Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(48): e2309412120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983500

RESUMO

Bunyaviruses are enveloped negative or ambisense single-stranded RNA viruses with a genome divided into several segments. The canonical view depicts each viral particle packaging one copy of each genomic segment in one polarity named the viral strand. Several opposing observations revealed nonequal ratios of the segments, uneven number of segments per virion, and even packaging of viral complementary strands. Unfortunately, these observations result from studies often addressing other questions, on distinct viral species, and not using accurate quantitative methods. Hence, what RNA segments and strands are packaged as the genome of any bunyavirus remains largely ambiguous. We addressed this issue by first investigating the virion size distribution and RNA content in populations of the tomato spotted wilt virus (TSWV) using microscopy and tomography. These revealed heterogeneity in viral particle volume and amount of RNA content, with a surprising lack of correlation between the two. Then, the ratios of all genomic segments and strands were established using RNA sequencing and qRT-PCR. Within virions, both plus and minus strands (but no mRNA) are packaged for each of the three L, M, and S segments, in reproducible nonequimolar proportions determined by those in total cell extracts. These results show that virions differ in their genomic content but together build up a highly reproducible genetic composition of the viral population. This resembles the genome formula described for multipartite viruses, with which some species of the order Bunyavirales may share some aspects of the way of life, particularly emerging properties at a supravirion scale.


Assuntos
Orthobunyavirus , Tospovirus , Orthobunyavirus/genética , RNA Viral/genética , Tospovirus/genética , Genoma Viral/genética , Vírion/genética
2.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717918

RESUMO

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Assuntos
Doenças das Plantas , Tisanópteros , Tospovirus , Tospovirus/imunologia , Tospovirus/fisiologia , Tospovirus/genética , Animais , Tisanópteros/virologia , Tisanópteros/imunologia , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Capsicum/virologia , Capsicum/imunologia , Replicação Viral , Interferência de RNA , Insetos Vetores/virologia , Insetos Vetores/imunologia , Perfilação da Expressão Gênica , Transdução de Sinais
3.
J Virol ; 97(4): e0180922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022194

RESUMO

Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.


Assuntos
Genética Reversa , Tospovirus , Replicação Viral , Animais , Genética Reversa/métodos , RNA Polimerase Dependente de RNA , Tospovirus/genética , Estados Unidos , Replicação Viral/genética , RNA Viral/genética , Proteínas do Nucleocapsídeo/genética
4.
Microb Pathog ; 193: 106716, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38848932

RESUMO

The yellow spot disease caused by the virus species Orthotospovirus iridimaculaflavi (Iris yellow spot virus-IYSV), belonging to the genus Orthotospovirus, the family Tospoviridae, order Bunyavirales and transmitted by Thrips tabaci Lindeman. At present, emerging as a major threat in onion (Allium cepa) in Tamil Nadu, India. The yellow spot disease incidence was found to be 53-73 % in six districts out of eight major onion-growing districts surveyed in Tamil Nadu during 2021-2023. Among the onion cultivars surveyed, the cultivar CO 5 was the most susceptible to IYSV. The population of thrips was nearly 5-9/plant during vegetative and flowering stages. The thrips infestation was 34-60 %. The tospovirus involved was confirmed as IYSV through DAS-ELISA, followed by molecular confirmation through RT-PCR using the nucleocapsid (N) gene. The predominant thrips species present in onion crops throughout the growing seasons was confirmed as Thrips tabaci based on the nucleotide sequence of the MtCOI gene. The mechanical inoculation of IYSV in different hosts viz., Vigna unguiculata, Gomphrena globosa, Chenopodium amaranticolor, Chenopodium quinoa and Nicotiana benthamiana resulted in chlorotic and necrotic lesion symptoms. The electron microscopic studies with partially purified sap from onion lesions revealed the presence of spherical to pleomorphic particles measuring 100-230 nm diameter. The transmission of IYSV was successful with viruliferous adult Thrips tabaci in cowpea (Cv. CO7), which matured from 1st instar larva fed on infected cowpea leaves (24 h AAP). Small brown necrotic symptoms were produced on inoculated plants after an interval of four weeks. The settling preference of non-viruliferous and viruliferous T. tabaci towards healthy and infected onion leaves resulted in the increased preference of non-viruliferous thrips towards infected (onion-61.33 % and viruliferous thrips towards healthy onion leaves (75.33 %). The study isolates shared 99-100 % identity at a nucleotide and amino acid level with Indian isolates of IYSV in the N gene. The multiple alignment of the amino acid sequence of the N gene of IYSV isolates collected from different locations and IYSV isolates from the database revealed amino acid substitution in the isolate ITPR4. All the IYSV isolates from India exhibited characteristic amino acid substitution of serine at the 6th position in the place of threonine in the isolates from Australia, Japan and USA. The phylogenetic analysis revealed the monophyletic origin of the IYSV isolates in India.


Assuntos
Cebolas , Doenças das Plantas , Tisanópteros , Tospovirus , Índia , Tisanópteros/virologia , Animais , Cebolas/virologia , Cebolas/parasitologia , Doenças das Plantas/virologia , Tospovirus/genética , Tospovirus/isolamento & purificação , Tospovirus/fisiologia , Tospovirus/patogenicidade , Filogenia , Insetos Vetores/virologia , Insetos Vetores/parasitologia
5.
Arch Insect Biochem Physiol ; 115(3): e22102, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500452

RESUMO

The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.


Assuntos
Tisanópteros , Tospovirus , Animais , Insetos Vetores/genética , Insetos , Filogenia , Tisanópteros/genética , Tospovirus/genética
6.
Plant Dis ; 108(2): 398-406, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37622276

RESUMO

Onion thrips, Thrips tabaci (Lindeman), transmits iris yellow spot virus (IYSV) and is one of the most important pests of Allium crops. IYSV is a member of the species Tospovirus iridimaculaflavi in the genus Orthotospovirus of the family Tospoviridae. This virus typically reduces overall onion bulb quality and weight but can also prematurely kill onion plants. IYSV is neither seed nor mechanically transmitted. Onion fields are typically established via seeds and transplants. A decade ago, onion thrips tended to colonize transplanted fields before seeded fields because plants in transplanted fields were larger and more attractive to thrips than smaller onions in seeded fields. Therefore, we hypothesized that the incidence of IYSV in transplanted fields would be detected early in the season and be spatially aggregated, whereas IYSV would be absent from seeded fields early in the season and initial epidemic patterns would be spatially random. In 2021 and 2022, IYSV incidence and onion thrips populations were quantified in 12 onion fields (four transplanted fields and eight seeded fields) in New York. Fields were scouted four times throughout the growing season (n = 96 samples), and a geospatial and temporal analysis of aggregation and incidence was conducted to determine spatiotemporal patterns in each field type. Results indicated that spatial patterns of IYSV incidence and onion thrips populations were similar early in the season, indicating that transplanted onion fields are no longer the dominant early-season source of IYSV in New York. These findings suggest the need to identify other important early-season sources of IYSV that impact New York onion fields.


Assuntos
Tisanópteros , Tospovirus , Animais , Cebolas , New York , Doenças das Plantas , Sementes
7.
Plant Dis ; 108(6): 1769-1775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38240655

RESUMO

Watermelon silver mottle virus (WSMoV), a potentially invasive virus, is known to reduce the yield and degrade the quality of infected crops in Cucurbitaceae and Solanaceae families, resulting in significant economic losses in limited areas of several Asian countries. WSMoV, previously detected on various crops in southern China, has now become more prevalent on watermelon and sweet pepper in the northern cities of China for the first time. A sequencing-based phylogenetic analysis has confirmed that the viral strains infecting cucumber, watermelon, and sweet pepper plants in Shandong Province are most closely related to those isolated from Guangdong, Guangxi, and Taiwan, suggesting a farther and continuous spread of WSMoV throughout China. To develop a fast, accurate, and practical protocol for WSMoV detection, we designed a set of primers from the conserved sequence of the WSMoV nucleocapsid protein (N) gene for a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The RT-LAMP assay was performed successfully for 50 min at 61°C and exhibited a highly specific result without cross-reactions with other similar viruses and a sensitivity that is 100-fold higher than that of the traditional RT-PCR. The confirmation of 26 WSMoV suspect samples collected from various regions in Shandong through the RT-LAMP testing has demonstrated that the assay is suitable and practical for detection of WSMoV in both laboratory and field settings.


Assuntos
Citrullus , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Doenças das Plantas , Doenças das Plantas/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Citrullus/virologia , China , Transcrição Reversa , Tospovirus/genética , Tospovirus/isolamento & purificação , Tospovirus/classificação , RNA Viral/genética , Capsicum/virologia , Técnicas de Diagnóstico Molecular
8.
Mol Plant Microbe Interact ; 36(11): 705-715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37432156

RESUMO

The NLR (nucleotide-binding leucine-rich repeat) class immune receptor Sw-5b confers resistance to Tomato spotted wilt orthotospovirus (TSWV). Although Sw-5b is known to activate immunity upon recognition of the TSWV movement protein NSm, we know very little about the downstream events that lead to resistance. Here, we investigated the Sw-5b-mediated early transcriptomic changes that occur in response to mechanical and thrips-mediated inoculation of TSWV, using near-isogenic tomato lines CNPH-LAM 147 (Sw5b+/+) and Santa Clara (Sw-5b-/-). We observed earlier Sw-5b-mediated transcriptional changes in response to thrips-mediated inoculation compared with that in response to mechanical inoculation of TSWV. With thrips-mediated inoculation, differentially expressed genes (DEGs) were observed at 12, 24, and 72 h postinoculation (hpi). Whereas with mechanical inoculation, DEGs were observed only at 72 hpi. Although some DEGs were shared between the two methods of inoculation, many DEGs were specific to either thrips-mediated or mechanical inoculation of TSWV. In response to thrips-mediated inoculation, an NLR immune receptor, cysteine-rich receptor-like kinase, G-type lectin S-receptor-like kinases, the ethylene response factor 1, and the calmodulin-binding protein 60 were induced. Fatty acid desaturase 2-9, cell death genes, DCL2b, RIPK/PBL14-like, ERF017, and WRKY75 were differentially expressed in response to mechanical inoculation. Our findings reveal Sw-5b responses specific to the method of TSWV inoculation. Although TSWV is transmitted in nature primarily by the thrips, Sw-5b responses to thrips inoculation have not been previously studied. Therefore, the DEGs we have identified in response to thrips-mediated inoculation provide a new foundation for understanding the mechanistic roles of these genes in the Sw-5b-mediated resistance. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Vírus de RNA , Solanum lycopersicum , Tisanópteros , Tospovirus , Animais , Solanum lycopersicum/genética , Tisanópteros/genética , Tospovirus/fisiologia , Doenças das Plantas , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de RNA/metabolismo
9.
J Virol ; 96(5): e0208421, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34985996

RESUMO

The Sw5 gene cluster furnishes robust resistance to Tomato spotted wilt virus in tomato, which has led to its widespread applicability in agriculture. Among the five orthologs, Sw5b functions as a resistance gene against a broad-spectrum tospovirus and is linked with tospovirus resistance. However, its paralog Sw5a has been recently implicated in providing resistance against Tomato leaf curl New Delhi virus, broadening the relevance of the Sw5 gene cluster in promoting defense against plant viruses. We propose that plants have established modifications within the homologs of R genes that permit identification of different effector proteins and provide broad and robust resistance against different pathogens through activation of the hypersensitive response and cell death.


Assuntos
Resistência à Doença , Família Multigênica , Proteínas de Plantas , Solanum lycopersicum , Tospovirus , Resistência à Doença/genética , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Família Multigênica/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tospovirus/fisiologia
10.
PLoS Pathog ; 17(7): e1009757, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34320034

RESUMO

Antiviral RNA silencing/interference (RNAi) of negative-strand (-) RNA plant viruses (NSVs) has been studied less than for single-stranded, positive-sense (+)RNA plant viruses. From the latter, genomic and subgenomic mRNA molecules are targeted by RNAi. However, genomic RNA strands from plant NSVs are generally wrapped tightly within viral nucleocapsid (N) protein to form ribonucleoproteins (RNPs), the core unit for viral replication, transcription and movement. In this study, the targeting of the NSV tospoviral genomic RNA and mRNA molecules by antiviral RNA-induced silencing complexes (RISC) was investigated, in vitro and in planta. RISC fractions isolated from tospovirus-infected N. benthamiana plants specifically cleaved naked, purified tospoviral genomic RNAs in vitro, but not genomic RNAs complexed with viral N protein. In planta RISC complexes, activated by a tobacco rattle virus (TRV) carrying tospovirus NSs or Gn gene fragments, mainly targeted the corresponding viral mRNAs and hardly genomic (viral and viral-complementary strands) RNA assembled into RNPs. In contrast, for the (+)ssRNA cucumber mosaic virus (CMV), RISC complexes, activated by TRV carrying CMV 2a or 2b gene fragments, targeted CMV genomic RNA. Altogether, the results indicated that antiviral RNAi primarily targets tospoviral mRNAs whilst their genomic RNA is well protected in RNPs against RISC-mediated cleavage. Considering the important role of RNPs in the replication cycle of all NSVs, the findings made in this study are likely applicable to all viruses belonging to this group.


Assuntos
Imunidade Vegetal/imunologia , RNA Viral/imunologia , Complexo de Inativação Induzido por RNA/imunologia , Tospovirus/imunologia , RNA Mensageiro/imunologia , Nicotiana/virologia
11.
Plant Cell Environ ; 46(2): 650-664, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482792

RESUMO

To study viral infection, the direct structural visualization of the viral life cycle consisting of virus attachment, entry, replication, assembly and transport is essential. Although conventional electron microscopy (EM) has been extremely helpful in the investigation of virus-host cell interactions, three-dimensional (3D) EM not only provides important information at the nanometer resolution, but can also create 3D maps of large volumes, even entire virus-infected cells. Here, we determined the ultrastructural details of tomato spotted wilt virus (TSWV)-infected plant cells using focused ion beam scanning EM (FIB-SEM). The viral morphogenesis and dynamic transformation of paired parallel membranes (PPMs) were analyzed. The endoplasmic reticulum (ER) membrane network consisting of tubules and sheets was related to viral intracellular trafficking and virion storage. Abundant lipid-like bodies, clustering mitochondria, cell membrane tubules, and myelin-like bodies were likely associated with viral infection. Additionally, connecting structures between neighboring cells were found only in infected plant tissues and showed the characteristics of tubular structure. These novel connections that formed continuously in the cell wall or were wrapped by the cell membranes of neighboring cells appeared frequently in the large-scale 3D model, suggesting additional strategies for viral trafficking that were difficult to distinguish using conventional EM.


Assuntos
Tospovirus , Vírus , Tospovirus/ultraestrutura , Plantas , Retículo Endoplasmático/metabolismo , Microscopia Eletrônica
12.
J Exp Bot ; 74(5): 1372-1388, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36472617

RESUMO

Plant immunity relies on nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) that detect microbial patterns released by pathogens, and activate localized cell death to prevent the spread of pathogens. Tsw is the only identified resistance (R) gene encoding an NLR, conferring resistance to tomato spotted wilt orthotospovirus (TSWV) in pepper species (Capsicum, Solanaceae). However, molecular and cellular mechanisms of Tsw-mediated resistance are still elusive. Here, we analysed the structural and cellular functional features of Tsw protein, and defined a hydrophobic module to improve NLR-mediated virus resistance. The plasma membrane associated N-terminal 137 amino acid in the coiled-coil (CC) domain of Tsw is the minimum fragment sufficient to trigger cell death in Nicotiana benthamiana plants. Transient and transgenic expression assays in plants indicated that the amino acids of the hydrophobic groove (134th-137th amino acid) in the CC domain is critical for its full function and can be modified for enhanced disease resistance. Based on the structural features of Tsw, a super-hydrophobic funnel-like mutant, TswY137W, was identified to confer higher resistance to TSWV in a SGT1 (Suppressor of G-two allele of Skp1)-dependent manner. The same point mutation in a tomato Tsw-like NLR protein also improved resistance to pathogens, suggesting a feasible way of structure-assisted improvement of NLRs.


Assuntos
Vírus de Plantas , Tospovirus , Tospovirus/genética , Resistência à Doença/genética , Imunidade Vegetal/genética , Proteínas NLR/genética , Aminoácidos , Doenças das Plantas , Proteínas de Plantas/genética
13.
Arch Insect Biochem Physiol ; 112(2): e21982, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36335566

RESUMO

Tomato spotted wilt virus is a single-stranded RNA virus and causes a serious plant disease. Its horizontal transmission depends on some thrips species including Frankliniella occidentalis. Its genome encodes a nonstructural protein, nonstructural (NSs), which acts as a silencing suppressor and plays a crucial role in the pathogenicity by defending antiviral immunity using RNA interference (RNAi) in plant hosts. However, its physiological function as a silencing suppressor was not well clarified in insect vectors. This study assessed any change of RNAi efficiencies in two other insect systems by NSs expression. To this end, the gene was cloned into a eukaryotic expression vector and transiently expressed in two different insect species via in vivo transient expression (IVTE). After feeding the recombinant construct to non-viruliferous F. occidentalis, NSs expression was observed for over 2 days in the thrips. Under this expression of NSs, thrips were rescued from a treatment of a toxic double stranded RNA specific to v-ATPase. Interestingly, the thrips treated with IVTE significantly suppressed the expression of RNAi machinery genes such as SID and Dicer-2. The recombinant vector expressing NSs was injected to a non-vector insect, Spodoptera exigua, larvae. The larvae expressing NSs by the IVTE were highly susceptible to an infection of a RNA virus called iflavirus. These suggest that NSs acts as a silencing suppressor in insects and would be used for a synergist for RNA pathogens to control insect pests.


Assuntos
Tisanópteros , Tospovirus , Animais , Interferência de RNA , Tospovirus/genética , Insetos/genética , Tisanópteros/genética , Larva , RNA de Cadeia Dupla
14.
Proc Natl Acad Sci U S A ; 117(42): 26237-26244, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020295

RESUMO

Tospoviridae is a family of enveloped RNA plant viruses that infect many field crops, inflicting a heavy global economic burden. These tripartite, single-stranded, negative-sense RNA viruses are transmitted from plant to plant by thrips as the insect vector. The medium (M) segment of the viral genome encodes two envelope glycoproteins, GN and GC, which together form the envelope spikes. GC is considered the virus fusogen, while the accompanying GN protein serves as an attachment protein that binds to a yet unknown receptor, mediating the virus acquisition by the thrips carrier. Here we present the crystal structure of glycoprotein N (GN) from the tomato spotted wilt virus (TSWV), a representative member of the Tospoviridae family. The structure suggests that GN is organized as dimers on TSWV's outer shell. Our structural data also suggest that this dimerization is required for maintaining GN structural integrity. Although the structure of the TSWV GN is different from other bunyavirus GN proteins, they all share similar domain connectivity that resembles glycoproteins from unrelated animal-infecting viruses, suggesting a common ancestor for these accompanying proteins.


Assuntos
Evolução Molecular , Glicoproteínas/química , Insetos Vetores/virologia , Multimerização Proteica , Solanum lycopersicum/virologia , Tospovirus/metabolismo , Proteínas Virais/química , Animais , Cristalografia por Raios X , Glicoproteínas/metabolismo , Modelos Moleculares , Conformação Proteica , Tospovirus/genética , Tospovirus/crescimento & desenvolvimento , Proteínas Virais/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(2): 1181-1190, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879355

RESUMO

Negative-stranded/ambisense RNA viruses (NSVs) include not only dangerous pathogens of medical importance but also serious plant pathogens of agronomic importance. Tomato spotted wilt virus (TSWV) is one of the most important plant NSVs, infecting more than 1,000 plant species, and poses major threats to global food security. The segmented negative-stranded/ambisense RNA genomes of TSWV, however, have been a major obstacle to molecular genetic manipulation. In this study, we report the complete recovery of infectious TSWV entirely from complementary DNA (cDNA) clones. First, a replication- and transcription-competent minigenome replication system was established based on 35S-driven constructs of the S(-)-genomic (g) or S(+)-antigenomic (ag) RNA template, flanked by the 5' hammerhead and 3' ribozyme sequence of hepatitis delta virus, a nucleocapsid (N) protein gene and codon-optimized viral RNA-dependent RNA polymerase (RdRp) gene. Next, a movement-competent minigenome replication system was developed based on M(-)-gRNA, which was able to complement cell-to-cell and systemic movement of reconstituted ribonucleoprotein complexes (RNPs) of S RNA replicon. Finally, infectious TSWV and derivatives carrying eGFP reporters were rescued in planta via simultaneous expression of full-length cDNA constructs coding for S(+)-agRNA, M(-)-gRNA, and L(+)-agRNA in which the glycoprotein gene sequence of M(-)-gRNA was optimized. Viral rescue occurred with the addition of various RNAi suppressors including P19, HcPro, and γb, but TSWV NSs interfered with the rescue of genomic RNA. This reverse genetics system for TSWV now allows detailed molecular genetic analysis of all aspects of viral infection cycle and pathogenicity.


Assuntos
DNA Complementar/genética , Tospovirus/genética , Tospovirus/fisiologia , Tospovirus/patogenicidade , RNA Polimerases Dirigidas por DNA/genética , Vírus Delta da Hepatite/genética , Proteínas do Nucleocapsídeo/genética , Doenças das Plantas/virologia , RNA Catalítico/genética , RNA Viral/genética , Replicon , Nicotiana/virologia , Proteínas Virais/genética , Vírion/genética , Vírion/metabolismo , Replicação Viral
16.
Plant Dis ; 107(4): 1192-1201, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36018552

RESUMO

The Orthotospovirus impatiens necrotic spot virus (INSV) is a thrips-transmitted pathogen of lettuce that has rapidly emerged as a serious threat to production in the Salinas Valley of Monterey County, California. As a first step toward understanding the severity of the virus, we utilized Spatial Analysis by Distance IndicEs (SADIE) to characterize the distribution and progression of INSV outbreaks and thrips infestations in two commercial lettuce fields. In both fields, INSV incidence rapidly increased from 15.86% ± 1.77 to 80.24% ± 2.60 over the course of 7 weeks and aggregated at specific edges in both fields as early as 3 weeks after planting (Ia = 1.63, Pa = 0.0100, and Ia = 1.53, Pa = 0.0300). In one of the fields, thrips populations aggregated in areas that also experienced the most INSV (Ia = 1.2435, Pa = 0.0400, week 3; Ia = 1.4815, Pa < 0.0001, week 6; Ia = 1.5608, Pa < 0.0001, week 9), while in the second field, thrips were distributed randomly despite the aggregated effects that were observed for INSV incidence. Economic analysis estimated that the virus accounted for over $475,000 in losses for the two fields, while stakeholder surveys documented over 750 fields that experienced INSV infection during the 2021 season in Monterey County alone. These studies enhance our knowledge on the epidemiology of thrips and INSV under current lettuce production practices in the Salinas Valley, while elucidating the economic consequences and broader challenges that are associated with managing thrips-transmitted viruses.


Assuntos
Tisanópteros , Tospovirus , Animais , California , Lactuca , Doenças das Plantas
17.
Int J Mol Sci ; 24(19)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37833941

RESUMO

The transmission of insect-borne viruses involves sophisticated interactions between viruses, host plants, and vectors. Chemical compounds play an important role in these interactions. Several studies reported that the plant virus tomato spotted wilt orthotospovirus (TSWV) increases host plant quality for its vector and benefits the vector thrips Frankliniella occidentalis. However, few studies have investigated the chemical ecology of thrips vectors, TSWV, and host plants. Here, we demonstrated that in TSWV-infected host plant Datura stramonium, (1) F. occidentalis were more attracted to feeding on TSWV-infected D. stramonium; (2) atropine and scopolamine, the main tropane alkaloids in D. stramonium, which are toxic to animals, were down-regulated by TSWV infection of the plant; and (3) F. occidentalis had better biological performance (prolonged adult longevity and increased fecundity, resulting in accelerated population growth) on TSWV-infected D. stramonium than on TSWV non-infected plants. These findings provide in-depth information about the physiological mechanisms responsible for the virus's benefits to its vector by virus infection of plant regulating alkaloid accumulation in the plant.


Assuntos
Alcaloides , Datura stramonium , Vírus de Plantas , Vírus de RNA , Solanum lycopersicum , Tisanópteros , Tospovirus , Animais , Tisanópteros/fisiologia , Tospovirus/fisiologia , Plantas , Doenças das Plantas/prevenção & controle
18.
J Gen Virol ; 103(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35947091

RESUMO

Cap-snatching is a mechanism applied by segmented, negative strand (-) RNA viruses (NSVs) to initiate genome transcription. So far, the cap donor source of cytoplasmic-replicating NSVs has remained elusive. Recently, studies pointed to processing body (P body, PB) as the potential source for providing capped RNAs but conclusive evidence is still lacking. To attempt identifying these sources, here the 5' non-viral leader sequences of Tomato spotted wilt virus (TSWV) N mRNAs were analysed by high-throughput sequencing (HTS) from plants subjected to normal and heat-stress conditions, and subsequently mapped on host donor transcripts. The majority of non-viral heterogenous, host-derived leader sequences ranged in size between ~10-20 nt and contained A or AG residues at the cleavage site and the presence of certain sequence motifs. Mapping the capped-leader sequences to the 5' UTR region of genes encoded by the Nicotiana tabacum genome, identified 348 donor genes and which were specifically enriched in cellular photosynthesis pathway. Nineteen of those were clearly expressed differentially at normal condition versus heat-stress conditions. Although the results did not point towards snatching of capped-RNA leader sequences from certain cytoplasmic RNA granules in particular, they indicated photosynthesis downregulation (and development of disease symptoms) partially result from cap-snatching.


Assuntos
RNA Viral , Tospovirus , Regiões 5' não Traduzidas , Fotossíntese , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Viral/genética , Tospovirus/genética , Transcrição Gênica
19.
J Virol ; 95(21): e0059721, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34232724

RESUMO

Frankliniella occidentalis (western flower thrips [WFT]) and Thrips tabaci (onion thrips [OT]) are insect species that greatly impact horticultural crops through direct damage and their efficient vectoring of tomato spotted wilt virus and iris yellow spot virus. In this study, we collected thrips of these species from 12 field populations in various regions in Italy. We also included one field population of Neohydatothrips variabilis (soybean thrips [ST]) from the United States. Total RNA data from high-throughput sequencing (HTS) were used to assemble the virome, and then we assigned putative viral contigs to each thrips sample by real-time reverse transcription-quantitative PCR (qRT-PCR). Excluding plant and fungal viruses, we were able to identify 61 viral segments, corresponding to 41 viruses: 14 were assigned to WFT, 17 to OT, and 1 to ST; 9 viruses could not be assigned to any species based on our stringent criteria. All these viruses are putative representative of new species (with only the exception of a sobemo-like virus that is 100% identical to a virus recently characterized in ST) and some belong to new higher-ranking taxa. These additions to the viral phylogeny suggest previously undescribed evolutionary niches. Most of Baltimore's classes of RNA viruses were present (positive- and minus-strand and double-stranded RNA viruses), but only one DNA virus was identified in our collection. Repeated sampling in a subset of locations in 2019 and 2020 and further virus characterization in a subset of four thrips populations maintained in the laboratory allowed us to provide evidence of a locally persistent thrips core virome that characterizes each population. IMPORTANCE Harnessing the insect microbiome can result in new approaches to contain their populations or the damage they cause vectoring viruses of medical, veterinary, or agricultural importance. Persistent insect viruses are a neglected component of their microbiota. In this study, for the first time, we characterize the virome associated with the two model systems for tospovirus-transmitting thrips species, of utmost importance for the direct and indirect damage they cause to a number of different crops. The thrips virome characterized includes several novel viruses, which in some cases reveal previously undescribed clades. More importantly, some of the viruses we describe are part of a core virome that is specific and consistently present in distinct geographical locations monitored over the years, hinting at a possible mutualistic symbiotic relationship with their host.


Assuntos
Insetos Vetores/virologia , Tisanópteros/virologia , Tospovirus/classificação , Tospovirus/genética , Viroma , Animais , Biologia Computacional/métodos , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Doenças das Plantas/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie
20.
Theor Appl Genet ; 135(5): 1493-1509, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35179614

RESUMO

KEY MESSAGE: A typical NLR gene, Sl5R-1, which regulates Tomato spotted wilt virus resistance, was fine mapped to a region less than 145 kb in the tomato genome. Tomato spotted wilt is a viral disease caused by Tomato spotted wilt virus (TSWV), which is a devastating disease that affects tomato (Solanum lycopersicum) production worldwide, and the resistance provided by the Sw-5 gene has broken down in some cases. In order to identify additional genes that confer resistance to TSWV, the F2 population was mapped using susceptible (M82) and resistant (H149) tomato lines. After 3 years of mapping, the main quantitative trait locus on chromosome 05 was narrowed to a genomic region of 145 kb and was subsequently identified by the F2 population, with 1971 plants in 2020. This region encompassed 14 candidate genes, and in it was found a gene cluster consisting of three genes (Sl5R-1, Sl5R-2, and Sl5R-3) that code for NBS-LRR proteins. The qRT-PCR and virus-induced gene silencing approach results confirmed that Sl5R-1 is a functional resistance gene for TSWV. Analysis of the Sl5R-1 promoter region revealed that there is a SlTGA9 transcription factor binding site caused by a base deletion in resistant plants, and its expression level was significantly up-regulated in infected resistant plants. Analysis of salicylic acid (SA) and jasmonic acid (JA) levels and the expression of SA- and JA-regulated genes suggest that SlTGA9 interacts or positively regulates Sl5R-1 to affect the SA- and JA-signaling pathways to resist TSWV. These results demonstrate that the identified Sl5R-1 gene regulates TSWV resistance by its own promoter interacting with the transcription factor SlTGA9.


Assuntos
Solanum lycopersicum , Tospovirus , Resistência à Doença/genética , Doenças das Plantas/genética , Ácido Salicílico/metabolismo , Tospovirus/genética , Tospovirus/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA