Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Pathog ; 186: 106482, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086442

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli is the main cause of post-diarrheal hemolytic uremic syndrome (HUS) which produces acute kidney injury mainly in children, although it can also affect adults. The kidneys are the organs most affected by Shiga toxin type 2 (Stx2) in patients with HUS. However, previous studies in pregnant rats showed that a sublethal dose of Stx2 causes severe damage in the uteroplacental unit and induces abortion, whereas produces mild to moderate renal damage. The aim of the present work was to study the progression of renal injury caused by a sublethal dose of Stx2, as well as renal recovery, in pregnant and non-pregnant rats, and to investigate whether pregnancy physiology may affect renal damage progression mediated by Stx2. METHODS: Renal function and histopathology was evaluated in pregnant rats intraperitoneally injected with a sublethal dose of Stx2 (0.5 ng/g bwt) at the early stage of gestation (day 8 of gestation), and results in these rats were compared over time with those observed in non-pregnant female rats injected with the same Stx2 dose. Hence, progression of cell proliferation and dedifferentiation in renal tubular epithelia was also investigated. RESULTS: The sublethal dose of Stx2 induced abortion in pregnant rats as well as a significant more extended functional and histological renal injury in non-pregnant rats than in pregnant rats. Stx2 also caused decreased ability to concentrate urine in non-pregnant rats compared to their controls. However, renal water handling in pregnant rats was not altered by Stx2, and was significantly different than in non-pregnant rats. The greatest renal injury in both pregnant and non-pregnant rats was observed at 4 days post-Stx2 injection, and coincided with a significant increase in tubular epithelial proliferation. Expression of mesenchymal marker vimentin in tubular epithelia was consistent with the level of tubular damage, being higher in non-pregnant rats than in pregnant rats. Recovery from Stx2-induced kidney injury was faster in pregnant rats than in non-pregnant rats. CONCLUSIONS: Adaptive mechanisms developed during pregnancy such as changes in water handle and renal hemodynamic may contribute to lessen the Stx2-induced renal injury, perhaps at the expense of fetal loss.


Assuntos
Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Humanos , Gravidez , Criança , Adulto , Ratos , Feminino , Animais , Toxina Shiga II/toxicidade , Rim/patologia , Síndrome Hemolítico-Urêmica/patologia , Água , Regeneração
2.
Cell Mol Neurobiol ; 43(5): 2203-2217, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36227397

RESUMO

Shiga toxin 2 (Stx2) from enterohemorrhagic Escherichia coli (EHEC) produces hemorrhagic colitis, hemolytic uremic syndrome (HUS), and acute encephalopathy. The mortality rate in HUS increases significantly when the central nervous system (CNS) is involved. Besides, EHEC also releases lipopolysaccharide (LPS). Many reports have described cognitive dysfunctions in HUS patients, the hippocampus being one of the brain areas targeted by EHEC infection. In this context, a translational murine model of encephalopathy was employed to establish the deleterious effects of Stx2 and the contribution of LPS in the hippocampus. The purpose of this work is to elucidate the signaling pathways that may activate the inflammatory processes triggered by Stx2, which produces cognitive alterations at the level of the hippocampus. Results demonstrate that Stx2 produced depression-like behavior, pro-inflammatory cytokine release, and NF-kB activation independent of the ERK1/2 signaling pathway, while co-administration of Stx2 and LPS reduced memory index. On the other hand, LPS activated NF-kB dependent on ERK1/2 signaling pathway. Cotreatment of Stx2 with LPS aggravated the pathologic state, while dexamethasone treatment succeeded in preventing behavioral alterations. Our present work suggests that the use of drugs such as corticosteroids or NF-kB signaling inhibitors may serve as neuroprotectors from EHEC infection.


Assuntos
Encefalopatias , Disfunção Cognitiva , Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Camundongos , Humanos , Animais , Toxina Shiga II/toxicidade , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , NF-kappa B , Encéfalo/patologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/patologia , Hipocampo/patologia , Cognição
3.
Pediatr Res ; 91(5): 1121-1129, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34155339

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli is responsible for post-diarrheal (D+) hemolytic uremic syndrome (HUS), which is a cause of acute renal failure in children. The glycolipid globotriaosylceramide (Gb3) is the main receptor for Shiga toxin (Stx) in kidney target cells. Eliglustat (EG) is a specific and potent inhibitor of glucosylceramide synthase, first step of glycosphingolipid biosynthesis, actually used for the treatment of Gaucher's disease. The aim of the present work was to evaluate the efficiency of EG in preventing the damage caused by Stx2 in human renal epithelial cells. METHODS: Human renal tubular epithelial cell (HRTEC) primary cultures were pre-treated with different dilutions of EG followed by co-incubation with EG and Stx2 at different times, and cell viability, proliferation, apoptosis, tubulogenesis, and Gb3 expression were assessed. RESULTS: In HRTEC, pre-treatments with 50 nmol/L EG for 24 h, or 500 nmol/L EG for 6 h, reduced Gb3 expression and totally prevented the effects of Stx2 on cell viability, proliferation, and apoptosis. EG treatment also allowed the development of tubulogenesis in 3D-HRTEC exposed to Stx2. CONCLUSIONS: EG could be a potential therapeutic drug for the prevention of acute kidney injury caused by Stx2. IMPACT: For the first time, we have demonstrated that Eliglustat prevents Shiga toxin 2 cytotoxic effects on human renal epithelia, by reducing the expression of the toxin receptor globotriaosylceramide. The present work also shows that Eliglustat prevents Shiga toxin 2 effects on tubulogenesis of renal epithelial cells. Eliglustat, actually used for the treatment of patients with Gaucher's disease, could be a therapeutic strategy to prevent the renal damage caused by Shiga toxin.


Assuntos
Doença de Gaucher , Toxina Shiga II , Células Cultivadas , Criança , Células Epiteliais/metabolismo , Doença de Gaucher/metabolismo , Humanos , Pirrolidinas , Toxina Shiga/metabolismo , Toxina Shiga II/metabolismo , Toxina Shiga II/toxicidade
4.
Clin Sci (Lond) ; 135(3): 575-588, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33496327

RESUMO

Hemolytic Uremic Syndrome (HUS), a disease triggered by Shiga toxin (Stx), is characterized by hemolytic anemia, thrombocytopenia and renal failure. The inflammatory response mediated by polymorphonuclear neutrophils (PMNs) and monocytes is essential to HUS onset. Still, the role of anti-inflammatory cytokines is less clear. The deficiency of IL-10, an anti-inflammatory cytokine, leads to severe pathology in bacterial infections but also to beneficial effects in models of sterile injury. The aim of this work was to analyze the role of IL-10 during HUS. Control and IL-10 lacking mice (IL-10-/-) were intravenously injected with Stx type 2 (Stx2) and survival rate was evaluated. PMN and circulating and renal pro- and anti-inflammatory factors were analyzed by FACS and enzyme-linked immunosorbent assay (ELISA) respectively. IL-10-/- mice showed a higher survival associated with lower renal damage reflected by reduced plasma urea and creatinine levels than control mice. Circulating PMN increased at 72 h in both mouse strains accompanied by an up-regulation of CD11b in control mice. In parallel, renal PMN were significantly increased only in control mice after toxin. Plasma TNF-α, IL-6 and corticosterone levels were higher increased in IL-10-/- than control mice. Simultaneously renal TNF-α raised constantly but was accompanied by increased TGF-ß levels in IL-10-/- mice. These results demonstrate that the profile of circulating and renal cytokines after Stx2 differed between strains suggesting that balance of these factors could participate in renal protection. We conclude that IL-10 absence has a protective role in an experimental model of HUS by reducing PMN recruitment into kidney and renal damage, and increasing mice survival.


Assuntos
Síndrome Hemolítico-Urêmica/induzido quimicamente , Interleucina-10/metabolismo , Toxina Shiga II/toxicidade , Animais , Corticosterona/sangue , Síndrome Hemolítico-Urêmica/patologia , Interleucina-10/genética , Interleucina-6/sangue , Rim/química , Rim/patologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos , Taxa de Sobrevida , Fator de Crescimento Transformador beta , Fator de Necrose Tumoral alfa/sangue
5.
Cell Microbiol ; 22(11): e13249, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32772454

RESUMO

Shiga toxins (Stxs) produced by Stx-producing Escherichia coli are the primarily virulence factors of hemolytic uremic syndrome and central nervous system (CNS) impairment. Although the precise mechanisms of toxin dissemination remain unclear, Stxs bind to extracellular vesicles (EVs). Exosomes, a subset of EVs, may play a key role in Stx-mediated renal injury. To test this hypothesis, we isolated exosomes from monocyte-derived macrophages in the presence of Stx2a or Stx2 toxoids. Macrophage-like differentiated THP-1 cells treated with Stxs secreted Stx-associated exosomes (Stx-Exo) of 90-130 nm in diameter, which induced cytotoxicity in recipient cells in a toxin receptor globotriaosylceramide (Gb3 )-dependent manner. Stx2-Exo engulfed by Gb3 -positive cells were translocated to the endoplasmic reticulum in the human proximal tubule epithelial cell line HK-2. Stx2-Exo contained pro-inflammatory cytokine mRNAs and proteins and induced more severe inflammation than purified Stx2a accompanied by greater death of target cells such as human renal or retinal pigment epithelial cells. Blockade of exosome biogenesis using the pharmacological inhibitor GW4869 reduced Stx2-Exo-mediated human renal cell death. Stx2-Exo isolated from human primary monocyte-derived macrophages activated caspase 3/7 and resulted in significant cell death in primary human renal cortical epithelial cells. Based on these results, we speculate that Stx-containing exosomes derived from macrophages may exacerbate cytotoxicity and inflammation and trigger cell death in toxin-sensitive cells. Therapeutic interventions targeting Stx-containing exosomes may prevent or ameliorate Stx-mediated acute vascular dysfunction.


Assuntos
Exossomos/metabolismo , Macrófagos/metabolismo , Toxina Shiga II/metabolismo , Toxina Shiga II/toxicidade , Triexosilceramidas/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Exossomos/imunologia , Exossomos/ultraestrutura , Humanos , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Toxina Shiga II/farmacologia , Células THP-1
6.
Artigo em Inglês | MEDLINE | ID: mdl-32015030

RESUMO

Infections with enterohemorrhagic Escherichia coli (EHEC) cause disease ranging from mild diarrhea to hemolytic-uremic syndrome (HUS) and are the most common cause of renal failure in children in high-income countries. The severity of the disease derives from the release of Shiga toxins (Stx). The use of antibiotics to treat EHEC infections is generally avoided, as it can result in increased stx expression. Here, we systematically tested different classes of antibiotics and found that their influence on stx expression and release varies significantly. We assessed a selection of these antibiotics in vivo using the Citrobacter rodentium ϕstx2dact mouse model and show that stx2d-inducing antibiotics resulted in weight loss and kidney damage despite clearance of the infection. However, several non-Stx-inducing antibiotics cleared bacterial infection without causing Stx-mediated pathology. Our results suggest that these antibiotics might be useful in the treatment of EHEC-infected human patients and decrease the risk of HUS development.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antibacterianos/uso terapêutico , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Toxina Shiga II/metabolismo , Injúria Renal Aguda/microbiologia , Animais , Citrobacter rodentium/genética , Citrobacter rodentium/metabolismo , Modelos Animais de Doenças , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Toxina Shiga II/genética , Toxina Shiga II/toxicidade
7.
Pediatr Nephrol ; 35(10): 1997-2001, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32734345

RESUMO

BACKGROUND: Shigatoxin (Stx)-producing Escherichia coli (STEC) are the most common causes of hemolytic uremic syndrome (STEC-HUS). The aim of our study is to compare the risk of developing STEC-HUS in relation to the type of Stx genes (Stx1, Stx2, or both). METHODS: This is a prospective, observational, multicenter study involving 63 pediatric units in Northern Italy (ItalKid-HUS Network). STEC-infected children were identified within a screening program for bloody diarrhea during a 10-year period (2010-2019). Stx genes were detected by reverse dot blot or real-time PCR. After the identification of STEC infection, children were followed until diarrhea complete recovery for the possible development of STEC-HUS. RESULTS: Of the 214 Stx-positive patients, 34 (15.9%) developed STEC-HUS. The risk of HUS in STEC-infected children with Stx1 (n: 62; 29.0%) and Stx2 (n: 97; 45.3%) was respectively 0% and 23.7%, while in patients carrying both Stx1 and Stx2 (n: 55; 25.7%), the risk was 12.7% (p: 0.001). CONCLUSIONS: Our data confirm that Stx1 is a very rare cause of STEC-HUS and demonstrate that the risk of STEC-HUS halves in the case of Stx1+2-producing Escherichia coli infection compared with infections where Stx2 is present alone. This observation is helpful in assessing the risk of individual STEC-infected patients for the development of HUS and suggests that Stx1, in the presence of Stx2, might exert a protective role possibly by receptor competition.


Assuntos
Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/epidemiologia , Toxina Shiga I/toxicidade , Toxina Shiga II/toxicidade , Escherichia coli Shiga Toxigênica/genética , Criança , Pré-Escolar , Infecções por Escherichia coli/complicações , Feminino , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Lactente , Tipagem Molecular , Estudos Prospectivos , Fatores de Proteção , Medição de Risco , Toxina Shiga I/genética , Toxina Shiga I/isolamento & purificação , Toxina Shiga II/genética , Toxina Shiga II/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação
8.
Infect Immun ; 87(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670557

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) causes foodborne outbreaks of bloody diarrhea. There are two major types of immunologically distinct Stxs: Stx1a and Stx2a. Stx1a is more cytotoxic to Vero cells than Stx2a, but Stx2a has a lower 50% lethal dose (LD50) in mice. Epidemiological data suggest that infections by STEC strains that produce only Stx2a progress more often to a life-threatening sequela of infection called hemolytic-uremic syndrome (HUS) than isolates that make Stx1a only or produce both Stx1a and Stx2a. In this study, we found that an E. coli O26:H11 strain that produces both Stx1a and Stx2a was virulent in streptomycin- and ciprofloxacin-treated mice and that mice were protected by administration of an anti-Stx2 antibody. However, we discovered that in the absence of ciprofloxacin, neutralization of Stx1a enhanced the virulence of the strain, a result that corroborated our previous finding that Stx1a reduces the toxicity of Stx2a by the oral route. We further found that intraperitoneal administration of the purified Stx1a B subunit delayed the mean time to death of mice intoxicated with Stx2a and reduced the cytotoxic effect of Stx2a on Vero cells. Taken together, our data suggest that Stx1a reduces both the pathogenicity of Stx2 in vivo and cytotoxicity in vitro.


Assuntos
Infecções por Escherichia coli/microbiologia , Toxina Shiga I/toxicidade , Toxina Shiga II/toxicidade , Escherichia coli Shiga Toxigênica/metabolismo , Animais , Chlorocebus aethiops , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/patogenicidade , Células Vero , Virulência
9.
Clin Exp Nephrol ; 23(4): 544-550, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30467800

RESUMO

OBJECTIVES: Interleukin (IL)-33 plays an important role in host defense, immune regulation, and inflammation. This study assessed IL-33's role in the pathogenesis of severe hemolytic uremic syndrome (HUS) induced by enterohemorrhagic Escherichia coli (EHEC). We also investigated the clinical significance of IL-33 and soluble ST2 (soluble form of IL-33 receptor) serum levels in patients with EHEC-induced HUS. METHODS: The role of IL-33 in Shiga toxin (STx)-2-induced endothelial injury was studied in human umbilical vein endothelial cells (HUVECs) in vitro. Blood samples were obtained from 21 HUS patients and 15 healthy controls (HC). The IL-33 and sST2 serum levels were quantified using an enzyme-linked immunosorbent assay. The results were compared to HUS' clinical features. RESULTS: Cytotoxic assays indicated that IL-33 enhanced STx2 toxicity in HUVECs. Serum IL-33 levels in most HUS patients were below the lowest detection limit. On the other hand, serum sST2 levels in patients during the HUS phase were significantly higher than those in HC and showed a correlation with disease severity. Serum sST2 levels in patients with encephalopathy were significantly higher than those in patients without it. A serum sST2 level > 63.2 pg/mL was associated with a high risk of encephalopathy. Serum sST2 levels significantly correlated with serum levels of inflammatory cytokines related to the development of HUS. CONCLUSIONS: Our results indicate that IL-33 contributes to the severity of EHEC-induced HUS. Serum sST2 level in HUS patients correlated with disease activity, which suggests its potential role as a marker for disease activity and development of encephalopathy in patients with EHEC-induced HUS.


Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Proteína 1 Semelhante a Receptor de Interleucina-1/sangue , Interleucina-33/sangue , Adolescente , Adulto , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Infecções por Escherichia coli/complicações , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Lactente , Interleucina-6/sangue , Masculino , Curva ROC , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Índice de Gravidade de Doença , Toxina Shiga II/toxicidade , Transdução de Sinais , Adulto Jovem
10.
Int J Med Microbiol ; 308(8): 1036-1042, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30314914

RESUMO

Infections by Enterohemorrhagic Escherichia coli may cause in addition to hemolytic uremic syndrome neurological disorders which may lead to fatal outcomes in patients. The brain striatum is usually affected during this outcome. The aim of this study was to determine in this area the role of the microglia in pro-inflammatory events that may occur during Shiga toxin 2 intoxication and consequently to this, whether oligodendrocytes were being affected. In the present paper we demonstrated that anti-inflammatory treatments reduced deleterious effects in brain striatal cells exposed to Shiga toxin 2 and LPS. While dexamethasone treatment decreased microglial activation and recovered myelin integrity in the mice striatum, etanercept treatment decreased neuronal uptake of Stx2 in rat striatal neurons, improving the affected area from toxin-derived injury. In conclusion, microglial activation is related to pro-inflammatory events that may deteriorate the brain function during intoxication with Stx2 and LPS. Consequently, the role of anti-inflammatory agents in the treatment of EHEC-derived encephalopathy should be studied in clinical trials.


Assuntos
Anti-Inflamatórios/administração & dosagem , Encefalopatias/tratamento farmacológico , Escherichia coli Êntero-Hemorrágica/patogenicidade , Infecções por Escherichia coli/tratamento farmacológico , Microglia/efeitos dos fármacos , Toxina Shiga II/toxicidade , Animais , Encefalopatias/microbiologia , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Infecções por Escherichia coli/microbiologia , Etanercepte/administração & dosagem , Etanercepte/farmacologia , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Microglia/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Ratos , Ratos Sprague-Dawley
11.
Microb Pathog ; 123: 250-258, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30016681

RESUMO

Shiga Toxin (Stx)-producing E. coli (STEC) continue to be a prominent cause of foodborne outbreaks of hemorrhagic colitis worldwide, and can result in life-threatening diseases, including hemolytic uremic syndrome (HUS), in susceptible individuals. Obesity-associated immune dysfunction has been shown to be a risk factor for infectious diseases, although few studies have addressed the role of obesity in foodborne diseases. We hypothesized that obesity may affect the development of HUS through an alteration of immune responses and kidney function. We combined diet-induced obese (DIO) and HUS mouse models to look for differences in disease outcome between DIO and wild-type (WT) male and female C57 B l/6 mice. Following multiple intraperitoneal injections with endotoxin-free saline or sublethal doses of purified Stx2, we examined DIO and WT mice for signs of HUS development. DIO mice receiving Stx2 injections lost more body weight, and had significantly higher (p < 0.001) BUN, serum creatinine, and neutrophil counts compared to WT mice or DIO mice receiving saline injections. Lymphocyte counts were significantly (p < 0.05) lower in Stx2-treated obese mice compared to WT mice or saline-treated DIO mice. In addition to increased Stx2-induced kidney dysfunction, DIO mouse kidneys also had significantly increased expression of IL-1α, IL-1ß, IL-6, TNF-α, MCP-1, and KC RNA compared to saline controls (p < 0.05). Serum cytokine levels of IL-6 and KC were also significantly higher in Stx2-treated mice compared to saline controls, but there were no significant differences between the WT and DIO mice. WT and DIO mice treated with Stx2 exhibited significantly higher degrees of kidney tubular dilation and necrosis as well as some signs of tissue repair/regeneration, but did not appear to progress to the full pathology typically associated with human HUS. Although the combined obesity/HUS mouse model did not manifest into HUS symptoms and pathogenesis, these data demonstrate that obesity alters kidney function, inflammatory cells and cytokine production in response to Stx2, and may play a role in HUS severity in a susceptible model of infection.


Assuntos
Dieta/efeitos adversos , Síndrome Hemolítico-Urêmica/etiologia , Mediadores da Inflamação , Rim/efeitos dos fármacos , Obesidade/complicações , Toxina Shiga II/toxicidade , Animais , Glicemia , Quimiocina CCL2/metabolismo , Creatinina/sangue , Citocinas/sangue , Modelos Animais de Doenças , Escherichia coli , Feminino , Síndrome Hemolítico-Urêmica/induzido quimicamente , Síndrome Hemolítico-Urêmica/patologia , Receptor Celular 1 do Vírus da Hepatite A , Inflamação , Interleucina-1alfa/sangue , Interleucina-1beta/metabolismo , Interleucina-6/sangue , Rim/patologia , Linfócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Neutrófilos/efeitos dos fármacos , Toxina Shiga II/imunologia , Fator de Necrose Tumoral alfa/sangue , Aumento de Peso
12.
Pediatr Nephrol ; 32(7): 1263-1268, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28343354

RESUMO

BACKGROUND: Hemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in children, with the majority of cases caused by an infection with Shiga toxin-producing Escherichia coli (STEC). Whereas O157 is still the predominant STEC serotype, non-O157 serotypes are increasingly associated with STEC-HUS. However, little is known about this emerging and highly diverse group of non-O157 serotypes. With supportive therapy, STEC-HUS is often self-limiting, with occurrence of chronic sequelae in just a small proportion of patients. CASE DIAGNOSIS/TREATMENT: In this case report, we describe a 16-month-old boy with a highly severe and atypical presentation of STEC-HUS. Despite the presentation with multi-organ failure and extensive involvement of central nervous system due to extensive thrombotic microangiopathy (suggestive of atypical HUS), fecal diagnostics revealed an infection with the rare serotype: shiga toxin 2d-producing STEC O80:H2. CONCLUSIONS: This report underlines the importance of STEC diagnostic tests in all children with HUS, including those with an atypical presentation, and emphasizes the importance of molecular and serotyping assays to estimate the virulence of an STEC strain.


Assuntos
Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/microbiologia , Insuficiência de Múltiplos Órgãos/microbiologia , Toxina Shiga II/toxicidade , Escherichia coli Shiga Toxigênica/patogenicidade , Microangiopatias Trombóticas/microbiologia , Antibacterianos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Biópsia , Hemocultura , Ceftriaxona/uso terapêutico , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/tratamento farmacológico , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/complicações , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Humanos , Lactente , Fígado/patologia , Imageamento por Ressonância Magnética , Masculino , Midazolam/uso terapêutico , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/complicações , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Reação em Cadeia da Polimerase em Tempo Real , Ressuscitação , Sorotipagem/métodos , Toxina Shiga II/isolamento & purificação , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/metabolismo , Microangiopatias Trombóticas/sangue , Microangiopatias Trombóticas/complicações , Microangiopatias Trombóticas/tratamento farmacológico , Virulência
13.
Vet Pathol ; 54(4): 710-719, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178427

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) are strains of E. coli that express Shiga toxins (Stx) and cause hemorrhagic colitis. In some cases, disease can progress to hemolytic uremic syndrome, a potentially fatal form of kidney disease. Both enteric and renal disease are associated with the expression of stx genes, which are often carried on lysogenic phage. Toxin is expressed following induction and conversion of the phage to lytic growth. The authors previously used a germ-free mouse model to demonstrate that toxin gene expression is enhanced during growth in vivo and that renal disease is dependent on both prophage induction and expression of Stx2. In the current study, the authors document and quantify necrotizing colitis, examine the progression of enteric and renal disease, and determine the role of Stx2, phage genes, and the type 3 secretion system (T3SS) in bacterial colonization and colitis and systemic disease. By 1 day after inoculation, EHEC-monocolonized mice developed colitis, which decreased in severity thereafter. Systemic disease developed subsequently. Infection with EHEC mutant strains revealed that renal failure and splenic necrosis were absolutely dependent on the expression of Stx2 but that T3SS function and prophage excision were not necessary for systemic disease. In contrast, colitis was only partly dependent on Stx2. This study demonstrates that in germ-free mice, like in human patients, EHEC causes early colitis followed by renal failure and that systemic disease but not colitis is Stx2 dependent.


Assuntos
Colite/veterinária , Infecções por Escherichia coli/veterinária , Escherichia coli O157 , Doenças dos Roedores/microbiologia , Toxina Shiga II/toxicidade , Animais , Colite/microbiologia , Colite/patologia , Colo/microbiologia , Colo/patologia , Ensaio de Imunoadsorção Enzimática , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Feminino , Vida Livre de Germes , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Necrose , Doenças dos Roedores/patologia , Toxina Shiga II/metabolismo
14.
J Infect Dis ; 213(6): 1031-40, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26582960

RESUMO

BACKGROUND: Endothelial dysfunction plays a pivotal role in the pathogenesis of postenteropathic hemolytic uremic syndrome (HUS), most commonly caused by Shiga toxin (Stx)-producing strains of Escherichia coli. METHODS: To identify new treatment targets, we performed a metabolomic high-throughput screening to analyze the effect of Stx2a, the major Stx type associated with HUS, on human renal glomerular endothelial cells (HRGEC) and umbilical vein endothelial cells (HUVEC). Cells were treated either with sensitizing tumor necrosis factor α (TNF-α) or Stx2a, a sequence of both or remained untreated. RESULTS: We identified 341 metabolites by combined liquid chromatography/tandem mass spectrometry and gas chromatography/mass spectrometry. Both cell lines exhibited distinct metabolic reaction profiles but shared elevated levels of free fatty acids. Stx2a predominantly altered the nicotinamide adenine dinucleotide (NAD) cofactor pathway and the inflammation-modulating eicosanoid pathway, which are associated with lipid metabolism. In HRGEC, Stx2a strongly diminished NAD derivatives, leading to depletion of the energy substrate acetyl coenzyme A and the antioxidant glutathione. HUVEC responded to TNF-α and Stx2a by increasing production of the counteracting eicosanoids prostaglandin I2, E1, E2, and A2, while in HRGEC only more prostaglandin I2 was detected. CONCLUSIONS: We conclude that disruption of energy metabolism and depletion of glutathione contributes to Stx-induced injury of the renal endothelium and that the inflammatory response to Stx is highly cell-type specific.


Assuntos
Células Endoteliais/efeitos dos fármacos , Escherichia coli/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Glomérulos Renais/citologia , Metabolômica , Toxina Shiga II/toxicidade , Células Cultivadas , Eicosanoides/genética , Eicosanoides/metabolismo , Escherichia coli/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/patologia , Humanos
15.
J Infect Dis ; 213(8): 1271-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26743841

RESUMO

BACKGROUND: Shiga toxin (Stx) is the primary virulence factor of Stx-producing Escherichia coli (STEC). STEC can produce Stx1a and/or Stx2a, which are antigenically distinct. However, Stx2a-producing STEC are associated with more severe disease than strains producing both Stx1a and Stx2a. METHODS AND RESULTS: To address the hypothesis that the reason for the association of Stx2a with more severe disease is because Stx2a crosses the intestinal barrier with greater efficiency that Stx1a, we covalently labeled Stx1a and Stx2a with Alexa Fluor 750 and determined the ex vivo fluorescent intensity of murine systemic organs after oral intoxication. Surprisingly, both Stxs exhibited similar dissemination patterns and accumulated in the kidneys. We next cointoxicated mice to determine whether Stx1a could impede Stx2a. Cointoxication resulted in increased survival and an extended mean time to death, compared with intoxication with Stx2a only. The survival benefit was dose dependent, with the greatest effect observed when 5 times more Stx1a than Stx2a was delivered, and was amplified when Stx1a was delivered 3 hours prior to Stx2a. Cointoxication with an Stx1a active site toxoid also reduced Stx2a toxicity. CONCLUSIONS: These studies suggest that Stx1a reduces Stx2a-mediated toxicity, a finding that may explain why STEC that produce only Stx2a are associated with more severe disease than strains producing Stx1a and Stx2a.


Assuntos
Toxina Shiga I/farmacocinética , Toxina Shiga I/toxicidade , Toxina Shiga II/antagonistas & inibidores , Toxina Shiga II/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Administração Oral , Animais , Feminino , Rim/efeitos dos fármacos , Rim/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Toxina Shiga I/administração & dosagem , Toxina Shiga II/administração & dosagem , Escherichia coli Shiga Toxigênica , Análise de Sobrevida
16.
J Bacteriol ; 198(11): 1621-1630, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27002129

RESUMO

UNLABELLED: Shiga toxin (Stx)-producing Escherichia coli (STEC) is a major cause of foodborne illness, including the life-threatening complication hemolytic-uremic syndrome. The German outbreak in 2011 resulted in nearly 4,000 cases of infection, with 54 deaths. Two forms of Stx, Stx1 and Stx2, differ in potency, and subtype Stx2a is most commonly associated with fatal human disease. Stx is considered to be an AB5 toxin. The single A (enzymatically active) subunit inhibits protein synthesis by cleaving a catalytic adenine from the eukaryotic rRNA. The B (binding) subunit forms a homopentamer and mediates cellular association and toxin internalization by binding to the glycolipid globotriaosylceramide (Gb3). Both subunits are essential for toxicity. Here we report that unlike other AB5 toxin family members, Stx is produced by STEC as unassembled A and B subunits. A preformed AB5 complex is not required for cellular toxicity or in vivo toxicity to mice, and toxin assembly likely occurs at the cell membrane. We demonstrate that disruption of A- and B-subunit association by use of A-subunit peptides that lack enzymatic activity can protect mice from lethal doses of toxin. Currently, no treatments have been proven to be effective for hemolytic-uremic syndrome. Our studies demonstrate that agents that interfere with A- and B-subunit assembly may have therapeutic potential. Shiga toxin (Stx) produced by pathogenic Escherichia coli is considered to be an AB5 heterohexamer; however, no known mechanisms ensure AB5 assembly. Stx released by E. coli is not in the AB5 conformation and assembles at the receptor interface. Thus, unassembled Stx can impart toxicity. This finding shows that preventing AB5 assembly is a potential treatment for Stx-associated illnesses. IMPORTANCE: Complications due to Shiga toxin are frequently fatal, and at present, supportive care is the only treatment option. Furthermore, antibiotic treatment is contraindicated due to the ability of antibiotics to amplify bacterial expression of Shiga toxin. We report, contrary to prevailing assumptions, that Shiga toxin produced by STEC circulates as unassembled A and B subunits at concentrations that are lethal to mice. Similar to the case for anthrax toxin, assembly occurs on receptors expressed on the surfaces of mammalian target cells. Disruption of Shiga toxin assembly by use of A-subunit peptides that lack enzymatic activity protects mice from lethal challenge with Shiga toxin, suggesting a new approach for development of therapeutics.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Toxina Shiga II/toxicidade , Escherichia coli Shiga Toxigênica/fisiologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Masculino , Camundongos , Modelos Moleculares , Biossíntese de Proteínas , Conformação Proteica , Subunidades Proteicas , Toxina Shiga II/genética , Toxina Shiga II/metabolismo
17.
Kidney Int ; 90(4): 774-82, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27378476

RESUMO

Hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli (STEC HUS) is a worldwide endemic problem, and its pathophysiology is not fully elucidated. Here we tested whether the mannose-binding lectin (MBL2), an initiating factor of lectin complement pathway activation, plays a crucial role in STEC HUS. Using novel human MBL2-expressing mice (MBL2 KI) that lack murine Mbls (MBL2(+/+)Mbl1(-/-)Mbl2(-/-)), a novel STEC HUS model consisted of an intraperitoneal injection with Shiga toxin-2 (Stx-2) with or without anti-MBL2 antibody (3F8, intraperitoneal). Stx-2 induced weight loss, anemia, and thrombocytopenia and increased serum creatinine, free serum hemoglobin, and cystatin C levels, but a significantly decreased glomerular filtration rate compared with control/sham mice. Immunohistochemical staining revealed renal C3d deposition and fibrin deposition in glomeruli in Stx-2-injected mice. Treatment with 3F8 completely inhibited serum MBL2 levels and significantly attenuated Stx-2 induced-renal injury, free serum hemoglobin levels, renal C3d, and fibrin deposition and preserved the glomerular filtration rate. Thus, MBL2 inhibition significantly protected against complement activation and renal injury induced by Stx-2. This novel mouse model can be used to study the role of complement, particularly lectin pathway-mediated complement activation, in Stx-2-induced renal injury.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Complemento C3d/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Lectina de Ligação a Manose/imunologia , Toxina Shiga II/toxicidade , Animais , Anticorpos Monoclonais Murinos , Ativação do Complemento/efeitos dos fármacos , Modelos Animais de Doenças , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Técnicas de Introdução de Genes , Taxa de Filtração Glomerular , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/imunologia , Síndrome Hemolítico-Urêmica/microbiologia , Humanos , Imuno-Histoquímica , Rim/imunologia , Masculino , Lectina de Ligação a Manose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxina Shiga II/imunologia , Escherichia coli Shiga Toxigênica/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1173-R1185, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681328

RESUMO

Shiga toxin 2 (Stx2)-producing enterohemorrhagic induced brain damage. Since a cerebroprotective action was reported for angiotensin (Ang)-(1-7), our aim was to investigate whether Ang-(1-7) protects from brain damage induced by Stx2-producing enterohemorrhagic Escherichia coli The anterior hypothalamic area of adult male Wistar rats was injected with saline solution or Stx2 or Stx2 plus Ang-(1-7) or Stx2 plus Ang-(1-7) plus A779. Rats received a single injection of Stx2 at the beginning of the experiment, and Ang-(1-7), A779, or saline was administered daily in a single injection for 8 days. Cellular ultrastructural changes were analyzed by transmission electron microscopy. Stx2 induced neurodegeneration, axonal demyelination, alterations in synapse, and oligodendrocyte and astrocyte damage, accompanied by edema. Ang-(1-7) prevented neuronal damage triggered by the toxin in 55.6 ± 9.5% of the neurons and the Stx2-induced synapse dysfunction was reversed. In addition, Ang-(1-7) blocked Stx2-induced demyelination in 92 ± 4% of the axons. Oligodendrocyte damage caused by Stx2 was prevented by Ang-(1-7) but astrocytes were only partially protected by the peptide (38 ± 5% of astrocytes were preserved). Ang-(1-7) treatment resulted in 50% reduction in the number of activated microglial cells induced by Stx2, suggesting an anti-inflammatory action. All these beneficial effects elicited by Ang-(1-7) were blocked by the Mas receptor antagonist and thus it was concluded that Ang-(1-7) protects mainly neurons and oligodendrocytes, and partially astrocytes, in the central nervous system through Mas receptor stimulation.


Assuntos
Angiotensina I/administração & dosagem , Infecções por Escherichia coli/prevenção & controle , Hipotálamo/patologia , Encefalite Infecciosa/induzido quimicamente , Encefalite Infecciosa/prevenção & controle , Fragmentos de Peptídeos/administração & dosagem , Toxina Shiga II/toxicidade , Animais , Infecções por Escherichia coli/induzido quimicamente , Infecções por Escherichia coli/patologia , Hipotálamo/efeitos dos fármacos , Encefalite Infecciosa/patologia , Masculino , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Wistar , Escherichia coli Shiga Toxigênica/metabolismo , Resultado do Tratamento
19.
Microb Pathog ; 99: 87-94, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27521227

RESUMO

Shiga toxin (Stx)-producing Escherichia coli (STEC) causes post-diarrheal Hemolytic Uremic Syndrome (HUS), which is one of the most common causes of acute renal failure in children in Argentine. The aim of the present work was to study the effects of Shiga toxin type 2 (Stx2) on regenerative mechanisms of primary cultures of human cortical renal tubular epithelial cells (HRTEC) and three-dimensional (3D) cultures of HRTEC. Primary cultures of HRTEC were able to develop tubular structures when grown in matrigel, which showed epithelial cells surrounding a central lumen resembling the original renal tubules. Exposure to Stx2 inhibited tubulogenesis in 3D-HRTEC cultures. Moreover, a significant increase in apoptosis, and decrease in cell proliferation was observed in tubular structures of 3D-HRTEC exposed to Stx2. A significant reduction in cell migration and vimentin expression levels was observed in HRTEC primary cultures exposed to Stx2, demonstrating that the holotoxin affected HRTEC dedifferentiation. Furthermore, a decreased number of cells expressing CD133 progenitor marker was found in HRTEC cultures treated with Stx2. The CD133 positive cells also expressed the Stx receptor globotriaosylceramide, which may explain their sensitivity to Stx2. In conclusion, Stx2 affects the regenerative processes of human renal tubular epithelial cells in vitro, by inhibiting cell dedifferentiation mechanisms, as well as tubules restoration. The development of 3D-HRTEC cultures that resemble original human renal proximal tubules is a novel in vitro model to study renal epithelial repair mechanisms after injury.


Assuntos
Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Toxina Shiga II/toxicidade , Apoptose , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/fisiologia , Humanos , Túbulos Renais/fisiologia , Técnicas de Cultura de Órgãos
20.
Infect Immun ; 83(1): 28-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312954

RESUMO

Shiga toxins (Stx) are a family of cytotoxic proteins that can cause hemolytic-uremic syndrome (HUS), a thrombotic microangiopathy, following infections by Shiga toxin-producing Escherichia coli (STEC). Renal failure is a key feature of HUS and a major cause of childhood renal failure worldwide. There are currently no specific therapies for STEC-associated HUS, and the mechanism of Stx-induced renal injury is not well understood primarily due to a lack of fully representative animal models and an inability to monitor disease progression on a molecular or cellular level in humans at early stages. Three-dimensional (3D) tissue models have been shown to be more in vivo-like in their phenotype and physiology than 2D cultures for numerous disease models, including cancer and polycystic kidney disease. It is unknown whether exposure of a 3D renal tissue model to Stx will yield a more in vivo-like response than 2D cell culture. In this study, we characterized Stx2-mediated cytotoxicity in a bioengineered 3D human renal tissue model previously shown to be a predictor of drug-induced nephrotoxicity and compared its response to Stx2 exposure in 2D cell culture. Our results demonstrate that although many mechanistic aspects of cytotoxicity were similar between 3D and 2D, treatment of the 3D tissues with Stx resulted in an elevated secretion of the kidney injury marker 1 (Kim-1) and the cytokine interleukin-8 compared to the 2D cell cultures. This study represents the first application of 3D tissues for the study of Stx-mediated kidney injury.


Assuntos
Rim/efeitos dos fármacos , Organoides/efeitos dos fármacos , Toxina Shiga II/toxicidade , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Glicoproteínas de Membrana/análise , Modelos Biológicos , Técnicas de Cultura de Órgãos , Receptores Virais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA