Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(3): 563-577.e20, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32615086

RESUMO

Adipose tissues dynamically remodel their cellular composition in response to external cues by stimulating beige adipocyte biogenesis; however, the developmental origin and pathways regulating this process remain insufficiently understood owing to adipose tissue heterogeneity. Here, we employed single-cell RNA-seq and identified a unique subset of adipocyte progenitor cells (APCs) that possessed the cell-intrinsic plasticity to give rise to beige fat. This beige APC population is proliferative and marked by cell-surface proteins, including PDGFRα, Sca1, and CD81. Notably, CD81 is not only a beige APC marker but also required for de novo beige fat biogenesis following cold exposure. CD81 forms a complex with αV/ß1 and αV/ß5 integrins and mediates the activation of integrin-FAK signaling in response to irisin. Importantly, CD81 loss causes diet-induced obesity, insulin resistance, and adipose tissue inflammation. These results suggest that CD81 functions as a key sensor of external inputs and controls beige APC proliferation and whole-body energy homeostasis.


Assuntos
Adipogenia/genética , Tecido Adiposo Bege/metabolismo , Metabolismo Energético/genética , Quinase 1 de Adesão Focal/metabolismo , Transdução de Sinais/genética , Células-Tronco/metabolismo , Tetraspanina 28/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Bege/citologia , Tecido Adiposo Bege/crescimento & desenvolvimento , Tecido Adiposo Branco/metabolismo , Adulto , Animais , Ataxina-1/metabolismo , Feminino , Fibronectinas/farmacologia , Quinase 1 de Adesão Focal/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Integrinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Célula Única , Células-Tronco/citologia , Tetraspanina 28/genética
2.
J Biol Chem ; 300(9): 107685, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39159818

RESUMO

Tetraspanins, including CD53 and CD81, are four-transmembrane proteins that affect the membrane organization to regulate cellular processes including migration, proliferation, and signaling. However, it is unclear how the organizing function of tetraspanins is regulated at the molecular level. Here, we investigated whether recently proposed "open" and "closed" conformations of tetraspanins regulate the nanoscale organization of the plasma membrane of B cells. We generated conformational mutants of CD53 (F44E) and CD81 (4A, E219Q) that represent the "closed" and "open" conformation, respectively. Surface expression of these CD53 and CD81 mutants was comparable to that of WT protein. Localization of mutant tetraspanins into nanodomains was visualized by super-resolution direct stochastic optical reconstruction microscopy. Whereas the size of these nanodomains was unaffected by conformation, the clustered fraction of "closed" CD53 was higher and of "open" CD81 lower than respective WT protein. In addition, KO cells lacking CD53 showed an increased likelihood of clustering of its partner CD45. Interestingly, "closed" CD53 interacted more with CD45 than WT CD53. Absence of CD81 lowered the cluster size of its partner CD19 and "closed" CD81 interacted less with CD19 than WT CD81, but "open" CD81 did not affect CD19 interaction. However, none of the tetraspanin conformations made significant impact on the nanoscale organization of their partners CD19 or CD45. Taken together, conformational mutations of CD53 and CD81 differentially affect their nanoscale organization, but not the organization of their partner proteins. This study improves the molecular insight into cell surface nanoscale organization by tetraspanins.


Assuntos
Tetraspanina 28 , Tetraspanina 28/metabolismo , Tetraspanina 28/química , Tetraspanina 28/genética , Humanos , Antígenos Comuns de Leucócito/metabolismo , Antígenos Comuns de Leucócito/química , Membrana Celular/metabolismo , Conformação Proteica , Tetraspanina 25/metabolismo , Tetraspanina 25/química , Ligação Proteica , Mutação
3.
PLoS Pathog ; 19(11): e1011759, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37967063

RESUMO

Hepatitis C virus (HCV) exploits the four entry factors CD81, scavenger receptor class B type I (SR-BI, also known as SCARB1), occludin, and claudin-1 as well as the co-factor epidermal growth factor receptor (EGFR) to infect human hepatocytes. Here, we report that the disintegrin and matrix metalloproteinase 10 (ADAM10) associates with CD81, SR-BI, and EGFR and acts as HCV host factor. Pharmacological inhibition, siRNA-mediated silencing and genetic ablation of ADAM10 reduced HCV infection. ADAM10 was dispensable for HCV replication but supported HCV entry and cell-to-cell spread. Substrates of the ADAM10 sheddase including epidermal growth factor (EGF) and E-cadherin, which activate EGFR family members, rescued HCV infection of ADAM10 knockout cells. ADAM10 did not influence infection with other enveloped RNA viruses such as alphaviruses and a common cold coronavirus. Collectively, our study reveals a critical role for the sheddase ADAM10 as a HCV host factor, contributing to EGFR family member transactivation and as a consequence to HCV uptake.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/fisiologia , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo , Internalização do Vírus , Proteínas de Transporte , Receptores ErbB/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo
4.
EMBO J ; 39(18): e105246, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32974937

RESUMO

Tetraspanins, including CD53 and CD81, regulate a multitude of cellular processes through organizing an interaction network on cell membranes. Here, we report the crystal structure of CD53 in an open conformation poised for partner interaction. The large extracellular domain (EC2) of CD53 protrudes away from the membrane surface and exposes a variable region, which is identified by hydrogen-deuterium exchange as the common interface for CD53 and CD81 to bind partners. The EC2 orientation in CD53 is supported by an extracellular loop (EC1). At the closed conformation of CD81, however, EC2 disengages from EC1 and rotates toward the membrane, thereby preventing partner interaction. Structural simulation shows that EC1-EC2 interaction also supports the open conformation of CD81. Disrupting this interaction in CD81 impairs the accurate glycosylation of its CD19 partner, the target for leukemia immunotherapies. Moreover, EC1 mutations in CD53 prevent the chemotaxis of pre-B cells toward a chemokine that supports B-cell trafficking and homing within the bone marrow, a major CD53 function identified here. Overall, an open conformation is required for tetraspanin-partner interactions to support myriad cellular processes.


Assuntos
Movimento Celular , Células Precursoras de Linfócitos B/metabolismo , Tetraspanina 25 , Tetraspanina 28 , Animais , Antígenos CD19/química , Antígenos CD19/genética , Antígenos CD19/metabolismo , Humanos , Camundongos , Camundongos Knockout , Domínios Proteicos , Tetraspanina 25/química , Tetraspanina 25/genética , Tetraspanina 25/metabolismo , Tetraspanina 28/química , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
5.
Biochem Biophys Res Commun ; 734: 150631, 2024 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-39222576

RESUMO

We probed the mechanism by which the Parkinson's disease-associated protein α-synuclein (α-syn)/SNCA promotes the pathogenesis and progression of melanoma. We found that the human melanoma cell line SK-MEL-28 in which SNCA is knocked out (SNCA-KO) has low levels of tetraspanin CD81, which is a cell-surface protein that promotes invasion, migration, and immune suppression. Analyzing data from the Cancer Genome Atlas, we show that SNCA and CD81 mRNA levels are positively correlated in melanoma; melanoma survival is inversely related to the levels of SNCA and CD81; and SNCA/CD81 are inversely related to the expression of key cytokine genes (IL12A, IL12B, IFN, IFNG, PRF1 and GZMB) for immune activation and immune cell-mediated killing of melanoma cells. We propose that high levels of α-syn and CD81 in melanoma and in immune cells drive invasion and migration and in parallel cause an immunosuppressive microenvironment; these contributing factors lead to aggressive melanomas.


Assuntos
Melanoma , Tetraspanina 28 , alfa-Sinucleína , Humanos , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Tetraspanina 28/metabolismo , Tetraspanina 28/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Citocinas/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética
6.
J Biomed Sci ; 31(1): 92, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39402557

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are cell-secreted particles conceived as natural vehicles for intercellular communication. The capacity to entrap heterogeneous molecular cargoes and target specific cell populations through EV functionalization promises advancements in biomedical applications. However, the efficiency of the obtained EVs, the contribution of cell-exposed receptors to EV interactions, and the predictability of functional cargo release with potential sharing of high molecular weight recombinant mRNAs are crucial for advancing heterologous EVs in targeted therapy applications. METHODS: In this work, we selected the popular EV marker CD81 as a transmembrane guide for fusion proteins with a C-terminal GFP reporter encompassing or not Trastuzumab light chains targeting the HER2 receptor. We performed high-content imaging analyses to track EV-cell interactions, including isogenic breast cancer cells with manipulated HER2 expression. We validated the functional cargo delivery of recombinant EVs carrying doxorubicin upon EV-donor cell treatment. Then, we performed an in vivo study using JIMT-1 cells commonly used as HER2-refractory, trastuzumab-resistant model to detect a more than 2000 nt length recombinant mRNA in engrafted tumors. RESULTS: Fusion proteins participated in vesicular trafficking dynamics and accumulated on secreted EVs according to their expression levels in HEK293T cells. Despite the presence of GFP, secreted EV populations retained a HER2 receptor-binding capacity and were used to track EV-cell interactions. In time-frames where the global EV distribution did not change between HER2-positive (SK-BR-3) or -negative (MDA-MB-231) breast cancer cell lines, the HER2 exposure in isogenic cells remarkably affected the tropism of heterologous EVs, demonstrating the specificity of antiHER2 EVs representing about 20% of secreted bulk vesicles. The specific interaction strongly correlated with improved cell-killing activity of doxorubicin-EVs in MDA-MB-231 ectopically expressing HER2 and reduced toxicity in SK-BR-3 with a knocked-out HER2 receptor, overcoming the effects of the free drug. Interestingly, the fusion protein-corresponding transcripts present as full-length mRNAs in recombinant EVs could reach orthotopic breast tumors in JIMT-1-xenografted mice, improving our sensitivity in detecting penetrant cargoes in tissue biopsies. CONCLUSIONS: This study highlights the quantitative aspects underlying the creation of a platform for secreted heterologous EVs and shows the limits of single receptor-ligand interactions behind EV-cell engagement mechanisms, which now become the pivotal step to predict functional tropism and design new generations of EV-based nanovehicles.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Tetraspanina 28 , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Tetraspanina 28/metabolismo , Tetraspanina 28/genética , Camundongos , Animais , Células HEK293 , Doxorrubicina/farmacologia , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética
7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161287

RESUMO

Poly(rC)-binding protein (PCBP1) is a multifunctional adaptor protein that can coordinate single-stranded nucleic acids and iron-glutathione complexes, altering the processing and transfer of these ligands through interactions with other proteins. Multiple phenotypes are ascribed to cells lacking PCBP1, but the relative contribution of RNA, DNA, or iron chaperone activity is not consistently clear. Here, we report the identification of amino acid residues required for iron coordination on each structural domain of PCBP1 and confirm the requirement of iron coordination for binding target proteins BolA2 and ferritin. We further construct PCBP1 variants that lack either nucleic acid- or iron-binding activity and examine their functions in human cells and mouse tissues depleted of endogenous PCBP1. We find that these activities are separable and independently confer essential functions. While iron chaperone activity controls cell cycle progression and suppression of DNA damage, RNA/DNA-binding activity maintains cell viability in both cultured cell and mouse models. The coevolution of RNA/DNA binding and iron chaperone activities on a single protein may prove advantageous for nucleic acid processing that depends on enzymes with iron cofactors.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Ferro/metabolismo , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Ciclo Celular , Morte Celular , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Ferritinas/metabolismo , Glutationa/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Oligonucleotídeos/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431677

RESUMO

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development. However, the E1E2 transmembrane domains that are critical for native assembly make it challenging to produce this complex in a homogenous soluble form that is reflective of its state on the viral envelope. To enable rational design of an E1E2 vaccine, as well as structural characterization efforts, we have designed a soluble, secreted form of E1E2 (sE1E2). As with soluble glycoprotein designs for other viruses, it incorporates a scaffold to enforce assembly in the absence of the transmembrane domains, along with a furin cleavage site to permit native-like heterodimerization. This sE1E2 was found to assemble into a form closer to its expected size than full-length E1E2. Preservation of native structural elements was confirmed by high-affinity binding to a panel of conformationally specific monoclonal antibodies, including two neutralizing antibodies specific to native E1E2 and to its primary receptor, CD81. Finally, sE1E2 was found to elicit robust neutralizing antibodies in vivo. This designed sE1E2 can both provide insights into the determinants of native E1E2 assembly and serve as a platform for production of E1E2 for future structural and vaccine studies, enabling rational optimization of an E1E2-based antigen.


Assuntos
Hepacivirus/efeitos dos fármacos , Anticorpos Anti-Hepatite C/biossíntese , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Mapeamento de Epitopos , Epitopos/química , Epitopos/imunologia , Feminino , Expressão Gênica , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/patologia , Hepatite C/virologia , Humanos , Imunogenicidade da Vacina , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Multimerização Proteica , Receptores Virais/genética , Receptores Virais/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Solubilidade , Tetraspanina 28/genética , Tetraspanina 28/imunologia , Vacinação , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Vacinas contra Hepatite Viral/administração & dosagem , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/genética
9.
Mol Divers ; 27(3): 1309-1322, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35821161

RESUMO

Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Simulação de Acoplamento Molecular , Hepatite C/tratamento farmacológico , Hepatite C/genética , Hepatite C/metabolismo , Hepatócitos/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 28/farmacologia
10.
Cell Biochem Funct ; 41(8): 1503-1513, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014564

RESUMO

The role of tetraspanin CD81 in malignant transformation is best studied in colorectal cancer, and it appears that other transcripts beside the fully coding mRNA may also be dysregulated in malignant cells. Recent data from a comprehensive pan-cancer transcriptome analysis demonstrated differential activity of two alternative CD81 gene promoters in malignant versus nonmalignant gut mucosa. The promoter active in gut mucosa gives rise to transcripts CD81-203 and CD81-213, while the promoter active in colon and rectal cancer gives rise to transcripts CD81-205 and CD81-215. Our study aimed to explore the biomarker potential of the transcripts from the alternative CD81 gene promoters in colon cancer, as well as to investigate their structure and potential function using in silico tools. The analysis of the transcripts' expression in several colon cell lines cultivated in 2D and 3D and a set of colon cancer and healthy gut mucosa samples by qPCR and RNA sequencing suggested their low expression and stromal origin. Expression patterns in tumor and nontumor tissue along with in silico data suppose that the transcript CD81-215 may be a noncoding RNA of stromal origin with possible involvement in signaling related to malignant transformation.


Assuntos
Neoplasias do Colo , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Perfilação da Expressão Gênica , Transdução de Sinais , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
11.
J Clin Immunol ; 42(8): 1672-1684, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35849269

RESUMO

PURPOSE: CD81 deficiency is an extremely rare primary immunodeficiency disease characterized by severe and recurrent infections, IgA-related nephropathy, and profound hypogammaglobulinemia. Only one patient has been reported so far, and the pathogenesis remains unclear. Here, we identified a new case of CD81 deficiency and described its pathogenesis. METHODS: We analyzed the clinical, genetic, and immunological features of the patient with CD81 deficiency, and explored the pathogenesis of her antibody deficiencies. RESULTS: The major manifestation of this patient was unexpectedly not recurrent infections but IgA nephropathy with aberrant serum galactose-deficient IgA1. Whole-exome sequencing revealed novel biallelic mutations in CD81 gene that abolished the surface expression of CD81. B cells from the patient lack membrane CD19 and showed reduced switched memory B cells and transitional B cells. Decreased expression of key molecules pY and pBTK in BCR signaling were demonstrated by confocal microscopy. RNA sequencing revealed that genes associated with BCR signaling and immunoglobulins were downregulated in CD81-deficient B cells. In addition, the patient showed increased frequency of T follicular helper cells that biased to Th1-like subsets. CONCLUSION: We reported the second patient with CD81 deficiency in the world and illustrated aberrant BCR signaling in the patient, therefore helping to unravel the mechanism of antibody deficiency in CD81-deficient patients.


Assuntos
Glomerulonefrite por IGA , Tetraspanina 28 , Feminino , Humanos , Antígenos CD19/metabolismo , Linfócitos B , China , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/metabolismo , Imunoglobulina A/genética , Mutação , Tetraspanina 28/genética
12.
Immunity ; 38(3): 461-74, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23499492

RESUMO

A key role is emerging for the cytoskeleton in coordinating receptor signaling, although the underlying molecular requirements remain unclear. Here we show that cytoskeleton disruption triggered signaling requiring not only the B cell receptor (BCR), but also the coreceptor CD19 and tetraspanin CD81, thus providing a mechanism for signal amplification upon surface-bound antigen stimulation. By using superresolution microscopy, we demonstrated that endogenous IgM, IgD, and CD19 exhibited distinct nanoscale organization within the plasma membrane of primary B cells. Upon stimulation, we detect a local convergence of receptors, although their global organization was not dramatically altered. Thus, we postulate that cytoskeleton reorganization releases BCR nanoclusters, which can interact with CD19 held in place by the tetraspanin network. These results not only suggest that receptor compartmentalization regulates antigen-induced activation but also imply a potential role for CD19 in mediating ligand-independent "tonic" BCR signaling necessary for B cell survival.


Assuntos
Actinas/imunologia , Antígenos CD19/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Tetraspanina 28/imunologia , Actinas/metabolismo , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Citoesqueleto/imunologia , Citoesqueleto/metabolismo , Citometria de Fluxo , Immunoblotting , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Modelos Imunológicos , Nanoestruturas , Ligação Proteica/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
13.
J Gen Virol ; 102(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147126

RESUMO

Great strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping. The mechanisms governing whether any particular clone produces infectious pseudoparticles are poorly understood. Here we show that endogenous expression of CD81, an HCV receptor and a cognate-binding partner of E2, in producer HEK 293T cells is detrimental to the infectivity of recovered HCVpp for most strains. Many HCVpp clones exhibited increased infectivity or had their infectivity rescued when they were produced in 293T cells CRISPR/Cas9 engineered to ablate CD81 expression (293TCD81KO). Clones made in 293TCD81KO cells were antigenically very similar to their matched counterparts made parental cells and appear to honour the accepted HCV entry pathway. Deletion of CD81 did not appreciably increase the recovered titres of soluble E2 (sE2). However, we did, unexpectedly, find that monomeric sE2 made in 293T cells and Freestyle 293-F (293-F) cells exhibit important differences. We found that 293-F-produced sE2 harbours mostly complex-type glycans whilst 293T-produced sE2 displays a heterogeneous mixture of both complex-type glycans and high-mannose or hybrid-type glycans. Moreover, sE2 produced in 293T cells is antigenically superior; exhibiting increased binding to conformational antibodies and the large extracellular loop of CD81. In summary, this work describes an optimal cell line for the production of HCVpp and reveals that sE2 made in 293T and 293-F cells are not antigenic equals. Our findings have implications for functional studies of E1E2 and the production of candidate immunogens.


Assuntos
Hepacivirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Afinidade de Anticorpos , Técnicas de Silenciamento de Genes , Células HEK293 , Hepacivirus/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Antígenos da Hepatite C/metabolismo , Humanos , Manose/química , Polissacarídeos/química , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia
14.
Mol Cell Proteomics ; 18(9): 1756-1771, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221721

RESUMO

Epithelial-mesenchymal transition (EMT) is driven by complex signaling events that induce dramatic biochemical and morphological changes whereby epithelial cells are converted into cancer cells. However, the underlying molecular mechanisms remain elusive. Here, we used mass spectrometry based quantitative proteomics approach to systematically analyze the post-translational biochemical changes that drive differentiation of human mammary epithelial (HMLE) cells into mesenchymal. We identified 314 proteins out of more than 6,000 unique proteins and 871 phosphopeptides out of more than 7,000 unique phosphopeptides as differentially regulated. We found that phosphoproteome is more unstable and prone to changes during EMT compared with the proteome and multiple alterations at proteome level are not thoroughly represented by transcriptional data highlighting the necessity of proteome level analysis. We discovered cell state specific signaling pathways, such as Hippo, sphingolipid signaling, and unfolded protein response (UPR) by modeling the networks of regulated proteins and potential kinase-substrate groups. We identified two novel factors for EMT whose expression increased on EMT induction: DnaJ heat shock protein family (Hsp40) member B4 (DNAJB4) and cluster of differentiation 81 (CD81). Suppression of DNAJB4 or CD81 in mesenchymal breast cancer cells resulted in decreased cell migration in vitro and led to reduced primary tumor growth, extravasation, and lung metastasis in vivo Overall, we performed the global proteomic and phosphoproteomic analyses of EMT, identified and validated new mRNA and/or protein level modulators of EMT. This work also provides a unique platform and resource for future studies focusing on metastasis and drug resistance.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Choque Térmico HSP40/metabolismo , Fosfoproteínas/metabolismo , Tetraspanina 28/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/genética , Feminino , Proteínas de Choque Térmico HSP40/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Mamárias Experimentais/patologia , Camundongos Nus , Reprodutibilidade dos Testes , Tetraspanina 28/genética
15.
Acta Virol ; 65(3): 279-287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34565156

RESUMO

The current limited understanding of HCV entry mechanisms hinders the development of specific antiviral drug screening techniques and vaccine assessment. HCV subtypes and cellular surface proteins both can affect virus tropism. Human factors such as low-density lipoprotein receptor (hLDLR), CD81 (hCD81), scavenger receptor class B type I (hSR-BI), claudin 1 (hCLDN1), and occludin (hOCLN) assist HCV entry into hepatocytes. Here, we studied the importance of five human proteins in the process of cell culture-derived (HCVcc) and serum-derived (HCV-sd) HCV entry using constructed humanized mouse hepatocytes and mouse models. We determined that unlike hLDLR, hSR-BI was an indispensable factor for 1b genotype HCV adsorption. Furthermore, this attachment can be completely prevented by treatment with a monoclonal antibody targeting hSR-BI. Our data support the idea that SR-BI is an essential factor in HCV infection, particularly during the initial HCV particle-binding step. This novel finding will facilitate the development of antiviral drugs and vaccines. Keywords: hepatitis C virus; virus internalization; model construction; hSR-BI.


Assuntos
Hepacivirus , Hepatite C , Animais , Genótipo , Hepacivirus/genética , Hepatite C/genética , Lipoproteínas LDL , Camundongos , Receptores Depuradores Classe B/genética , Tetraspanina 28/genética , Internalização do Vírus
16.
Med Microbiol Immunol ; 209(4): 499-514, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32322956

RESUMO

An estimated number of 71 million people are living with chronic hepatitis C virus (HCV) infection worldwide and 400,000 annual deaths are related to the infection. HCV entry into the hepatocytes is complex and involves several host factors. The tetraspanin human CD81 (hCD81) is one of the four essential entry factors and is composed of one large extracellular loop, one small extracellular loop, four transmembrane domains, one intracellular loop and two intracellular tails. The large extracellular loop interacts with the E2 glycoprotein of HCV. Regions outside the large extracellular loop (backbone) of hCD81 have a critical role in post-binding entry steps and determine susceptibility of hepatocytes to HCV. Here, we investigated the effect of five non-synonymous single-nucleotide variants in the backbone of hCD81 on HCV susceptibility. We generated cell lines that stably express the hCD81 variants and infected the cells using HCV pseudoparticles and cell culture-derived HCV. Our results show that all the tested hCD81 variants support HCV pseudoparticle entry with similar efficiency as wild-type hCD81. In contrast, variants A54V, V211M and M220I are less supportive to cell culture-derived HCV infection. This altered susceptibility is HCV genotype dependent and specifically affected the cell entry step. Our findings identify three hCD81 genetic variants that are impaired in their function as HCV host factors for specific viral genotypes. This study provides additional evidence that genetic host variation contributes to inter-individual differences in HCV infection and outcome.


Assuntos
Hepatite C Crônica/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral/virologia , Células HEK293/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Mutação Puntual , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
17.
Med Microbiol Immunol ; 209(4): 489-498, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32500359

RESUMO

Different members of the tetraspanin superfamily have been described to regulate different virus infectious cycles at several stages: viral entry, viral replication or virion exit or infectivity. In addition, tetraspanin CD81 regulates HIV reverse transcription through its association with the dNTP hydrolase SAMHD1. Here we aimed at analysing the role of CD81 in Herpes simplex virus 1 infectivity using a neuroblastoma cell model. For this purpose, we generated a CD81 KO cell line using the CRISPR/Cas9 technology. Despite being CD81 a plasma membrane protein, CD81 KO cells showed no defects in viral entry nor in the expression of early protein markers. In contrast, glycoprotein B and C, which require viral DNA replication for their expression, were significantly reduced in CD81 KO infected cells. Indeed, HSV-1 DNA replication and the formation of new infectious particles were severely compromised in CD81 KO cells. We could not detect significant changes in SAMHD1 total expression levels, but a relocalization into endosomal structures was observed in CD81 KO cells. In summary, CD81 KO cells showed impaired viral DNA replication and produced greatly diminished viral titers.


Assuntos
Infecções por Herpesviridae/virologia , Herpesvirus Humano 1/fisiologia , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Herpesvirus Humano 1/patogenicidade , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo , Internalização do Vírus , Replicação Viral
18.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33023058

RESUMO

Similar to growth-limited human primary cultures of mesenchymal stroma/stem-like cells (MSC), the continuously proliferating human MSC544 cell line produced extracellular vesicles as characterized by expression of the tetraspanin molecules CD9, CD63, and CD81. Release of these particles was predominantly detectable during continuous cell growth of MSC544 in contrast to confluency-mediated transient growth arrest. For therapeutic use, these particles were isolated from proliferating MSC544 after taxol treatment and applied to different cancer cell cultures. A pronounced cytotoxicity of lung, ovarian, and breast cancer cells was observed primarily with taxol-loaded exosomes, similar to the effects displayed by application of taxol substance. While these findings suggested pronounced cancer cell targeting of MSC544 exosomes, a tumor therapeutic approach was performed using a mouse in vivo breast cancer model. Thus, intravenous injection of taxol-loaded MSC544 exosomes displayed superior tumor-reducing capabilities as compared to application of taxol exosomes by oral gavage. To broaden this therapeutic spectrum, epirubicin was applied to MSC544, and the derived exosomes likewise exhibited significant cytotoxic effects in different cancer cell cultures. These findings suggest an unlimited source for large-scale exosome production with reproducible quality to enable variable drug targeting of tumors or other diseases.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Exossomos/genética , Vesículas Extracelulares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Exossomos/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Xenoenxertos , Humanos , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Tetraspanina 28/genética , Tetraspanina 29/genética , Tetraspanina 30/genética , Tetraspaninas/genética
19.
J Cell Physiol ; 234(10): 17677-17689, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30807658

RESUMO

The fusion of sperm and oocytes determines the fertilization competence and subsequent development of embryos, which, in turn, can be affected by various proteins and DNA methylation. However, several factors in this whole regulation process remain unknown, especially in yaks. Here, we report that fibroblast growth factor 10 (FGF10) is an important growth factor that can enhance the maturation rate of yak oocytes and the motility of frozen spermatozoa. Subsequent blastocyst quality was also improved by increasing the total cell number and level of pregnancy-associated protein in blastocysts. These effects were significantly high in the group that received the 5 ng/ml FGF10 treatment, during both in vitro maturation (IVM) and capacitation. Our data show that the effects of FGF10 were dose-dependent at vital steps of embryogenesis in vitro. Furthermore, quantitative polymerase chain reaction, western blot analysis, and immunofluorescence demonstrated that the levels of CD9, CD81, DNMT1, and DNMT3B in both mature cumulus-oocyte complexes and capacitated sperms were regulated by FGF10, which was also highly expressed in the group treated with 5 ng/ml FGF10 during both IVM and capacitation. From our present study, we concluded that FGF10 promotes yak oocyte fertilization competence and subsequent blastocyst quality, and could also regulate CD9, CD81, DNMT1, and DNMT3B to optimize sperm-oocyte interactions and DNA methylation during fertilization.


Assuntos
Bovinos/fisiologia , Fator 10 de Crescimento de Fibroblastos/fisiologia , Oócitos/fisiologia , Animais , Blastocisto/efeitos dos fármacos , Blastocisto/fisiologia , Bovinos/embriologia , Bovinos/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilização/efeitos dos fármacos , Fertilização/genética , Fertilização/fisiologia , Fertilização in vitro/veterinária , Fator 10 de Crescimento de Fibroblastos/administração & dosagem , Técnicas de Maturação in Vitro de Oócitos/veterinária , Masculino , Oócitos/efeitos dos fármacos , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Tetraspanina 29/genética , Tetraspanina 29/metabolismo , DNA Metiltransferase 3B
20.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29321304

RESUMO

Hepatitis C virus (HCV) is the leading cause of chronic hepatitis in humans. Several host molecules participate in HCV cell entry, but this process remains unclear. The complete unraveling of the HCV entry process is important to further understand viral pathogenesis and develop therapeutics. Human hepatitis A virus (HAV) cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, functions as a phospholipid receptor involved in cell entry of several enveloped viruses. Here, we studied the role of HAVCR1 in HCV infection. HAVCR1 antibody inhibited entry in a dose-dependent manner. HAVCR1 soluble constructs neutralized HCV, which did not require the HAVCR1 mucinlike region and was abrogated by a mutation of N to A at position 94 (N94A) in the Ig variable (IgV) domain phospholipid-binding pocket, indicating a direct interaction of the HAVCR1 IgV domain with HCV virions. However, knockout of HAVCR1 in Huh7 cells reduced but did not prevent HCV growth. Interestingly, the mouse HAVCR1 ortholog, also a phospholipid receptor, did not enhance infection and a soluble form failed to neutralize HCV, although replacement of the mouse IgV domain with the human HAVCR1 IgV domain restored the enhancement of HCV infection. Mutations in the cytoplasmic tail revealed that direct HAVCR1 signaling is not required to enhance HCV infection. Our data show that the phospholipid-binding function and other determinant(s) in the IgV domain of human HAVCR1 enhance HCV infection. Although the exact mechanism is not known, it is possible that HAVCR1 facilitates entry by stabilizing or enhancing attachment, leading to direct interactions with specific receptors, such as CD81.IMPORTANCE Hepatitis C virus (HCV) enters cells through a multifaceted process. We identified the human hepatitis A virus cellular receptor 1 (HAVCR1), CD365, also known as TIM-1, as a facilitator of HCV entry. Antibody blocking and silencing or knockout of HAVCR1 in hepatoma cells reduced HCV entry. Our findings that the interaction of HAVCR1 with HCV early during infection enhances entry but is not required for infection support the hypothesis that HAVCR1 facilitates entry by stabilizing or enhancing virus binding to the cell surface membrane and allowing the correct virus-receptor positioning for interaction with the main HCV receptors. Furthermore, our data show that in addition to the phospholipid-binding function of HAVCR1, the enhancement of HCV infection involves other determinants in the IgV domain of HAVCR1. These findings expand the repertoire of molecules that HCV uses for cell entry, adding to the already complex mechanism of HCV infection and pathogenesis.


Assuntos
Hepacivirus/metabolismo , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Hepatite C/metabolismo , Mutação de Sentido Incorreto , Transdução de Sinais , Internalização do Vírus , Substituição de Aminoácidos , Linhagem Celular , Hepacivirus/genética , Receptor Celular 1 do Vírus da Hepatite A/genética , Hepatite C/genética , Hepatite C/patologia , Humanos , Domínios Proteicos , Tetraspanina 28/genética , Tetraspanina 28/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA