Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 498
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362080

RESUMO

1,4-Napththoquinones (NQs) are clinically relevant therapeutics that affect cell function through production of reactive oxygen species (ROS) and formation of adducts with regulatory protein thiols. Reactive sulfur species (RSS) are chemically and biologically similar to ROS and here we examine RSS production by NQ oxidation of hydrogen sulfide (H2S) using RSS-specific fluorophores, liquid chromatography-mass spectrometry, UV-Vis absorption spectrometry, oxygen-sensitive optodes, thiosulfate-specific nanoparticles, HPLC-monobromobimane derivatization, and ion chromatographic assays. We show that NQs, catalytically oxidize H2S to per- and polysulfides (H2Sn, n = 2−6), thiosulfate, sulfite and sulfate in reactions that consume oxygen and are accelerated by superoxide dismutase (SOD) and inhibited by catalase. The approximate efficacy of NQs (in decreasing order) is, 1,4-NQ ≈ juglone ≈ plumbagin > 2-methoxy-1,4-NQ ≈ menadione >> phylloquinone ≈ anthraquinone ≈ menaquinone ≈ lawsone. We propose that the most probable reactions are an initial two-electron oxidation of H2S to S0 and reduction of NQ to NQH2. S0 may react with H2S or elongate H2Sn in variety of reactions. Reoxidation of NQH2 likely involves a semiquinone radical (NQ·−) intermediate via several mechanisms involving oxygen and comproportionation to produce NQ and superoxide. Dismutation of the latter forms hydrogen peroxide which then further oxidizes RSS to sulfoxides. These findings provide the chemical background for novel sulfur-based approaches to naphthoquinone-directed therapies.


Assuntos
Sulfeto de Hidrogênio , Naftoquinonas , Tiossulfatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Naftoquinonas/farmacologia , Naftoquinonas/metabolismo , Sulfeto de Hidrogênio/metabolismo , Enxofre/metabolismo , Oxigênio/metabolismo
2.
World J Microbiol Biotechnol ; 38(7): 124, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35641801

RESUMO

There are some limitations in date palm micropropagation. These include low multiplication efficiency, low rooting rate, and high mortality experienced by in vitro raised plantlets during laboratory to soil transfer. The objective of the study was to determine the effect of the polyamines and Silver Thiosulphate (STS) on the enhancement of shoot multiplication and genetic stability of in vitro cultures of date palm cultivar Quntar. Media supplemented with 75 mg L-1 SPD in combination with 10 mg L-1 STS gave the highest percentage of callus producing buds (83.34%) and average bud formation (16.3) per jar. The addition of PUT and STS to the medium was most effective on root formation and the number of roots per shoot, where the best result, 91.67% and 6.37 roots per shoot, respectively, were obtained using 75 mg L-1 PUT and 10 mg L-1 STS, resulting in fast-growing plantlets during acclimatization phase, reaching 80% of plant survival. The genetic fidelity assessment of plants derived from micropropagation was confirmed by RAPD analysis. Four operon primers were used, and all of them showed amplified unambiguous (OPA02, OPC-04, OPD-07, and OPE-15). All generated bands were monomorphic and had no variation among the tissue culture-derived plants tested. Accordingly, these results indicate that adding polyamines and silver thiosulfate to the nutrient medium of date palm cv. Quntar was beneficial to improving shoot organogenesis, rooting, and production of genetically stable date palm plants.


Assuntos
Phoeniceae , Meios de Cultura/farmacologia , Poliaminas/farmacologia , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodos , Tiossulfatos/farmacologia
3.
Plant Cell Physiol ; 62(5): 858-871, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33768225

RESUMO

Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.


Assuntos
Aminoácidos Cíclicos/metabolismo , Etilenos/metabolismo , Marchantia/metabolismo , Aminoácidos Cíclicos/farmacologia , Etilenos/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Marchantia/efeitos dos fármacos , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Mutação , Compostos Organofosforados/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tiossulfatos/farmacologia
4.
Nitric Oxide ; 117: 46-52, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678508

RESUMO

Nitric oxide (NO) mediates diverse physiological processes in living organisms. Small molecular NO donors usually lack stability and have a short half-life in human tissues, limiting the therapeutic application. The anionic tetranitrosyl iron complex with thiosulfate ligands (TNIC) is one of the most promising NO donors. This study shows that bovine serum albumin (BSA) can effectively stabilize the TNIC complex under aerobic (physiological) conditions, which contributes to its prolonged action as NO donor. Our results demonstrated that TNIC-BSA inhibits formation of TBARS - standard biomarker for the lipid peroxidation induced oxidative stress. Also, it was found that TNIC-BSA inhibits the catalytic activity of mitochondrial membrane-bound enzymes: cytochrome c oxidase and monoamine oxidase A. Together, these results demonstrate that, stabilization of TNIC with BSA opens up the possibility of its practical application in chemotherapy of socially significant diseases.


Assuntos
Ferro , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias , Óxidos de Nitrogênio , Soroalbumina Bovina , Tiossulfatos , Animais , Encéfalo/citologia , Ferro/química , Ferro/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Monoaminoxidase/metabolismo , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologia , Tiossulfatos/química , Tiossulfatos/farmacologia
5.
Kidney Blood Press Res ; 46(1): 41-52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33326967

RESUMO

BACKGROUND/AIMS: Arterial stenosis activates the renin-angiotensin-aldosterone system subsequently resulting in renovascular hypertension (RVHT) and renal oxidative injury. We explored the effect of sodium thiosulfate (STS, Na2S2O3), a developed antioxidant in clinical trial, on RVHT-induced hypertension and renal oxidative injury in rats. METHODS: We induced RVHT in male Wistar rats with bilaterally partial ligation of renal arteries in the 2-kidney 2-clip model. We evaluated the STS effect on RVHT-induced oxidative injury and apoptosis by a chemiluminescence amplification method, Western blot, and immunohistochemistry. RESULTS: We found STS displayed a dose-dependent antioxidant H2O2 activity and adapted the maximal scavenging H2O2 activity of STS at the dosage of 0.1 g/kg intraperitoneally 3 times/week for 4 weeks in RVHT rats. RVHT induced a significant elevation of arterial blood pressure, blood reactive oxygen species amount, neutrophil infiltration, 4-HNE and NADPH oxidase gp91 expression, Bax/Bcl-2/poly(ADP-ribose) polymerase (PARP)-mediated apoptosis formation, blue Masson-stained fibrosis, and urinary protein level. STS treatment significantly reduced hypertension, oxidative stress, neutrophil infiltration, fibrosis, and Bax/Bcl-2/PARP-mediated apoptosis formation and depressed the urinary protein level in the RVHT models. CONCLUSION: Our results suggest that STS treatment could ameliorate RVHT hypertension and renal oxidative injury through antioxidant, antifibrotic, and antiapoptotic mechanisms.


Assuntos
Antioxidantes/uso terapêutico , Hipertensão Renovascular/tratamento farmacológico , Rim/efeitos dos fármacos , Tiossulfatos/uso terapêutico , Animais , Antioxidantes/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/fisiopatologia , Rim/metabolismo , Rim/fisiopatologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiossulfatos/farmacologia
6.
Kidney Int ; 98(2): 366-377, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32605800

RESUMO

Sodium thiosulfate, a reversible oxidation product of hydrogen sulfide, has vasodilating and anti-oxidative properties, making it an attractive agent to alleviate damaging effects of hypertension. In experimental settings, inhibition of nitric oxide synthase causes hypertension, renal dysfunction and damage. We hypothesized that thiosulfate would attenuate renal injury and improve renal function, hemodynamics and the efficiency of oxygen utilization for sodium reabsorption in hypertensive renal disease. Additionally, thiosulfate co-administration would further improve these variables when compared to inhibiting the renin-angiotensin system alone. Nitric oxide synthase was inhibited in Sprague Dawley rats by administering N-ω-nitro-L-arginine (L-NNA) in the food for three weeks. After one week, rats were split into two groups; without and with thiosulfate in the drinking water. In a parallel study, rats given N-ω-nitro-L-arginine and the angiotensin converting enzyme inhibitor lisinopril at a relatively low dose in their food were divided into two groups; without and with thiosulfate in the drinking water. Treatment with thiosulfate alleviated hypertension (mean 190 vs. 229 mmHg), lowered plasma urea (mean 11.3 vs. 20.0 mmol/L) and improved the terminal glomerular filtration rate (mean 503 vs. 260 µl/min/100 gbw), effective renal plasma flow (mean 919 vs. 514 µl/min/100 gbw) and oxygen utilization for sodium reabsorption (mean 14.3 vs. 8.6 µmol/µmol). Combining thiosulfate with lisinopril further lowered renal vascular resistance (mean 43 vs. 63 mmHg/ml/min/100 gbw) and prevented glomerulosclerosis. Thus, our results suggest that thiosulfate has therapeutic potential in hypertensive renal disease and might be of value when added to standard antihypertensive therapies.


Assuntos
Hipertensão , Tiossulfatos , Animais , Pressão Sanguínea , Inibidores Enzimáticos/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Rim , NG-Nitroarginina Metil Éster , Óxido Nítrico , Nitroarginina , Ratos , Ratos Sprague-Dawley , Tiossulfatos/farmacologia
7.
Biochem Biophys Res Commun ; 533(4): 1142-1147, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33046243

RESUMO

Acidithiobacillus ferrooxidans ATCC23270 is a gram-negative and autotrophic bacillus acquiring energy via the oxidation of iron and sulfur. The pet II operon is involved in the sulfur metabolism of A. ferrooxidans. However, the mechanisms that control the expression of the pet II operon are poorly understood. We previously described that the AFE2726 protein is associated with the expression of the pet II operon. Here, we attempted to analyze the involvement of AFE2726 in the regulation of pet II operon expression. First, pEGF recombinant vectors driven by the promotor of the pet II operon, denoted pEGF-pet II, were constructed. Then, DH5α E. coli cultures containing the vector mentioned above were cultivated in Na2S2O3, as this medium substantially enhances the expression of green fluorescent proteins. To examine the regulatory effect of AFE2726 on the pet II operon, the C62/V and C72/V mutants for AFE2726 were constructed in pEGF-pet II vectors using the site-directed deletion method. Compared to pEFG-pet II and pEFG-pet II-Δ-C62/V, pEFG-pet II-Δ-C72/V reduced the expression of green fluorescent proteins dramatically when transformed into DH5α E.coli in Na2S2O3 medium. This suggested that the 72nd cysteine was a crucial residue of the AFE2726 protein, affecting the response of the pet II operon to sodium thiosulfate. Furthermore, the binding site of AFE2726 on the promotor of the pet II operon was identified using the electrophoretic mobility shift assay (EMSA), and it was found to be a 34bp inverted repeat sequence (named IR4), which ranged from -65 to -32. In summary, our results indicated that the AFE2726 protein regulates the pet II operon by binding to the IR4 sequence in its promotor region, whose function is likely affected by Na2S2O3 binding to its Cys72 residue counterpart.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Óperon , Tiossulfatos/farmacologia
8.
Microb Pathog ; 144: 104178, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32240768

RESUMO

The antimicrobial activity of sulfur nanoparticles (SNPs) was compared with elemental sulfur and sulfur-containing salts (sodium thiosulfate and sodium metabisulfite) against bacteria (Escherichia coli, Staphylococcus aureus) and fungi (Aspergillus flavus, Candida albicans) using the paper disc, broth microdilution, and time-kill assay methods. The results of the paper disc and MIC tests showed stronger antimicrobial activity of SNPs compared to the elemental sulfur and sulfur-containing salts. SNPs showed more potent activity against bacteria than fungi. Among the test microorganisms, E. coli (Gram-negative) was the most susceptible to SNPs, followed by S. aureus (Gram-positive), C. albicans (yeast), and A. flavus (mold). Scanning electron micrographs of microorganisms treated with SNPs showed different cell disruption patterns depending on the type of microorganisms.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Aspergillus flavus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Enxofre/farmacologia , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Nanopartículas , Sulfitos/farmacologia , Tiossulfatos/farmacologia
9.
J Biochem Mol Toxicol ; 34(12): e22606, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32865837

RESUMO

One of the common negative impacts in the management of acute myocardial infarction is cognitive decline. Using the rat model of isoproterenol (ISO)-induced myocardial infarction, we assessed the cardioprotective effect of sodium thiosulfate (STS) and its influence on cognition. STS treatment reduced the cardiac infarct size by 75%, injury markers (lactate dehydrogenase: 60%, creatine kinase-muscle/brain: 44%) release in the blood, maintain the heart rate within a normal range (365 ± 10 bpm) and minimize postinfarction hypertrophic changes in comparison with the ISO group. At the cellular level, the heart from these rats had reduced reactive oxygen species (ROS) (25%), caspase-9 (60%), and improved mitochondrial function (restored electron transport chain function and copy number) compared to ISO hearts. The brain of STS-treated rats also showed a reduction in ROS (45%), caspase-9 (37%), and improved mitochondrial function relative to the brain of the ISO group, particularly limited to the striatum region, and these rats showed improved cognitive ability. Predominantly, the STS treatment reduced the reference memory defects observed in comparison to rats challenged by ISO. Furthermore, elevated circulating mitochondrial DNA and ATP were found in ISO-challenged rats, which indicate the cardiac mitochondria linked damage-associated patterns were restored to the sham level when pretreated with STS. We found increased H2 S, a well-known metabolite of STS with a neuroprotective role in the brain after STS administration, hinting at a possible secondary defense mechanism. In conclusion, the STS mediated cardioprotection and its nootropic effects are primarily mediated via the improvement of mitochondrial function and reduction of oxidative stress.


Assuntos
Coração/efeitos dos fármacos , Isoproterenol/toxicidade , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/patologia , Tiossulfatos/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Sulfeto de Hidrogênio/metabolismo , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiossulfatos/farmacologia
10.
Biochemistry (Mosc) ; 85(7): 833-837, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33040727

RESUMO

Nrf2 is a key transcription factor responsible for antioxidant defense in many tissues and cells, including alveolar epithelium, endothelium, and macrophages. Furthermore, Nrf2 functions as a transcriptional repressor that inhibits expression of the inflammatory cytokines in macrophages. Critically ill patients with COVID-19 infection often present signs of high oxidative stress and systemic inflammation - the leading causes of mortality. This article suggests rationale for the use of Nrf2 inducers to prevent development of an excessive inflammatory response in COVID-19 patients.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Terapia de Alvo Molecular/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , COVID-19 , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/uso terapêutico , Infecções por Coronavirus/virologia , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Feminino , Humanos , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Inflamação/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Pandemias , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/virologia , Resveratrol/farmacologia , Resveratrol/uso terapêutico , SARS-CoV-2 , Transdução de Sinais/efeitos dos fármacos , Sulfóxidos , Tiossulfatos/farmacologia , Tiossulfatos/uso terapêutico , Tratamento Farmacológico da COVID-19
11.
Ecotoxicol Environ Saf ; 200: 110760, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32454265

RESUMO

An optimal uptake of mineral elements is crucial to ensure both crop yield and quality. The use of biostimulants is taking relevance to improve the nutrition of crops. Sulphur (S) is one of the elements with great potential within biostimulants. Furthermore, soil contamination by heavy metals such as cadmium (Cd) has become a serious environmental problem. Different studies have suggested the use of thiosulphate (TS) as a biostimulant and to increase the phytoremediation capacity of plants. Therefore, in the present study, we use a crop plant with high S requirements such as Brassica oleracea, to test whether TS serves as a biostimulant and whether affects Cd accumulation and tolerance. B. oleracea plants were grown with two different TS doses (2 mM and 4 mM), under Cd toxicity, and with the combination of Cd toxicity and both TS doses. Parameters of biomass, mineral elements accumulation, and stress tolerance were analyzed. The results showed that TS reduced biomass of B. oleracea plants. The application of 2 mM TS increased Cd accumulation whereas the 4 mM dose reduced it. On the other hand, TS incremented micronutrient accumulation on plants subjected to Cd toxicity and increased Zn contents. Besides, the application of 2 mM to Cd-stressed plants enhanced photosynthesis performance and reduced oxidative stress. Finally, TS increased the antioxidant capacity of B. oleracea plants. Briefly, although TS can not be used as a biostimulant it could be used for Cd phytoremediation purposes and to enhance Zn accumulation in B. oleracea plants.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Bioacumulação , Brassica/efeitos dos fármacos , Cádmio/toxicidade , Poluentes do Solo/toxicidade , Tiossulfatos/farmacologia , Antioxidantes/metabolismo , Biodegradação Ambiental , Biomassa , Brassica/metabolismo , Cádmio/metabolismo , Produtos Agrícolas , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/metabolismo
12.
Ecotoxicol Environ Saf ; 188: 109897, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31704327

RESUMO

Mercury (Hg) pollution seriously threatens food safety and has attracted global attention. Phytoextraction, due to its low cost, applicability, and environmental friendliness, is considered a new technology for clean-up of heavy metal contamination in the environment. However, the low bioavailability of Hg in polluted areas greatly limits the applicability of phytoextraction. Here, we compared the effects of six common chelating ligands on the absorption and transport of Hg in maize (Zea mays L.), which has a high biomass and short growth cycle. The results showed that the root length and biomass of maize seedlings of the groups treated with the six chelating ligands (EDTA, iodide, ammonium, thiosulfate, thiocyanate, and thiocarbamide) did not change compared with those of the non-treated groups. Co-exposure to Hg and each chelating ligand markedly alleviated the inhibitory effect induced by Hg. Iodide treatment resulted in the lowest root Hg content and highest translocation factor (TF) value, while ammonium treatment gave rise to the highest shoot Hg concentration and lowest TF. Compared with other chelating ligands, thiosulfate exhibited the maximum alleviation of Hg toxicity and achieved the highest concentration of Hg in the roots and aerial parts. Moreover, the TF and Hg accumulation in the thiosulfate and Hg co-exposed group were much higher than those in the group exposed to Hg alone. This finding suggests that, among these common chelating ligands, thiosulfate compounds have great potential for Hg phytoextraction, while the others can immobilize Hg in polluted areas.


Assuntos
Quelantes/farmacologia , Mercúrio/análise , Poluentes do Solo/análise , Tiossulfatos/farmacologia , Zea mays/química , Bioacumulação , Biodegradação Ambiental , Disponibilidade Biológica , Transporte Biológico , Biomassa , Ligantes , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
13.
J Bioenerg Biomembr ; 51(3): 189-201, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30929125

RESUMO

Sodium thiosulfate preconditioning (SIPC) was recently reported to be cardioprotective due to its ability to inhibit caspase-3 activation, chelate calcium ions and scavenge free radicals. However, the rationale behind its ability to improve the contractility of isolated rat heart challenged with ischemia-reperfusion injury (IR) is not well understood. As mitochondrial preservation is implicated in cardioprotection against IR, the present study was conceived to identify whether the cardioprotective effects of SIPC is associated with mitochondrial preservation. Using the isolated Langendorff rat heart model, 1 mM sodium thiosulfate (STS) was used to precondition the rat heart before IR and was used to study its effect on cardiac mitochondria. The IR heart experienced a ventricular contractile dysfunction that was improved by SIPC. Upon assessing in-gel the ATP synthetic capacity of mitochondria from IR heart, there was a significant decline, while in SIPC it was well preserved close to sham. As a sustained flow of electrons through the ETC and well-integrated mitochondria are the prerequisites for ATP synthesis, SIPC improved the activities of ETC complex enzymes (I-IV), which was reflected from the preserved ultrastructure of the mitochondria as analyzed from electron-microscopy in the treated rat hearts. This observation was coherent with the elevated expression of PGC1α (20%), a critical regulator of ATP production, which increased the mitochondrial copy number as well in the STS treated heart compared to IR. In conclusion, mitochondria might be a critical target for SIPC mediated cardioprotection against IR.


Assuntos
Cardiotônicos/farmacologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Tiossulfatos/farmacologia , Animais , Masculino , Mitocôndrias Cardíacas/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos Wistar
14.
Ann Emerg Med ; 74(3): 423-429, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31080026

RESUMO

STUDY OBJECTIVE: Cyanide is a deadly poison, particularly with oral exposure, in which larger doses can occur before any symptoms develop. Multiple governmental agencies highlight oral cyanide as an agent that can be used in a terrorist attack because it can be easily weaponized and is readily available. Currently, there are no Food and Drug Administration-approved antidotes specifically for oral cyanide. An oral countermeasure that can neutralize and prevent absorption of cyanide from the gastrointestinal tract after oral exposure is needed. The objective of this study is to determine if the combination of glycine and sodium thiosulfate administered orally is effective in reducing mortality in a large, swine model of oral cyanide toxicity. METHODS: Nine swine (45 to 55 kg) were instrumented, sedated, and stabilized. Potassium cyanide (at 8 mg/kg) in saline solution was delivered as a onetime bolus through an orogastric tube. Three minutes after cyanide administration, animals that were randomized to the treatment group received sodium thiosulfate (508.2 mg/kg, 3.25-M solution) and glycine (30 mg/kg, 3.5-M solution) through an orogastric tube. Survival at 60 minutes was the primary outcome. We compared survival between groups by log-rank Mantel-Cox analysis and trended laboratory results and vital signs. RESULTS: At baseline and treatment, all animals were similar. Survival at 60 minutes was 100% in treated animals compared with 0% in the control group (P=.003). By the study end, defined as death or 60 minutes after cyanide administration, there was a significant difference in the lactate concentration between the treatment and control groups (control 9.43 mmol/L [SD 4.08]; treatment 1.66 mmol/L [SD 0.82]; difference between means 7.69 mmol/L [SD 2.07]; 95% confidence interval difference -14.05 to -1.32). Mean arterial pressure was significantly different between the treatment and control groups at study end (control 26 mm Hg [SD 6.7]; treatment 81 mm Hg [SD 14]; difference between means 55.2 mm Hg [SD 7.1]; 95% confidence interval difference 37.8 to 72.6). pH and oxygen saturation were also significantly different between the treatment and control groups at study end. CONCLUSION: The combination of oral sodium thiosulfate and glycine significantly improved survival and physiologic parameters in a large-animal model of oral cyanide toxicity.


Assuntos
Antídotos/administração & dosagem , Glicina/administração & dosagem , Cianeto de Potássio/intoxicação , Tiossulfatos/administração & dosagem , Administração Oral , Animais , Antídotos/farmacocinética , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Glicina/farmacologia , Humanos , Venenos , Distribuição Aleatória , Suínos , Tiossulfatos/farmacologia , Fatores de Tempo
15.
Mol Biol Rep ; 46(1): 719-725, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30637625

RESUMO

Signaling and physiological activities of the crystalline tetranitrosyl iron complex with thiosulfate-a NO-donor (TNICthio) were first studied on human cells in conditions of mono and combined application of H2S and antioxidants. Comparative studies were performed on three cell lines: normal and leukemic T lymphocytes (Jurkat cells) and breast cancer MCF-7 cells (human breast adenocarcinoma). Also established was a high biological activity of TNICthio, as well as correlation between the levels of reactive oxygen species generation, the formation of double-strand breaks (DSB) in DNA and cell proliferation. The amount of DNA DSB repair in normal lymphocytes was tenfold higher than in leukemic cells. Inorganic H2S donor sodium hydrosulfide (NaHS) had insignificant effects on the production of reactive oxygen species and generation of DNA DSB in the cells of all the lines under study. However, H2S increased the tolerance of cells to the stress response after combined cell treatment with NO + H2S. 0.5 mM NO-donor and 0.1 mM antitumor antibiotic doxorubicin were equally effective generators of reactive oxygen species in MCF-7 cells; however, antiproliferative activity of the NO-donor, in this case, proved to be twice higher. The results obtained in this work may be promising for the prediction of pro- and antioxidant properties of the new NO and H2S donating compounds, as well as for the development of methods for complex anticancer therapy.


Assuntos
Complexos de Coordenação/farmacologia , Linfócitos/metabolismo , Doadores de Óxido Nítrico/farmacologia , Transdução de Sinais , Tetrazóis/farmacologia , Tiossulfatos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Histonas/metabolismo , Humanos , Células Jurkat , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Environ Res ; 172: 296-300, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822563

RESUMO

A quenching agent is commonly added to chlorinated, reclaimed water during sample collection to prevent chlorine-mediated die-off of viable microbiota. However, the effect of quenching on downstream 16S rRNA-based bacterial community analyses is unclear. We conducted a side-by-side comparison of 16S rRNA sequencing data from reclaimed water samples quenched with sodium thiosulfate and non-quenched samples. Our data showed that 16 S rRNA processing and sequencing methods, and resulting bacterial profiles, were not negatively impacted by quenching.


Assuntos
Microbiota , Tiossulfatos , Microbiologia da Água , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/efeitos dos fármacos , Microbiota/genética , Mid-Atlantic Region , RNA Ribossômico 16S/genética , Tiossulfatos/química , Tiossulfatos/farmacologia , Água/química
17.
Biosci Biotechnol Biochem ; 83(1): 114-122, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30200826

RESUMO

The present study describes the hair growth-promoting effects of sodium thiosulfate (STS), a widely used compound, in mice. STS accelerated hair growth in the "telogen model", suggesting that it stimulates telogen hair follicles to reenter the anagen phase of hair growth. In the same model, STS potentiated hair growth in an additive manner with minoxidil (MXD), a drug used for the treatment of androgenic alopecia. Furthermore, in the "anagen model", STS promoted hair growth, probably by promoting hair follicle proliferation. Since STS elevated the skin surface temperature, its hair growth-promoting activity may be partly due to vasorelaxation, similar to MXD. In addition, STS is known to generate a gaseous mediator, H2S, which has vasorelaxation and anti-inflammatory/anti-oxidative stress activities. Therefore, STS and/or provisionally its metabolite, H2S, may aid the hair growth process. Collectively, these results suggest that salts of thiosulfate may represent a novel and beneficial remedy for hair loss.


Assuntos
Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Modelos Animais , Tiossulfatos/farmacologia , Alopecia/tratamento farmacológico , Animais , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C3H , Minoxidil/administração & dosagem , Minoxidil/efeitos adversos , Minoxidil/farmacologia , Modelos Biológicos , Temperatura Cutânea/efeitos dos fármacos , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Tiossulfatos/administração & dosagem , Tiossulfatos/efeitos adversos
18.
Toxicol Ind Health ; 35(5): 387-397, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30991910

RESUMO

Cytochrome P450 2E1 (CYP2E1) can be induced by diabetes mellitus, nonalcoholic liver disease, and obesity. This study assessed the protective effects of three sulfur compounds, namely phenethyl isothiocyanate (PEITC), dimethyl trisulfide (DMTS), and sodium thiosulfate (STS), on acrylonitrile (ACN)-induced acute toxicity in rats enriched with CYP2E1. PEITC and DMTS were administered intragastrically (i.g.), whereas STS was injected intraperitoneally (i.p.) at an identical dose of 0.5 mmol/kg for 3 days in acetone-pretreated rats before ACN (90 mg/kg) injection (i.p.). Acetone-treated rats that expressed high levels of CYP2E1 were more susceptible to ACN-induced acute toxicity. The sulfur compounds reduced the rate of convulsions and loss of the righting reflex in acute ACN-exposed CYP2E1-induced rats; PEITC and DMTS also increased the survival rates. PEITC inhibited hepatic CYP2E1 activity and protected hepatic and cerebral cytochrome c oxidase (CcOx) activities in acute ACN-exposed CYP2E1-enriched rats; DMTS protected hepatic CcOx activity. DMTS attenuated ACN-induced oxidative injury by reducing malondialdehyde (MDA) levels and increasing glutathione content in the brain. STS only reduced cerebral MDA levels, whereas PEITC did not exhibit any antioxidant effects. Collectively, PEITC provided superior protective effects against ACN-induced acute toxicity in rats with increased CYP2E1 activity, followed by DMTS; STS provided limited effects. PEITC and DMTS might be considered as promising chemopreventive agents against ACN-induced acute toxicity in vulnerable subpopulations with increased CYP2E1 activity.


Assuntos
Acrilonitrila/toxicidade , Isotiocianatos/farmacologia , Reflexo de Endireitamento/efeitos dos fármacos , Convulsões/prevenção & controle , Sulfetos/farmacologia , Tiossulfatos/farmacologia , Animais , Citocromo P-450 CYP2E1/administração & dosagem , Sistema Enzimático do Citocromo P-450/análise , Estimativa de Kaplan-Meier , Masculino , Mortalidade , Distribuição Aleatória , Ratos , Convulsões/induzido quimicamente , Compostos de Enxofre/farmacologia
19.
Dokl Biochem Biophys ; 488(1): 342-345, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31768856

RESUMO

The antioxidant and antiradical properties of the tetra nitrosyl iron complex with thiosulfate ligands (TNIC) were studied in vitro in mouse brain homogenates. It was found for the first time that TNIC is an effective antioxidant. The effect of TNIC on the catalytic activity of mitochondrial enzymes cytochrome c oxidase and monoamine oxidase A was studied. It was shown for the first time that TNIC is an inhibitor of the catalytic activity of cytochrome c oxidase and monoamine oxidase A in animal brain mitochondria in vitro.


Assuntos
Encéfalo/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons , Ferro , Mitocôndrias/enzimologia , Proteínas Mitocondriais , Inibidores da Monoaminoxidase , Óxidos de Nitrogênio , Tiossulfatos , Animais , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ferro/química , Ferro/farmacologia , Camundongos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Óxidos de Nitrogênio/síntese química , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , Tiossulfatos/síntese química , Tiossulfatos/química , Tiossulfatos/farmacologia
20.
Ecotoxicol Environ Saf ; 154: 180-186, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29475123

RESUMO

This study evaluated the ability of Brassica napus for extracting gold (Au), silver (Ag) and copper (Cu) from a mine tailings, with the inoculation of two Aspergillus niger strains, and the application of ammonium thiocyanate (NH4SCN) or ammonium thiosulfate [(NH4)2S2O3]. After seven weeks of growth inoculated or non-inoculated plants were applied with 1 or 2 g kg-1 of either NH4SCN or (NH4)2S2O3, respectively. Eight days after the application of the chemical compounds, plants were harvested for determining the total dry biomass, and the content of Au, Ag, and Cu in plant organs. Application of (NH4)2S2O3 or NH4SCN resulted in enhanced Au-accumulation in stems (447% and 507%, respectively), while either (NH4)2S2O3+Aspergillus, or NH4SCN increased the Au-accumulation in roots (198.5% and 404%, respectively) when compared to the control. Treatments with (NH4)2S2O3 or (NH4)2S2O3+Aspergillus significantly increased (P ≤ 0.001) the accumulation of Ag in leaves (677% and 1376%, respectively), while NH4SCN + Aspergillus, and (NH4)2S2O3 enhanced the accumulation in stems (7153% and 6717.5%). The Ag-accumulation in roots was stimulated by NH4SCN+ Aspergillus, and (NH4)2S2O3+ Aspergillus (132.5% and 178%, respectively), when compared to the control. The combination of NH4SCN+Aspergillus significantly enhanced the Cu-accumulation in leaves (228%); whereas NH4SCN+ Aspergillus, or (NH4)2S2O3+ Aspergillus resulted in greater accumulation of Cu in stems (1233.5% and 1580%, respectively) than the control. Results suggest that either NH4SCN or (NH4)2S2O3 (with or without Aspergillus) improved the accumulation of Au and Ag by B. napus. Accumulation of Au and Ag in plant organs overpassed the hyperaccumulation criterion (> 1 mg kg-1 of plant biomass); whereas Cu-accumulation in stems and roots also overpassed such criterion (> 1000 mg kg-1) by applying either NH4SCN or (NH4)2S2O3 + A. niger.


Assuntos
Brassica napus/metabolismo , Cobre/metabolismo , Ouro/metabolismo , Mineração , Prata/metabolismo , Aspergillus niger/fisiologia , Brassica napus/efeitos dos fármacos , Brassica napus/microbiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Tiocianatos/farmacologia , Tiossulfatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA