 mRNA was stabilized, protein expression increased and the number of apoptotic cells declined. As an ARE-mRNA stabilizing protein, recombinant HuR led to upregulation of BIRC5 expression, whereas HuR silencing was concomitant with downregulation of BIRC5 mRNA and protein and increased cell death. Survival analyses demonstrated that increased TTP and low BIRC5 expression predicted an overall better prognosis compared to dysregulated TTP and high BIRC5. Thus, the results present a novel target of ARE-mediated post-transcriptional regulation.


Assuntos
Neoplasias da Mama , Tristetraprolina , Humanos , Feminino , Tristetraprolina/genética , Tristetraprolina/metabolismo , Survivina/genética , Survivina/metabolismo , Neoplasias da Mama/genética , Regiões 3' não Traduzidas , Apoptose/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Estabilidade de RNA/genética
19.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 206-210, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836659

RESUMO

We aimed to explore the role of regulating Smac expression levels in the occurrence and development of colon cancer through in vitro and in vivo experiments. Colon cancer cells HT-29 were cultured and transfected into different groups. qRT-PCR was used to detect the expression level of Smac in cells; Flow cytometry was used to detect the apoptotic ability of each group of cells; Western blot was used to detect the protein expression of Smac and apoptosis-related factors Survivin and Caspase-3; The nude mouse tumorigenesis experiment was conducted to detect the regulatory effect of regulating Smac expression levels on the growth of colon cancer transplanted tumors in vivo. In comparison to the FHC group, the HT-29 group exhibited a decrease in Smac expression. The si-Smac group, when compared with the si-NC group, showed significant reductions in Smac mRNA and protein levels, weaker cell apoptosis, increased Survivin, and decreased Caspase-3 expression. Contrarily, the oe-Smac group, against the oe-NC group, displayed increased Smac mRNA and protein levels, enhanced apoptosis, reduced Survivin, and elevated Caspase-3 expression. In nude mice tumor transplantation experiments, the LV-sh-Smac group, as opposed to the LV-sh-NC group, had tumors with greater volume and weight, reduced Smac and Caspase-3, and increased Survivin expression. In contrast, the LV-oe-Smac group, compared with the LV-oe-NC group, showed tumors with decreased volume and mass, increased expressions of Smac and Caspase-3, and decreased Survivin. Smac is lowly expressed in colon cancer. Upregulation of Smac expression can inhibit the occurrence and development of colon cancer, possibly by inhibiting Survivin expression and promoting Caspase-3 expression, thereby enhancing the pro-apoptotic function.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Caspase 3 , Neoplasias do Colo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Mitocondriais , Survivina , Animais , Humanos , Camundongos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genética , Caspase 3/metabolismo , Caspase 3/genética , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Células HT29 , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Survivina/metabolismo , Survivina/genética
20.
Vet Pathol ; 61(6): 912-927, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38727195

RESUMO

High survivin expression has been correlated with poor outcomes in several canine tumors but not in soft tissue tumors (STTs). Survivin is a target gene of the Wnt/ß-catenin pathway, which is involved in human STT oncogenesis. Immunohistochemistry for survivin, ß-catenin, and Ki-67 was performed on 41 canine perivascular wall tumors (cPWTs), and statistical associations of protein expression and histopathologic and clinical variables with clinical outcomes were investigated. Immunohistochemically, there was nuclear positivity (0.9%-12.2% of tumor cells) for survivin in 41/41 (100%), cytoplasmic positivity (0 to > 75% of tumor cells) for survivin in 31/41 (76%), nuclear positivity (2.9%-67.2% of tumor cells) for ß-catenin in 24/41 (59%), and cytoplasmic positivity (0% to > 75% of tumor cells) for ß-catenin in 23/41 (56%) of cPWTs. All tumors expressed nuclear Ki-67 (2.2%-23.5%). In univariate analysis and multivariate analysis (UA and MA, respectively), every 1% increase of nuclear survivin was associated with an increase of the instantaneous death risk by a factor of 1.15 [hazard ratio (HR) = 1.15; P = .007]. Higher nuclear survivin was associated with grade II/III neoplasms (P = .043). Expression of cytoplasmic survivin, nuclear and cytoplasmic ß-catenin, and nuclear Ki-67 were not significantly associated with prognosis in UA nor MA. Tumor size was a significant prognostic factor for local recurrence in UA [subdistribution HR (SDHR) = 1.19; P = .02] and for reduced overall survival time in MA. According to UA and MA, a unitary increase of mitotic count was associated with an increase of the instantaneous death risk by a factor of 1.05 (HR = 1.05; P = .014). Nuclear survivin, mitotic count, and tumor size seem to be potential prognostic factors for cPWTs. In addition, survivin and ß-catenin may represent promising therapeutic targets for cPWTs.


Assuntos
Doenças do Cão , Imuno-Histoquímica , Antígeno Ki-67 , beta Catenina , Animais , Cães , beta Catenina/metabolismo , Antígeno Ki-67/metabolismo , Doenças do Cão/patologia , Doenças do Cão/metabolismo , Doenças do Cão/diagnóstico , Prognóstico , Imuno-Histoquímica/veterinária , Masculino , Feminino , Survivina/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA