Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 641
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 113(3): 576-594, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36534122

RESUMO

Plant tannases (TAs) or tannin acyl hydrolases, a class of recently reported carboxylesterases in tannin-rich plants, are involved in the degalloylation of two important groups of secondary metabolites: flavan-3-ol gallates and hydrolyzable tannins. In this paper, we have made new progress in studying the function of tea (Camellia sinensis) (Cs) TA-it is a hydrolase with promiscuous acyltransferase activity in vitro and in vivo and promotes the synthesis of simple galloyl glucoses and flavan-3-ol gallates in plants. We studied the functions of CsTA through enzyme analysis, protein mass spectrometry, and metabolic analysis of genetically modified plants. Firstly, CsTA was found to be not only a hydrolase but also an acyltransferase. In the two-step catalytic reaction where CsTA hydrolyzes the galloylated compounds epigallocatechin-3-gallate or 1,2,3,4,6-penta-O-galloyl-ß-d-glucose into their degalloylated forms, a long-lived covalently bound Ser159-linked galloyl-enzyme intermediate is also formed. Under nucleophilic attack, the galloyl group on the intermediate is transferred to the nucleophilic acyl acceptor (such as water, methanol, flavan-3-ols, and simple galloyl glucoses). Then, metabolic analysis suggested that transient overexpression of TAs in young strawberry (Fragaria × ananassa) fruits, young leaves of tea plants, and young leaves of Chinese bayberry (Myrica rubra) actually increased the total contents of simple galloyl glucoses and flavan-3-ol gallates. Overall, these findings provide new insights into the promiscuous acyltransferase activity of plant TA.


Assuntos
Camellia sinensis , Taninos , Taninos/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Chá/genética , Chá/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
2.
BMC Plant Biol ; 24(1): 226, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539101

RESUMO

BACKGROUND: Plant growth and quality are often affected by environmental factors, including geographical location, climate, and soil. In this study, we describe the effect of altitudinal differences on the growth and active ingredients in Rheum tanguticum Maxim. ex Balf. (R. tanguticum), a traditional Chinese medicinal herb known for its laxative properties. RESULTS: The results showed that plants grown at lower altitudes had better growth performances than those in higher altitude areas. The yield varied by 2.45-23.68 times with altitude, reaching a maximum of 102.01 t/ha. In addition, total anthraquinone and total sennoside contents decreased with increasing altitude, whereas total tannins increased with increasing altitude. The total anthraquinone content of the indicator compound reached 5.15% at five experimental sites, which exceeded the Chinese Pharmacopoeia standard by 70.87%. The content of the other two categories of active ingredients reached a maximum value of 0.94% (total sennosides) and 2.65% (total tannins). Redundancy analysis revealed that annual rainfall, annual average temperature, annual sunshine hours, and pH significantly affected growth and active ingredients. Moreover, key metabolites, such as flavonoids, amino acids and their derivatives, phenolic acids, lipids, and terpenes, were differentially expressed between samples from low- and high-altitude cultivation areas. These metabolites were enriched in the flavonoid and flavonol biosynthetic pathway and the monoterpene biosynthetic pathway. CONCLUSIONS: These results suggest that high anthraquinone content was observed in the lowest-latitude cultivation area due to low rainfall and alkaline soil pH. Key metabolites were significantly upregulated in high-latitude cultivation areas. These results provide a scientific basis for quality control and the systematic cultivation of R. tanguticum.


Assuntos
Rheum , Rheum/química , Taninos/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Solo
3.
Environ Sci Technol ; 58(22): 9792-9803, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38780952

RESUMO

Anaerobic fermentation is a crucial route to realize effective waste activated sludge (WAS) resource recovery and utilization, while the overall efficiency is commonly restrained by undesirable disruptors (i.e., chemical dewatering agents). This work unveiled the unexpectedly positive effects of biodewatering tannic acid (TA) on the volatile fatty acids (VFAs) biosynthesis during WAS anaerobic fermentation. The total VFAs yield was remarkably increased by 15.6 folds with enriched acetate and butyrate in TA-occurred systems. TA was capable to disintegrate extracellular polymeric substances to promote the overall organics release. However, TA further modulated the soluble proteins structure by hydrogen bonding and hydrophobic interactions, resulting in the decrease of proteins bioavailability and consequential alteration of metabolic substrate feature. These changes reshaped the microbial community and stimulated adaptive regulatory systems in hydrolytic-acidogenic bacteria. The keystone species for carbohydrate metabolism (i.e., Solobacterium and Erysipelotrichaceae) were preferentially enriched. Also, the typical quorum sensing (i.e., enhancing substrate transport) and two-component systems (i.e., sustaining high metabolic activity) were activated to promote the microbial networks connectivity and ecological cooperative behaviors in response to TA stress. Additionally, the metabolic functions responsible for carbohydrate hydrolysis, transmembrane transport, and intracellular metabolism as well as VFA biosynthesis showed increased relative abundance, which maintained high microbial activities for VFAs biosynthesis. This study underscored the advantages of biodewatering TA for WAS treatment in the context of resource recovery and deciphered the interactive mechanisms.


Assuntos
Ácidos Graxos Voláteis , Fermentação , Esgotos , Taninos , Ácidos Graxos Voláteis/metabolismo , Esgotos/microbiologia , Taninos/metabolismo , Anaerobiose , Microbiota
4.
J Sci Food Agric ; 104(10): 6186-6195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38459923

RESUMO

BACKGROUND: Solid-state fermentation (SSF) has been widely used in the processing of sorghum grain (SG) because it can produce products with improved sensory characteristics. To clarify the influence of different microbial strains on the SSF of SG, especially on the polyphenols content and composition, Lactiplantibacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were used separately and together for SSF of SG. Furthermore, the relationship between the dynamic changes in polyphenols and enzyme activity closely related to the metabolism of polyphenols has also been measured and analyzed. Microstructural changes observed after SSF provide a visual representation of the SSF on the SG. RESULTS: After SSF, tannin content (TC) and free phenolic content (FPC) were decreased by 56.36% and 23.48%, respectively. Polyphenol oxidase, ß-glucosidase and cellulase activities were increased 5.25, 3.27, and 45.57 times, respectively. TC and FPC were negatively correlated with cellulase activity. A positive correlation between FPC and xylanase activity after 30 h SSF became negative after 48 h SSF. The SG surface was fragmented and porous, reducing the blocking effect of cortex. CONCLUSION: Cellulase played a crucial role in promoting the degradation of tannin (antinutrient) and phenolic compounds. Xylanase continued to release flavonoids while microbial metabolism consumed them with the extension of SSF time. SSF is an effective way to improve the bioactivity and processing characteristics of SG. © 2024 Society of Chemical Industry.


Assuntos
Catecol Oxidase , Fermentação , Polifenóis , Saccharomyces cerevisiae , Sorghum , Sorghum/química , Sorghum/metabolismo , Polifenóis/metabolismo , Polifenóis/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Catecol Oxidase/metabolismo , Rhizopus/metabolismo , Rhizopus/enzimologia , Taninos/metabolismo , Taninos/análise , Taninos/química , Aspergillus oryzae/metabolismo , Aspergillus oryzae/enzimologia , Celulase/metabolismo , Celulase/química , Neurospora/metabolismo , Manipulação de Alimentos/métodos , beta-Glucosidase/metabolismo , Sementes/química , Sementes/metabolismo , Sementes/microbiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/isolamento & purificação , Fenóis/metabolismo , Fenóis/química , Fenóis/análise
5.
J Hum Evol ; 175: 103305, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586354

RESUMO

Herbivorous animals that regularly consume tannin-rich food are known to secrete certain tannin-binding salivary proteins (TBSPs), especially proline-rich proteins and histidine-rich proteins, as an effective measure to counteract the antinutritive effects of dietary tannins. Due to their high binding capacity, TBSPs complex with tannins in the oral cavity, and thereby protect dietary proteins and digestive enzymes. Although the natural diet of great apes (Hominidae) is biased toward ripe fruits, analyses of food plants revealed that their natural diet contains considerable amounts of tannins, which is raising the question of possible counter-measures to cope with dietary tannins. In our study, we investigated the salivary amino acid profiles of zoo-housed Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii, and compared their results with corresponding data from Homo sapiens. Individual saliva samples of 42 apes and 17 humans were collected and quantitated by amino acid analysis, using cation-exchange chromatography with postcolumn derivatization, following acid hydrolysis. We found species-specific differences in the salivary amino acid profiles with average total salivary protein concentration ranging from 308.8 mg/dL in Po. abelii to 1165.6 mg/dL in G. gorilla. Total salivary protein was consistently higher in ape than in human saliva samples (174 mg/dL). All apes had on average also higher relative proline levels than humans did. Histidine levels had the highest concentration in the samples from Po. abelii followed by P. paniscus. In all ape species, the high salivary concentrations of proline and histidine are considered to be indicative of high concentrations of TBSPs in hominids. Given that the species differences in salivary composition obtained in this study correspond with overall patterns of secondary compound content in the diet of wild populations, we assume that salivary composition is resilient to acute and long-lasting changes in diet composition in general and tannin content in particular.


Assuntos
Aminoácidos , Gorilla gorilla , Pan paniscus , Pan troglodytes , Pongo abelii , Animais , Humanos , Aminoácidos/análise , Gorilla gorilla/metabolismo , Histidina/análise , Pan paniscus/metabolismo , Pan troglodytes/metabolismo , Pongo abelii/metabolismo , Prolina/análise , Saliva/química , Saliva/metabolismo , Proteínas e Peptídeos Salivares/análise , Taninos/análise , Taninos/metabolismo , Dieta
6.
Biotechnol Appl Biochem ; 70(4): 1439-1449, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36965069

RESUMO

Condensed and hydrolyzable tannins are secondary metabolites present in almost every plant part. Tannase enzyme acts on hydrolyzable tannins to produce gallic acid and tannase-mediated end-products with immense therapeutic potential. Seven different fruits with significant presence of hydrolyzable tannin content were selected to check for phenol, tannin, and hydrolyzable tannin contents. Prunus domestica had the maximum phenol content, that is, 85.4 ± 0.207, followed by Syzygium cumini, Fragaria ananassa, Rubus fruticosus, and Psidium guajava. Plum showed the maximum number of hydrolyzable tannins. Fruit extracts were subjected to tannase hydrolysis and their antimicrobial and antioxidant activities were determined. There was a significant increase in the antioxidant abilities of the fruits with Punica granatum extract, displaying the highest decline of 132 units of IC50 followed by F. ananassa hydrolyzable extract, showing a decrease from 224.75 to 119.98 µg/mL. The extracts also depicted a significant increase in antibacterial activity after hydrolysis against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus with Rubus idaeus aqueous extract observed to be most effective against E. coli. The increase in antioxidant and antibacterial activity can be attributed to the production of tannase-mediated products formed after the biotransformation of hydrolyzable tannins present in the aqueous extracts.


Assuntos
Taninos Hidrolisáveis , Taninos , Taninos/farmacologia , Taninos/metabolismo , Taninos Hidrolisáveis/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Frutas/metabolismo , Hidrolases/metabolismo , Escherichia coli/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fenóis/análise , Antibacterianos/farmacologia , Biotransformação
7.
Ecotoxicol Environ Saf ; 249: 114452, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321671

RESUMO

Microcystis aeruginosa is the competitively dominant algal species in eutrophic waters and poses a serious threat to the aquatic ecological environment. To investigate the effects of eucalyptus tannins (TFL) and black water in eucalyptus plantations on M. aeruginosa, this study exposed M. aeruginosa to different concentrations (0 (control), 20, 50, 80, 110, and 140 mg L-1) of tannic acid (TA; hydrolyzed tannins, HT; reagent tannin), epigallocatechin gallate (EGCG; condensed tannins, CT; reagent tannin), eucalyptus tannins (TFL, complex tannin) and mixed TFL + Fe3+ solution (tannin: Fe3+ molar ratio = 1:10). The cell density, chlorophyll-a (Chl-a) content, superoxide dismutase (SOD) activity, malondialdehyde (MDA) and soluble protein (SP) contents of algae under tannin stress were determined, and the algal cell density treated with under the combination of TFL and Fe3+ was determined. The results showed a reduction in the Chl-a content of algal cells, which inhibited photosynthesis; leading to membrane lipid peroxidation; and the complexation of soluble proteins resulting in blocked protein synthesis were the main mechanisms by which tannins inhibited the growth of M. aeruginosa. TFL achieved the same inhibition of algal cells as the tannin reagent at the same concentration. At 4 d, TFL at 80 mg L-1 and above could achieve more than 54.87 % algal density inhibition. The inhibition rate of 80 mg L-1 and above TFL + Fe3+ on algal density was more than 75 %, indicating that TFL + Fe3+ had a stronger inhibitory effect on algal density. The results may facilitate the resource utilization of eucalyptus harvesting residues, explorations of the potential application of eucalyptus tannins in the control of M. aeruginosa, and provide new ideas for ecological algal inhibition in eucalyptus plantations.


Assuntos
Eucalyptus , Microcystis , Polifenóis , Taninos/metabolismo , Clorofila A/metabolismo
8.
Ecotoxicol Environ Saf ; 266: 115557, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37820476

RESUMO

Pesticide stress on plants is receiving increased scrutiny due to its effect on plant secondary metabolism and nutritional quality. Tannic acid (TA) is a natural polyphenolic compound showing excellent antioxidant properties and is involved in alleviating stress. The present study thoroughly investigated the effects and mechanism of exogenous TA on relieving imidacloprid (IMI) stress in tea plants. Our research found that TA(10 mg/L) activated the antioxidant defense system, enhanced the antioxidant ability, reduced the accumulation of ROS and membrane peroxidation, and notably promoted tea plant tolerance to imidacloprid stress. Additionally, TA boosted photosynthetic capacity, strengthened the accumulation of nutrients. regulated detoxification metabolism, and accelerated the digestion and metabolism of imidacloprid in tea plants. Furthermore, TA induced significant changes in 90 important metabolites in tea, targeting 17 metabolic pathways through extensively targeted metabolomics. Specifically, TA activated the flavonoid biosynthetic pathway, resulting in a 1.3- to 3.1-fold increase in the levels of 17 compounds and a 1.5- to 63.8-fold increase in the transcript level of related genes, such as ANR, LAR and CHS in this pathway. As a potential tea health activator, TA alleviates the oxidative damage caused by imidacloprid and improves the yield and quality of tea under pesticide stress.


Assuntos
Camellia sinensis , Praguicidas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Árvores/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Vias Biossintéticas , Estresse Oxidativo , Camellia sinensis/genética , Taninos/farmacologia , Taninos/metabolismo , Chá , Praguicidas/metabolismo
9.
Genomics ; 114(2): 110267, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032617

RESUMO

Gossypol and tannin are involved in important chemical defense processes in cotton plants. In this study, we used transcriptomics and proteomics to explore the changes in salivary gland functional genes and oral secretion (OS) proteins after feeding with artificial diet (containing gossypols and tannins) and cotton plant leaves. We found that dietary cotton plant leaves, gossypols and tannins exerted adverse impacts on the genes that regulated the functions of peptidase, GTPase, glycosyl hydrolases in the salivary glands of the Helicoverpa armigera (H. armigera). However, GST, UGT, hydrolases, and lipase genes were up-regulated to participate in the detoxification and digestive of H. armigera. The oral secretory proteins of H. armigera were significantly inhibited under the stress of gossypol and tannin, such as enzyme activity, but some proteins (such as PZC71358.1) were up-regulated and involved in immune and digestive functions. The combined analysis of transcriptomics and metabolomics showed a weak correlation, and the genes and proteins involved were mainly in digestive enzyme activities. Our work clarifies the deleterious physiological impacts of gossypols and tannins on H. armigera and reveals the mechanism by which H. armigera effectively mitigate the phytotoxic effects through detoxification and immune systems.


Assuntos
Gossipol , Mariposas , Animais , Gossypium/genética , Gossypium/metabolismo , Gossipol/metabolismo , Gossipol/toxicidade , Hidrolases/genética , Hidrolases/metabolismo , Hidrolases/farmacologia , Proteínas de Insetos/genética , Larva/genética , Mariposas/genética , Mariposas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteômica , Glândulas Salivares/metabolismo , Taninos/metabolismo , Taninos/farmacologia , Transcriptoma
10.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768514

RESUMO

Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) is a notorious pest of poplar. Coevolution with poplars rich in plant secondary metabolites prompts M. troglodyta to expand effective detoxification mechanisms against toxic plant secondary metabolites. Although glutathione S-transferases (GSTs) play an important role in xenobiotic detoxification in M. troglodyta, it is unclear how GSTs act in response to toxic secondary metabolites in poplar. In this study, five GST gene core promoters were accurately identified by a 5' loss luciferase reporter assay, and the core promoters were significantly induced by two plant secondary metabolites in vitro. Two transcription factors, cap 'n' collar C (CncC) and aryl hydrocarbon receptor nuclear translocator (ARNT), were cloned in M. troglodyta. MtCncC and MtARNT clustered well with other insect CncCs and ARNTs, respectively. In addition, MtCncC and MtARNT could bind the MtGSTt1 promoter and strongly improve transcriptional activity, respectively. However, MtCncC and MtARNT had no regulatory function on the MtGSTz1 promoter. Our findings revealed the molecular mechanisms of the transcription factors MtCncC and MtARNT in regulating the GST genes of M. troglodyta. These results provide useful information for the control of M. troglodyta.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Lepidópteros , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Quercetina/farmacologia , Taninos/metabolismo , Transferases/metabolismo , Glutationa/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo
11.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677617

RESUMO

Agro-industrial residues represent more than 60% of organic wastes worldwide, which could be used to generate other by-products or to be incorporated into other production chains. For example, bagasse is a waste from the tequila industry in Mexico that could be implemented for mushroom cultivation. Additionally, the substrate influences the growth, development, and production of secondary metabolites of fungi. This work presents a comparative experiment that studies the metabolite production in Pleurotus djamor mushrooms on agave bagasse and barley straw (traditional substrate). The biological efficiency (BE), yield, phenolics and flavonoids, antioxidant capacity, tannins, and the identification of low molecular weight metabolites were evaluated. Five treatments were proposed according to the following mixtures of agave bagasse: barley straw: T1 (1:0), T2 (3:1), T3 (1:1), T4 (1:3), and T5 (0:1). T2 had the highest yield (13.39 ± 3.23%), BE (56.7 ± 13.71%), and flavonoids (44.25 mg rutin equivalent (RE)/g); T3 obtained the highest phenol content (230.27 mg GAE/g); and T1 the highest tannins content (0.23 mg (+) catechin equivalent (CE)/g). Finally, T1 and T5 are the ones that present the greatest number of primary metabolites, including hydroxycitric acid, 2-deoxy-D-galactose, D-mannose, paromomycin, palmitic acid, pyrrole, mannitol, and DL arabinose, while in T2, T3, and T4 only two chemical compounds were found present (palmitic acid and pyrrole in T2, silicic acid and pyrrole in T3 and 2-deoxy-D-galactose and quinoline in T4). The cultivation substrate influences the concentration of bioactive molecules in the fruiting bodies of P. djamor. Additionally, P. djamor's degradation of agave bagasse residue generates a potential application for agro-industrial residue management at a low cost.


Assuntos
Agave , Pleurotus , Agave/química , Ácido Palmítico/metabolismo , Pleurotus/metabolismo , Taninos/metabolismo
12.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446686

RESUMO

In this study, we investigated in vitro the potential of Trichoderma harzianum to produce bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with different polarities. The extracts were examined using phytochemical analysis to determine the content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS analysis identified 33 potential compounds with numerous benefits that could be used in agriculture and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the IC50 of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by 56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate and n-butanol.


Assuntos
Antifúngicos , Trichoderma , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , 1-Butanol , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo , Taninos/metabolismo , Extratos Vegetais/química , Trichoderma/metabolismo
13.
J Transl Med ; 20(1): 314, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836239

RESUMO

BACKGROUND: The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social. The ongoing pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious threat to public health and economic stability worldwide. Given the urgency of the situation, researchers are attempting to repurpose existing drugs for treating COVID-19. METHODS: We first established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus spike protein and its host receptor ACE2. Two compound libraries of 2,864 molecules were screened with this platform. Selected candidate compounds were validated by SARS-CoV-2_S pseudotyped lentivirus and ACE2-overexpressing cell system. Molecular docking was used to analyze the interaction between S protein and compounds. RESULTS: We identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S protein and the human cell ACE2 receptor. Additionally, tannic acid showed moderate inhibitory effect on the interaction of S protein and ACE2. CONCLUSION: This platform is a rapid, sensitive, specific, and high throughput system, and available for screening large compound libraries. TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Taninos/metabolismo
14.
Arch Microbiol ; 204(9): 584, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048277

RESUMO

A tannase-positive Bacillus gottheilii M2S2 and Bacillus cereus M1GT were co-cultivated for the production of gallic acid using tannic acid as the sole carbon source through submerged fermentation. Taguchi orthogonal array of design of experimental methodology was used to estimate the influence and significance of tannic acid concentration, glucose concentration, agitation speed, and inoculum size on the gallic acid production in a shake flask. Among all the factors, agitation speed contributed the highest for gallic acid production (28.28%), followed by glucose concentration (21.59%), inoculum size (19.6%), tannic acid concentration (19.54%), and pH (11.09%). Validation experiments were executed at the found optimized conditions which resulted in a 6.36-fold increase in gallic acid yield compared to unoptimized conditions. Further, the kinetics of growth, tannic acid degradation, and gallic acid yield were evaluated at the optimized conditions. The kinetic parameters Y x/s, Y p/s, and Y p/x were determined as 0.292 mg of cells/mg of tannic acid, 22.2 µg of gallic acid/mg of tannic acid, and 70.76 µg of gallic acid/mg of cells with a growth rate of 0.273 h -1 after 24 h of fermentation. Finally, the antimicrobial activity of the product gallic acid was investigated against food-borne pathogenic E. coli, S. aureus, and Serriatia marcescens and showed a zone of inhibition of 2 cm, 1.6 cm, and 1.3 cm, respectively, using the agar disc diffusion technique. Thus, the cost-effective bioproduct gallic acid proved to be potentially effective to control food poisoning diseases and preserve foodstuff.


Assuntos
Anti-Infecciosos , Ácido Gálico , Anti-Infecciosos/farmacologia , Técnicas de Cocultura , Escherichia coli/metabolismo , Fermentação , Ácido Gálico/metabolismo , Ácido Gálico/farmacologia , Glucose , Cinética , Staphylococcus aureus/metabolismo , Taninos/metabolismo , Taninos/farmacologia
15.
Mol Cell Biochem ; 477(12): 2863-2869, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35691981

RESUMO

Urothelial bladder cancer is rapidly spreading across Western countries, and therapy has shown little-to-moderate effects on bladder cancer. Thus, focusing on curbing cancer incidence has become crucial. The aim of the present study was to investigate the anticancer effects of Tannic acid (TA) in human bladder cancer. UMUC3 bladder cancer cells were treated with different concentrations of TA (0-100 µM) and tested for cell viability, colony formation, and apoptosis. The involvement of the phosphoinositide-3 kinase (PI3K)/Akt pathway in the action of TA was examined. TA treatment significantly inhibited the viability and increased percentage of apoptotic cells, thereby decreasing antiapoptotic proteins (BCL2, MCL-1, and BCL-XL) expression, resulting in the Caspase-3 activation. TA treatment decreased stem cell markers expression such as SOX2, OCT4, and NANOG. Additionally, TA treatment significantly reduced the phosphorylation levels of Akt in bladder cancer cells. Our study demonstrates the growth inhibitory effects of TA in bladder cancer cells, and highlights its potential as an anticancer agent for bladder cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Bexiga Urinária , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Taninos/farmacologia , Taninos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose
16.
J Appl Microbiol ; 132(2): 907-918, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34347910

RESUMO

AIMS: The potential of gallnut tannin (GT) and Lactobacillus plantarum (LP) on fermentation characteristics, in vitro ruminal methane (CH4 ) production and microbiota of alfalfa silage was investigated. METHODS AND RESULTS: Alfalfa was ensiled with GT (20 and 50 g kg-1 dry matter [DM]) and LP (3 × 108  CFU per gram fresh matter) alone or in combination for 60 days. The GT and LP alone or in combination decreased DM losses, pH and non-protein nitrogen contents of alfalfa silage. All additive treatments decreased ruminal CH4 production, and increased propionic acid molar proportions and Fibrobacter succinogenes numbers. The LP treatment increased nutrient degradation, cellobiase, pectinase and protease activities, and Prevotella ruminicola abundance, whereas high-dose GT treatment inhibited these variables. Importantly, LP together with GT alleviated the adverse effects of high-dose GT supply alone by enhancing pectinase and protease activities as well as Rumincoccus flavefaciens and P. ruminicola growth. CONCLUSIONS: Combination of GT and LP can be used as an efficient additive to improve silage quality and utilization by ruminants. SIGNIFICANCE AND IMPACT OF THE STUDY: Using GT-LP combination has practical implications, particularly concerning effects of tannins on ruminal CH4 mitigation, which may alleviate inhibitory effects of tannins on feed digestion through modulating ruminal microbiota.


Assuntos
Lactobacillus plantarum , Microbiota , Animais , Fermentação , Medicago sativa , Metano/metabolismo , Rúmen/metabolismo , Silagem/análise , Taninos/metabolismo
17.
Arch Toxicol ; 96(5): 1257-1277, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199243

RESUMO

Tannins are an interesting class of polyphenols, characterized, in almost all cases, by a different degree of polymerization, which, inevitably, markedly influences their bioavailability, as well as biochemical and pharmacological activities. They have been used for the process of tanning to transform hides into leather, from which their name derives. For several time, they have not been accurately evaluated, but now researchers have started to unravel their potential, highlighting anti-inflammatory, antimicrobial, antioxidant and anticancer activities, as well as their involvement in cardiovascular, neuroprotective and in general metabolic diseases prevention. The mechanisms underlying their activity are often complex, but the main targets of their action (such as key enzymes modulation, activation of metabolic pathways and changes in the metabolic fluxes) are highlighted in this review, without losing sight of their toxicity. This aspect still needs further and better-designed study to be thoroughly understood and allow a more conscious use of tannins for human health.


Assuntos
Polifenóis , Taninos , Anti-Inflamatórios , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Disponibilidade Biológica , Humanos , Taninos/química , Taninos/metabolismo , Taninos/farmacologia
18.
Biosci Biotechnol Biochem ; 86(5): 665-671, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35234829

RESUMO

Mango (Mangifera indica L.) kernels are usually discarded as waste, but they contain many pharmacological properties and bioactivities. In this study, we isolated antiobesity agents from mango kernels that inhibit intracellular lipid formation in 3T3-L1 adipocytes. Two phenolic acids, ethyl gallate and ethyl digallate, and 2 tannin acids, 1,2,3,4,6-penta-O-galloyl-ß-d-glucose (PGG) and 3-O-digalloyl-1,2,4,6-tetra-O-ß-d-glucose (HGG), were identified from mango kernels and were found to be suppressed lipid accumulation as evidenced by Oil Red O staining. Furthermore, ethyl digallate, PGG, and HGG significantly downregulated the mRNA expression of adipogenic transcription factors such as C/EBPα and PPARγ. However, ethyl gallate did not affect the expression of these transcription factors. Our findings reveal the presence of antiobesity compounds in mango kernels, implying its therapeutic role against obesity.


Assuntos
Mangifera , Células 3T3-L1 , Adipogenia , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Metabolismo dos Lipídeos , Lipídeos , Camundongos , PPAR gama/metabolismo , Extratos Vegetais/farmacologia , Taninos/metabolismo , Taninos/farmacologia
19.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142128

RESUMO

Actinidia eriantha is a unique germplasm resource for kiwifruit breeding. Genetic diversity and nutrient content need to be evaluated prior to breeding. In this study, we looked at the metabolites of three elite A. eriantha varieties (MM-11, MM-13 and MM-16) selected from natural individuals by using a UPLC-MS/MS-based metabolomics approach and transcriptome, with a total of 417 metabolites identified. The biosynthesis and metabolism of phenolic acid, flavonoids, sugars, organic acid and AsA in A. eriantha fruit were further analyzed. The phenolic compounds accounted for 32.37% of the total metabolites, including 48 phenolic acids, 60 flavonoids, 7 tannins and 20 lignans and coumarins. Correlation analysis of metabolites and transcripts showed PAL (DTZ79_15g06470), 4CL (DTZ79_26g05660 and DTZ79_29g0271), CAD (DTZ79_06g11810), COMT (DTZ79_14g02670) and FLS (DTZ79_23g14660) correlated with polyphenols. There are twenty-three metabolites belonging to sugars, the majority being sucrose, glucose arabinose and melibiose. The starch biosynthesis-related genes (AeglgC, AeglgA and AeGEB1) were expressed at lower levels compared with metabolism-related genes (AeamyA and AeamyB) in three mature fruits of three varieties, indicating that starch was converted to soluble sugar during fruit maturation, and the expression level of SUS (DTZ79_23g00730) and TPS (DTZ79_18g05470) was correlated with trehalose 6-phosphate. The main organic acids in A. eriantha fruit are citric acid, quinic acid, succinic acid and D-xylonic acid. Correlation analysis of metabolites and transcripts showed ACO (DTZ79_17g07470) was highly correlated with citric acid, CS (DTZ79_17g00890) with oxaloacetic acid, and MDH1 (DTZ79_23g14440) with malic acid. Based on the gene expression, the metabolism of AsA acid was primarily through the L-galactose pathway, and the expression level of GMP (DTZ79_24g08440) and MDHAR (DTZ79_27g01630) highly correlated with L-Ascorbic acid. Our study provides additional evidence for the correlation between the genes and metabolites involved in phenolic acid, flavonoids, sugars, organic acid and AsA synthesis and will help to accelerate the kiwifruit molecular breeding approaches.


Assuntos
Actinidia , Lignanas , Actinidia/genética , Actinidia/metabolismo , Arabinose , Ácido Ascórbico/metabolismo , Cromatografia Líquida , Ácido Cítrico/metabolismo , Cumarínicos/metabolismo , Frutas/genética , Frutas/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Humanos , Hidroxibenzoatos , Lignanas/metabolismo , Melibiose/metabolismo , Metabolômica , Oxaloacetatos/metabolismo , Fosfatos/metabolismo , Melhoramento Vegetal , Polifenóis/metabolismo , Ácido Quínico/metabolismo , Amido/metabolismo , Succinatos/metabolismo , Sacarose/metabolismo , Espectrometria de Massas em Tandem , Taninos/metabolismo , Transcriptoma , Trealose/metabolismo
20.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142802

RESUMO

The western flower thrips, Frankliniella occidentalis Pergande, is an invasive pest that damages agricultural and horticultural crops. The induction of plant defenses and RNA interference (RNAi) technology are potent pest control strategies. This study investigated whether the anti-adaptive ability of F. occidentalis to jasmonic acid (JA)- and methyl jasmonate (MeJA)-induced defenses in kidney bean plants was attenuated after glutathione S-transferase (GST) gene knockdown. The expression of four GSTs in thrips fed JA- and MeJA-induced leaves was analyzed, and FoGSTd1 and FoGSTs1 were upregulated. Exogenous JA- and MeJA-induced defenses led to increases in defensive secondary metabolites (tannins, alkaloids, total phenols, flavonoids, and lignin) in leaves. Metabolome analysis indicated that the JA-induced treatment of leaves led to significant upregulation of defensive metabolites. The activity of GSTs increased in second-instar thrips larvae fed JA- and MeJA-induced leaves. Co-silencing with RNAi simultaneously knocked down FoGSTd1 and FoGSTs1 transcripts and GST activity, and the area damaged by second-instar larvae feeding on JA- and MeJA-induced leaves decreased by 62.22% and 55.24%, respectively. The pupation rate of second-instar larvae also decreased by 39.68% and 39.89%, respectively. Thus, RNAi downregulation of FoGSTd1 and FoGSTs1 reduced the anti-adaptive ability of F. occidentalis to JA- or MeJA-induced defenses in kidney bean plants.


Assuntos
Phaseolus , Tisanópteros , Acetatos , Animais , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Flavonoides/metabolismo , Flores/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Lignina/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Phaseolus/metabolismo , Fenóis/metabolismo , Interferência de RNA , Taninos/metabolismo , Tisanópteros/genética , Tisanópteros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA